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Optimization of electrical discharge machining (EDM) processes is a critical issue
due to complex material removal mechanism, presence of multiple input
parameters and responses (outputs) and interactions among them and varying
interest of different stakeholders with respect to relative importance assigned to
the considered responses. Multi-criteria decision making (MCDM) techniques
have become potent tools in solving parametric optimization problems of the
EDM processes. In this paper, more than 130 research articles from SCOPUS
database published during 2013–22 are reviewed extracting information with
respect to experimental design plans employed, materials machined, dielectrics
used, process parameters and responses considered and MCDM tools applied
along with their integration with other mathematical techniques. A detailed
analysis of those reviewed articles reveals that the past researchers have
mostly preferred Taguchi’s L9 orthogonal array as the experimental design
plan; EDM oil as the dielectric fluid; medium and high carbon steels as the
work materials; peak current and pulse-on time as the input parameters; material
removal rate, tool wear rate and surface roughness as the responses; and grey
relational analysis as the MCDM tool during conducting and optimizing EDM
operations. This review paper would act as a data repository to the future
researchers in understanding the stochastic behaviour of EDM processes and
providing guidance in setting the tentative operating levels of varying input
parameters along with achievable response values. The extracted dataset can
be treated as an input to any of the machine learning algorithms for subsequent
development of appropriate prediction models. This review also outlines
potential future research avenues, emphasizing advancements in EDM
technology and the integration of innovative multi-criteria decision-
making tools.
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1 Introduction

The EDM, developed by two Soviet scientists B. Lazarenko and
N. Lazarenko in 1943 while investigating the destructive effect of
electrical discharges on removing material from conductive
workpieces, is one the most popular and industrially-accepted
non-traditional machining processes in the present-day
manufacturing scenario. It is an electro-thermal process in which
material removal takes place due to a series of continuous repetitive
high-frequency controlled pulse discharges between the tool
(cathode) and the workpiece being machined (anode) (Pandey
and Shan, 2017). During the EDM operation, a small gap
(0.005–0.05 mm) is always maintained between the tool and the
workpiece which is responsible for formation of a plasma channel
raising the temperature around 8,000°C–12000°C resulting in
melting and vaporization of material to provide the final shape to
the workpiece according to the tool geometry (Youssef and El-Hofy,
2020). Both the tool and workpiece are immersed in a dielectric
medium (deionized water/kerosene/EDM oil) which basically helps
in plasma formation, cools the machining zone and removes the
molten material (debris) by flushing action. When sufficient voltage
and current are applied to the tool and the workpiece, electrons
break away from the tool and accelerate towards the workpiece,
thereby hitting and breaking the conductive dielectric medium,
causing creation of tiny craters and removal of material from the
workpiece surface (Ho and Newman, 2003; Phan N. H. et al., 2022).
The working principle of an EDM process is demonstrated
in Figure 1.

Unlike the conventional machining processes, EDM is a non-
contact spark erosion process which is capable of generating
complex shapes with high dimensional accuracy and tolerance on
most of the conductive and difficult-to-cut advanced engineering
materials irrespective of their physical and mechanical properties. It
can efficiently machine medium and high carbon steels, aluminium
and titanium and their alloys, MMCs and hybridMMCs, superalloys
(Inconel, Monel, Nimonics, etc.), shape memory alloys, tungsten
carbide, etc., which have found wide ranging applications in many of

the die and mold making, automobile, aerospace, defense,
electronics, nuclear and medical industries (Muthuramalingam
and Mohan, 2014; Pramanik et al., 2020). With appropriate
modifications in the machining setup, it can also machine non-
conductive materials, such as ceramics and glasses and generate
micro-features (like micro-holes, cavities, pockets, etc.) in the above-
mentioned materials (Prakash et al., 2019; Kumar et al., 2020;
Thangaraj et al., 2020; Pandey and Anas, 2022). It has several
advantages, like no formation of mechanical stress, chatter, burr
and vibration, higher flexibility and dimensional accuracy,
economical operation, etc. But it also suffers from some major
disadvantages, like low MRR, poor surface quality, high tool
wear, not suitable for mass production, formation of recast layer,
white layer and surface cracks, heat affected zone, etc. Although it
has been experimented that proper selection of dielectric fluid and
tool material can help in achieving higher MRR along with lower SR
and TWR on some of the selected work materials, use of
hydrocarbons as the dielectric medium, excessive noise, emission
of toxic substances, formation of aerosol and unhealthy working
environment hinder its real-time applications in many of the
industries (Chakraborty et al., 2015; Liu et al., 2022). Research
works have now been directed towards adoption of green or dry
EDM process with minimum consumption of dielectric, use of
deionized water as dielectric, minimum energy consumption,
minimum emission of toxic substances, etc., leading to
sustainable manufacturing in present-day Industry 4.0 scenario
(Leão and Pashby, 2004; Singh et al., 2016; Gouda et al., 2021;
Ming et al., 2021).

Based on the working principle, EDM processes can be broadly
divided into die-sinking EDM, rotary EDM (instead of a stationary
tool, it is rotated to have better MRR and surface quality), ultrasonic
EDM (ultrasonic pulses are made to pass between the tool and the
workpiece), cryogenically cooled EDM (the tool is constantly cooled
applying cryogenic fluids), powder-mixed EDM (abrasive particles,
e.g., silicon carbide, boron carbide, etc., are proportionally mixed
with dielectric fluid), vibration-assisted EDM (the tool is vibrated for
easy removal of eroded material due to flushing action of the

FIGURE 1
Schematic of an EDM process.
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dielectric medium), wire EDM (a thin strand of continuous wire
made of tungsten, molybdenum, brass or copper is employed as the
tool electrode) etc. (Huu Phan and Muthuramalingam, 2021).
Among all these variants, die-sinking (sinker/conventional) EDM
is most commonly used in almost all the industries, in which the
electrode (tool) having a distinctive shape sink (penetrates) into the
material (hence, its name is sinker) causing material removal.

Like all other non-traditional machining processes, the
performance of conventional EDM process with respect to MRR,
SR, TWR, WLT, SCD and different form errors is noticed to be
significantly influenced by its various input parameters which can be
broadly classified as electrical and non-electrical
(Muthuramalingam and Mohan, 2015). The examples of
electrical parameters are Ton, Toff, Ip, voltage, pulse duration,
DF, resistance, capacitance, etc. On the other hand, type of the
dielectric and its pressure, tool material, work material thickness,
TL, Sg, etc., are the examples of non-electrical parameters. Several
studies have already been conducted to explore the relationships of
those EDMparameters on the responses and it has been realized that
maximummachining efficiency can only be achieved when an EDM
process is operated at the optimal settings of its various input
parameters. Nonlinear relationship between the inputs and
outputs, stochastic and complicated electrical discharge
mechanism, involvement of multiple conflicting responses
(higher MRR versus lower SR, higher efficiency versus lower
energy consumption, etc.) and varying opinions of the
stakeholders (machine operators, process engineers and end
users) regarding relative importance of the process characteristics
make parametric optimization of an EDM process a complicated
task. Occasionally, opinions of the machine operators/technical
experts are sought and machining data handbooks are consulted
for optimizing the performance of an EDM process which may
sometimes lead to near or sub-optimal solutions. To resolve this
issue, applications of some sound and systematic multi-objective
optimization tools are highly recommended. In this direction,
several MCDM techniques have been appeared as potent tools in
identifying the optimal settings of varying EDM parameters leading
to attainment of the most desired response values. They are
mathematically quite simple and easy to implement helping the
concerned engineers in optimizing the processes. Kalita et al. (2022)
recently reviewed the applications of various MCDM techniques for
solving parametric optimization problems of many of the non-
traditional machining processes and identified GRA and TOPSIS as
the two most popular tools employed for the said purpose. A
separate literature review of the MCDM applications for
optimizing only EDM processes along with identification of the
experimental design plans employed, work materials machined,
dielectrics used, process parameters considered along with their
operational settings, measured response values and MCDM tools
deployed is really scarce. This review paper attempts to bridge this
gap while analyzing the contents of more than 130 research articles
published during 2013–22 in the reputed international journals
available in the SCOPUS database and identifies how different
MCDM techniques have been employed for solving parametric
optimization problems of standalone EDM processes. It would
act as a data repository to help the process engineers in singling
out the tentative settings of different EDM parameters for attaining
the desired responses while relieving them from conducting pilot

experiment trials. It would also help in identifying the most
appropriate experimental design plan to be deployed for a given
EDM application with known number of process parameters and
their operating levels. The extracted information with respect to
parametric settings and measured responses can be utilized as the
training dataset in any of the machine learning algorithms to
develop the corresponding predictive models. This paper is
structured as follows: Section 2 provides the framework for the
literature review and a brief overview of MCDM techniques is
presented in Section 3. Applications of different MCDM tools for
parametric optimization of EDM processes are shown in Section 4
through succinct tabular forms. The derived results are analyzed in
Section 5 and Section 6 concludes the paper along with future
research directions.

2 Framework for the literature review

As mentioned earlier, the main aim of this paper is to critically
review the applications of various MCDM tools leading to
parametric optimization of standalone EDM processes. Keeping
this objective in mind, the SCOPUS database has been
exhaustively searched with the keyword “Optimization of EDM
process using MCDM methods” (Optimization AND EDM process
AND MCDM techniques) in the title, keywords and abstract with
identification of more than 250 research articles published during
the stipulated time duration of 2013–2022 (last 10 years). To keep
the number of papers to be reviewed into a manageable quantity,
those articles published during the last 10 years are only considered
here. An initial screening has then been performed to exclude those
articles published in conference proceedings and as book chapters.
Although there are different variants of EDM process, like rotary
EDM, vibration-assisted EDM, powder-mixed EDM, ultrasonic
EDM, electrical discharge milling, etc., this review paper only
considers optimization of die-sinking EDM (conventional EDM)
using varying MCDM tools. Finally, the contents of 137 research
articles are analyzed with subsequent extraction of the relevant
information with respect to experimental design plan employed,
work material machined, dielectric utilized, process parameters
considered along with their operating levels, response values
measured, MCDM technique deployed and other mathematical
tools considered for criteria weight measurement/comparison
purposes. The analyzed results are presented in succinct tabular
forms to help the fellow researchers/readers in diverse dimensions,
like consideration of the appropriate experimental design plan
depending on the number of input parameters and their levels,
suitable dielectric to be utilized, tentative operating levels of EDM
parameters, achievable response values, selection of suitable criteria
weight measurement technique and deployment as the training
dataset in any of the machine learning algorithms to develop the
corresponding prediction tools.

3 MCDM techniques

The MCDM techniques are those mathematical tools employed
for identification of the most apposite alternative from a pool of
candidate solutions in presence of multiple conflicting attributes/
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criteria (Chakraborty et al., 2023). There are several different types
of MCDM techniques, like WSM (Miller and Starr, 1969), WPM
(Miller and Starr, 1969), AHP (Saaty, 1980), MOORA (Brauers et al.,
2008), TOPSIS (Behzadian et al., 2012), VIKOR (Opricovic and
Tzeng, 2004), PROMETHEE (Brans and Vincke, 1985), COPRAS
(Kaklauskas et al., 2006), ELECTRE (Roy and Vincke, 1981), PSI
(Maniya and Bhatt, 2010), EDAS (Keshavarz et al., 2015), CODAS
(Ghorabaee et al., 2016), MARCOS (Stević et al., 2020), DEAR (Liao
and Chen, 2002), GRA (Kuo et al., 2008) etc., having their own
merits and demerits. The basic input to any of the MCDM methods
is a decision matrix consisting of a set of feasible alternatives whose
performance needs to be evaluated based on multiple conflicting
criteria. Most of these techniques are mathematically easy to
understand and computationally uncomplicated to implement.
Due to their simplicity, they have widely been acknowledged by
the researchers to solve parametric optimization problems of many
of the machining processes where the experiment trials having
different combinations of the input parameters are treated as the
alternatives and measured responses as the evaluation criteria. Based
on the derived performance scores, all the experimental trials can be
ranked from the best to the worst with identification of the optimal
intermix of input parameters leading to subsequent attainment of
the compromised response values. Although in most of the MCDM
methods, equal importance (weight) has usually been assigned to the
considered responses to avoid mathematical complexity, but
depending on the preference of different stakeholders, relative
weights measured using different subjective and objective
techniques, like AHP, EM, PCA, WPCA, CRITIC, etc., have also
been occasionally integrated with MCDM tools to derive more
practical solutions.

4 Optimization of EDM processes using
MCDM methods

4.1 AHP method

The AHP method, developed by Saaty (Saaty, 1980), is based on
the principle of pair-wise comparison to compute the performance
score of each of the alternatives under consideration. Using a 1-
9 scale, the relative importance of each pair of criteria is first
compared to determine their weights. Subsequently, the
performance of the alternatives is again pair-wise evaluated
against each of the criteria. The relative performance of the
alternatives and criteria weights are finally aggregated together to
calculate the overall scores of all the alternatives leading to their
rankings. It is a subjective MCDM method, heavily relying on the
individual judgments of the participating decision makers. These
pair-wise comparisons can only be accepted when the resulting
consistency ratios are observed to be less than 0.10. Table 1 shows
the applications of AHP method for optimizing EDM processes.
While performing EDM operation on Al 6061 alloy, Okponyia and
Oke (Okponyia and Oke, 2020) proposed a novel approach while
integrating present worth method, fuzzy theory and AHP to
determine the optimal values of the considered input parameters
and responses. The present worth method when applied as a
diagnostic tool identified the said EDM operation as healthy and
observed Ip as the most significant input parameter influencing the

responses. Using AHP method, Sidhu et al. (2021) first determined
the relative weights of RS, MRR and SR as 0.5815, 0.3090 and
0.1095 respectively and then pair-wise compared all the nine
experiments against each of the responses (criteria) to identify
trial number 4 (Ton = 45 μs, Toff = 15 μs, Ip = 8 A and graphite
tool material) as the optimal choice during EDM of Al MMC with
different tool materials.

4.2 MOORA method

It is one of the most computationally simple MCDM methods,
in which the sum of the normalized performance scores of the non-
beneficial criteria (smaller-the-better type) is subtracted from that of
the normalized performance scores of the beneficial criteria (larger-
the-better type) to obtain the overall scores of all the alternatives
(Brauers et al., 2008). Sometimes, these performance scores are
multiplied by the corresponding criteria weights to derive more
pragmatic solutions. The applications of MOORA method
considered for determination of the optimal parametric
intermixes of EDM processes are enlisted in Table 2. While
optimizing an EDM process, Paul et al. (2019) presented the
application of a hybridized approach in the form of MOORA-
PCA and contrasted its performance against conventional
MOORA method. It was concluded that the proposed approach
would provide better values of the considered responses as
compared to standalone MOORA method. Kumar et al. (2022)
developed a regression model correlating multi-performance
characteristic index (determined based on MOORA method) and
EDM parameters which was later optimized using GA. The most
significant EDM parameters influencing MRR and TWR were
also identified.

4.3 TOPSIS

The TOPSIS method (Behzadian et al., 2012) is based on
calculation of the Euclidian distances of the considered
alternatives from the ideal and the anti-ideal solutions and
identification of the best alternative having the minimum
distance from the ideal solution and maximum distance from the
anti-ideal solution. Table 3 provides information of those EDM
processes which have been optimized using this method. Singh et al.
(2020) performed EDM operation on Inconel 718 material and
optimized the process while considering different criteria weight
measurement schemes, like SDV, MW, EM and AHP in fuzzy
decision-making environment. It was noticed that almost all the
criteria weight measurement methods coupled with TOPSIS would
identify the same parametric combination as the optimal choice for
the said EDM process. Based on the experimental data of EDM
operation on mild steel using Cu-multi-walled carbon nanotube-
coated 6061Al electrode, Mandal and Mondal (2021) employed
MOPSO technique to search out the non-dominated solutions
and developed the corresponding Pareto Frontier. The TOPSIS
was later utilized to find out the most appropriate solution from
the Pareto optimal set. The EDM operation of Ti-6Al-4V alloy was
optimized by Sahu et al. (2022) employing a hybrid grey-TOPSIS-
based QPSO technique. It was concluded that both MRR and MH
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were significantly affected by Ip, whereas, tool material was the most
influential input parameter for TWR, SR and SCD. On the other
hand, WLT and closeness coefficient calculated by TOPSIS were
controlled by Ton.

4.4 VIKOR method

The VIKOR method, proposed by Opricovic and Tzeng (2004),
is a compromise-based ranking approach, employed for solving
MCDM problems having conflicting and non-commensurable
criteria. It derives a compromise solution closest to the ideal
solution and farthest from the anti-ideal solution based on an
agreement established by the mutual concessions between the
decision makers. The EDM processes have also been optimized
using VIKORmethod, as highlighted in Table 4. Using Taguchi’s L18
OA, Kumar J. et al. (2021) performed 18 EDM experiments on AZ-
91 Mg alloy and endeavored to optimize the said process based on
VIKOR method. In the later stage, fuzzy logic was integrated with
VIKOR to predict the values of MRR and SR which were noticed to
be quite close to the experimental observations.

4.5 PROMETHEE

This method was developed by Brans and Vincke (1985) and is
an outranking-based approach able to provide a complete ranking of
the alternatives under consideration. The performance of the
alternatives is assessed based on pair-wise comparisons against
each criterion utilizing preference functions which are

subsequently aggregated using criteria weights to derive the
corresponding net outranking flows considered for ranking of the
alternatives. Table 5 enlists the applications of PROMTHEEmethod
leading to optimization of EDM processes. While machining
Nimonic C263 alloy using three different electrode materials
(copper, tungsten and cooper-tungsten), Shastri and Mohanty
(2021) proposed a hybrid approach combining PROMETHEE
with CS algorithm to optimize an EDM process. Besides MRR,
SR and TWR, two other important responses, i.e., SEC and N were
also considered to provide sustainable machining environment. A
confirmatory experiment was finally conducted which had shown
6.02% overall improvement for the considered responses at the
achieved optimal combinations of the EDM parameters.

4.6 COPRAS method

The COPRAS (Kaklauskas et al., 2006) follows step-wise ranking
and evaluation procedure of the alternatives with respect to their
relative significance and utility degree while considering both the
ideal and the anti-ideal solutions. It basically assumes direct and
proportional dependences of the significance and utility degree of
the alternatives in presence of multiple conflicting criteria. Based on
a BBD plan, Shastri and Mohanty (2022) performed EDM operation
on Nimonic C263 material using EDM oil as the dielectric medium.
During experimentation, each of the four EDM parameters was set
at three different levels, i.e., Ton (100, 200, 300 μs), Vg (50, 60, 70 V),
Ip (3, 5, 7 A), DF (80, 85, 90%) and tool material (W, Cu-W, Cu) and
the corresponding values of various responses were measured/
calculated as SR = 13.05 μm, SCD = 0.0026 μm/μm, RLT =

TABLE 1 AHP method.

Author(s) Design
plan

Dielectric Material EDM parameters Responses Other
tools

Okponyia and Oke
(2020)

CCD Deionized
water, oil

Al 6061 Ton (75–200 μs), Ip (6–14 A), DF
(50%–70%)

MRR (31.753 mg/min), SR
(8.228 μm)

Fuzzy theory

TWR (0.171 mg/min), OC
(0.292 mm)

Sidhu et al. (2021) L18 OA EDM oil Al MMC Ton (10–50 μs), Toff (15–45 μs), Ip
(4–12 A), tool material (Cu, Gr, Cu-Gr)

RS (93.7 MPa), MRR (23.38 mg/
min), SR (2.09 μm)

TABLE 2 MOORA method.

Author(s) Design
plan

Dielectric Material EDM parameters Responses Other
tools

Paul et al. (2019) CCD Deionized
water

Inconel 800 Ton (100–500 μs), Toff (20–150 μs),
Ip (12–18 A)

MRR (0.183 gm/min), SR (4.799 μm) PCA

Chaudhury and
Samantaray (2020)

L27 OA Kerosene SiC composite Ton (50–150 μs), Ip (1–3 A), Vg
(30–70 V), DF (5%–9%)

MRR (2.66 mm3/min), SR (2.11 μm),
RLT (2.584 μm), PFE (77.86%)

WPCA

Debnath and Ghosh
(2021)

CCD Water Al MMC Ton (1–10 μs), Toff (1–10 μs), Ip
(10–25 A)

MRR (0.16 mm3/min), SR (6.694 μm),
TWR (0.00578 mm3/min)

AHP

Srikanth et al. (2021) L9 OA Vegetable oil Ti-6Al-4V Ton (300–500 μs), Toff
(500–700 μs), Ip (4–8 A)

MRR (0.2976 mm3/min), TWR
(0.061 mm3/min)

Kumar et al. (2022) L9 OA Mineral water Titanium
grade 9

Ip (7–11A), Ton (100–200 μs), Toff
(50–100 μs), Vg (50–70 V)

MRR (0.018289 g/min), TWR
(0.000611 g/min)

GA
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TABLE 3 TOPSIS method.

Author(s) Design
plan

Dielectric Material EDM parameters Responses Other
tools

Senthil et al. (2014) L18 OA Kerosene Al MMCs Ip (15–35 A), Ton (33–99 μs), Toff
(3–9 μs)

MRR (15.37 × 10−2 g/min), TWR
(0.34 × 10−3 g/min), SR (4.49 μm)

Sidhu et al. (2014) L27 OA EDM oil Al MMCs Ton (10–50 μs), Toff (15–45 μs), Ip
(4–12 A), tool material (Cu, Gr,

Cu-Gr)

MRR (57.99 mg/min), TWR
(2.54 mg/min), SR (7.4 μm)

Dewangan et al.
(2015a)

CCD EDM oil AISI P20 tool
steel

Ip (1–5 A), Ton (10–150 μs), work
time (0.2–1 s), TL (0–1.5 s)

WLT (6.684 μm), SCD (0.023 μm/
μm2), SR (1.82 μm), OC (0.0417 mm)

Fuzzy theory

Prabhu and
Vinayagam, 2016)

L9 OA Kerosene AISI D2 tool
steel

Ton (1–5 μs), Ip (2–8 A), Vg
(60–100 V)

MRR (1.846 mm3/min), fractal
dimension (1.847 mm), SR

(2.167 μm)

AHP, GA

Manivannan and
Kumar (2016)

L27 OA Deionized water AISI 304 Ton (10–20 μs), Vg (10–30 V), Ip
(10–20 A)

MRR (0.16180 mm3/min), TWR
(0.087585 mm3/min), OC

(0.125069 mm), TA (0.222191°), Cent
(0.120511 mm), Cexi (0.041111 mm)

Satpathy et al.
(2017)

L9 OA EDM oil Al MMC Ton (50–100 μs), Ip (3–7 A), Vg
(30–150 V), DF (70%–90%)

MRR (14 mm3/min), SR (3.6 μm),
TWR (0.04 mm3/min)

PCA

Raj and Prabhu
(2017)

L9 OA Kerosene AISI D2 tool
steel

Ton (1–11 μs), Toff (1–6 μs),
Ip (3–5 A)

MRR (0.11869 mm3/s), SR
(4.025 μm), TWR (0.00953 mm3/s)

AHP

Nadda et al. (2018) L18 OA EDM oil Cobalt bonded
tungsten
carbide

Ton (25–250 μs), Toff (40–67 μs), Ip
(4–12 A), Vg (50–60 V), tool material

(Cu, Gr)

MRR (4.0125 mm3/min), SR
(2.28 μm), TWR (0.00012 gm/min)

AHP

Mohanty et al.
(2018)

BBD Paraffin oil Inconel 718 Ton (100–300 μs), Ip (3–7 A), Vg
(70–90 V), PF (0.2–0.4 Bar), DF
(80%–90%), cryogenic treatment

soaking duration (0–36 h)

SR (7.7 μm), TWR (73.312%), ROC
(0.07 mm)

TLBO

Huo et al. (2019) L9 OA EDM oil AISI 304 Ip (9–15 A), Vs. (40–80 V), DF
(40%–80%)

SR (0.802 μm), RLT (1.0208 μm), RS
(335.62 MPa)

Simo’s
weighting
method

Roy and Dutta
(2019)

L9 OA Servo oil AISI 304 Ton (200–800 μs), Ip (10–40 A), Vs.
(50–90 V), DF (20%–80%)

MRR (1.0 mm3/min), TWR
(0.39 mm3/min), OC (0.98 mm)

AHP, fuzzy
theory

Rajamanickam and
Prasanna (2019)

CCD Distilled water Ti-6Al-4V Ton (6–10 μs), Toff (1–9 μs), Ip
(1–5 A), C (20–60 nF)

MRR (3.6996 mm³/sec), TWR
(0.0625 mm/s), OC (330 μm)

Singh et al. (2020) L9 OA EDM oil Inconel 718 Ton (50–200 μs), Ip (18–22 A), PF
(0.3–0.5 kgf/cm2)

MRR (0.2088095 mm3/min), TWR
(0.0150057 mm3/min)

SDV, MW,
EM, AHP,
fuzzy theory

Routara et al.
(2020)

L9 OA Kerosene Al 7075 Toff (30–70 μs), Ip (4–8 A), Sg
(0.2–0.4 mm)

MRR (0.03558 mm3/min), SR
(4.5 μm), TWR (0.00101 mm3/min),

Rq (5.6 μm)

Raj et al. (2020) L16 OA SAE-40 grade oil Inconel 825 Ton (50–200 μs), Ip (4–10 A), Vg
(15–30 V)

MRR (3.6850 mm3/min), SR
(6.473 μm), TWR (0.004 mm3/min)

DF (55%–100%)

Payal et al. (2020) L36 OA EDM oil Inconel 825 Ton (20–75 μs), Ip (4–12 A), Vg
(40–80 V), DF (10%–12%), TL

(0.1–0.3 s), tool material (Cu, Cu-
W, Gr)

MRR (4.8870 mm³/min), SR
(7.426 μm)

TWR (1.2518 mm³/min)

Zeng et al. (2021a) L18 OA Kerosene Al2O3 ceramics Ton (50–200 μs), Ip (2–4 A), Vs.
(40–70 V), IH (0.4–1.2 A),

EJT (2–4 s)

MRR (0.126 mm3/min), SR
(16.25 μm), TWR (0.0067 g/min)

AHP

Srinivasan et al.
(2021a)

L21 OA Deionized water Si3N4-TiN
ceramic

Ton (16–32 μs), Toff (6–10 μs), Vs.
(30–42 V), Ip (4–8 A)

MRR (0.0280 g/min), SR (0.185 μm),
TWR (0.00113 g/min)

RSM

Mandal and
Mondal (2021)

L9 OA EDM oil Mild steel Ton (12–38 μs), Toff (2–8 μs), Ip
(3–7 A), Vg (30–50 V)

TWR (3.064 × 10−3 gm/min), MRR
(112.43 mm3/min)

MOPSO

L27 OA Kerosene Al 8,011

(Continued on following page)
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TABLE 3 (Continued) TOPSIS method.

Author(s) Design
plan

Dielectric Material EDM parameters Responses Other
tools

Alagarsamy et al.
(2021)

Ton (300–900 μs), Toff (30–90 μs), Ip
(5–15 A), tool material (Cu, Br, EN8)

MRR (0.6551 g/min), TWR
(0.0758 g/min)

Bodukuri and
Kesha (2021)

L27 OA EDM 30 oil Al 6061 Ton (20–100 μs), Toff (50–200 μs), Ip
(9–15 A), TL (1.5–4.5 μs)

MRR (0.103 g/min), SR (4.108 μm),
TWR (0.022 g/min), SCD

(0.0048 μm)

Rao et al. (2021) L9 OA Sunflower oil AISI D2 steel Ton (300–500 μs), Ip (6–8 A), Vs.
(40–60 V)

MRR (17.1 × 10−3 g/min), SR
(2.7 μm)

AHP

TWR (0.37 × 10−3 g/min)

Sharma (2021) L9 OA Kerosene Ti-6Al-4V Ton (50–100 μs), Toff (5–9 μs), Ip
(10–20 A), Vg (40–80 V)

MRR (0.006224 g/min), TWR
(0.00074 g/min)

Kumar et al.
(2021a)

L16 OA Deionized water Inconel X750 Ton (1–99 μs), Ip (1–20 A), Toff
(1–9 μs), Vg (5–60 V)

MRR (0.4378 mm3/min), SR
(3.1 μm), TWR (0.001 mm3/min)

PCA

Sahu et al. (2022) L27 OA EDM oil Ti-6Al-4V Ip (10–20 A), Ton (100–300 μs), DF
(67%–83%), Vg (20–30 V), tool
material (AlSi10Mg, Cu, Gr)

MRR (0.5454 mm3/min), TWR
(0.6706 mm3/min), SR (6.4 μm), SCD

(0.0145963 μm/μm2), WLT
(17.0278 μm), MH (509 HV)

QPSO

Hema et al. (2022) L16 OA Deionized water,
kerosene

Copper Vg (25–55V), DF (55%–85%) MRR (0.35 mm3/min), TWR
(0.046 mm3/min)

TABLE 4 VIKOR method.

Author(s) Design
plan

Dielectric Material EDM parameters Responses Other
tools

Mohanty et al.
(2017)

L9 OA Deionized
water

High carbon
steel

Ton (100–500 μs), Ip (5–15 A), Vg
(30–50 V)

MRR (1.779 mm3/min), SR
(3.484 μm), TWR (0.556 mm3/min),

ROC (0.256 mm)

Regression
analysis

Gangil and
Pradhan (2018a)

CCD EDM oil Titanium
alloy

Ton (50–100 μs), Ip (4–10 A), Vg
(30–50 V)

MRR (0.512 g/min), SR (5.44 μm),
TWR (0.3190 g/min)

DF (14%–18%)

Kumar and Edwin
(2021)

BBD Kerosene AISI D3 die
steel

Ton (30–90 μs), Toff (3–9 μs), Ip
(10–30 A), Vg (25–75 V)

MRR (0.7507 g/min), SR (17.605 μm),
OC (0.295 mm), PAR (0.0735 mm)

Kumar et al.
(2021b)

L18 OA EDM oil AZ-91 Mg
alloy

Ton (30–50 μs), Toff (20–30 μs), Ip
(4–6 A), tool material (Cu, Gr, Cu-W)

MRR (0.089 g/min), SR (0.08 μm) Fuzzy logic

Somu et al. (2021) L25 OA EDM oil Inconel 718 Ton (2–10 μs), Toff (2–10 μs), Ip
(3–15 A), GC (3–7 mm), tool material

(Br, Cu, Cu-Gr)

MRR (50.042 mm3/min), SR
(5.177 μm), TWR (0.1 mm3/min)

TABLE 5 PROMETHEE method.

Author(s) Design
plan

Dielectric Material EDM parameters Responses Other
tools

Sharma et al.
(2019)

L9 OA EDM oil Inconel 718 Ton (150–200 μs), Toff (5–7 μs), Ip
(5–7 A), Vg (50–54 V)

MRR (0.062774 gm/min), TWR
(0.000017 gm/min)

AHP

Patel and Pradhan
(2021)

L9 OA EDM oil AISI D2 tool
steel

Ton (0.5–1.5 μs), Toff (5–15 μs), Ip
(4–12 A)

MRR (3.0052 mm3/min), SR (2.66 μs),
TWR (0.1563 mm3/min), flatness

(0.0470 μm)

AHP

Vs. (45–55 V)

Shastri and
Mohanty (2021)

BBD Kerosene Nimonic
C263

Ton (100–300 μs), Ip (3–7 A), Vg
(50–70 V), DF (80%–90%), tool

material (Cu, W, Cu-W)

MRR (5.099 mm3/min), SR (13.82 μm),
TWR (3.773%), SEC (0 0.353010 J/mm3),

N (82.9 dB), ROC (0.039 mm)

AHP, CS

Bhattacharjee et al.
(2022)

CCD Lamp oil mixed
hydrocarbon

Al MMC Ton (4–8 μs), Ip (5–15 A), RC
(2%–10%)

MRR (0.016573 gm/min), SR (2.463 μm),
TWR (0.004069 gm/min)
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8.112 mm, MH = 319.12 HV and MC = 73.310 INR. Finally, the
EDM process was optimized using COPRAS method with
identification of the corresponding input parameters as Ton =
100 μs, Vg = 60 V, Ip = 5 A, DF = 85% and tungsten tool
material. A confirmatory experiment was also conducted to
validate the derived results showing only 6.13% error between
the predicted and actual solutions.

4.7 PSI method

The PSI, developed by Maniya and Bhatt (2010), is a simple
MCDM method requiring no information regarding weights of the
considered criteria. In this approach, the candidate alternatives are
sorted from the best to the worst depending on their preference
selection indexes. Using PSI method, an EDM operation on titanium
alloy was optimized by Phan NH. et al. (2022) while performing
16 experiments based on Taguchi’s L16 OA. Nickel-coated
aluminium was used as the electrode material and HD-1 oil was
the dielectric medium. Each of the EDM parameters was set at four
different levels, i.e., Ton (100, 500, 1,000, 1,500 μs), Vg (40, 45, 50,
55 V) and Ip (10, 20, 30, 40 A). Using high-precision electronic
weighing balance, the MRR and TWR values were recorded as
0.096 mm3/min and 0.027 mm3/min respectively at the derived
optimal parametric combination of the said EDM process.

4.8 EDAS method

With respect to mathematical modelling, EDAS method slightly
differs from TOPSIS as it is based on calculation of the distances from
the average solution rather than ideal and anti-ideal solutions
(Keshavarz et al., 2015). In this method, the arithmetic mean of the
performance values of the alternatives against each of the criteria is
taken into account to compute the average solution. In case of rank
reversal problems, it sometimes performs better than TOPSIS. The
EDASmethodwas utilized byGanesh et al. (2020) to optimize the EDM
operation of Inconel 718 material using brass as the tool material and
EDM oil as the dielectric. Using BBD plan, 13 experiments were
performed at three different levels of Ton (100, 250, 400 μs), Toff
(60, 105,150 μs) and Ip (8, 10,12 A) and their effects onMRR and TWR
were studied. The corresponding MRR and TWR values were obtained
as 1.14626 mm3/min and 0.12875 mm3/min respectively. The EDAS
method was employed to search out the optimal combinations of the
considered EDM process parameters as three different criteria
weighting scenarios. It was later integrated with NSGA-II and GP
techniques. The NSGA-II was adopted to develop the corresponding
Pareto front and GP metamodeling technique was applied to correlate
the responses with EDM parameters. It was noticed that the developed
GP-based metamodels would have better prediction accuracy for both
the responses as compared to the conventional polynomial
regression models.

4.9 CODAS method

In CODAS method (Ghorabaee et al., 2016), the candidate
alternatives are evaluated and subsequently ranked based on their

two relative distance measures (Euclidean and Taxicab) from the
anti-ideal solution. The best alternative should have the maximum
distance from the anti-ideal solution. When the performance of any
two alternatives cannot be compared according to the Euclidean
distance, the Taxicab distance is then considered as the secondary
measure. Pandiyan et al. (2022) employed Taguchi’s L27 OA plan to
study the effects of Ton, Vg and Ip on MRR, TWR, CIR and CYL
while performing EDM operation on AA6061-T6 alloy using a
copper electrode and EDM oil as the dielectric fluid. During
experimentation, each of the EDM parameters was varied at
three different levels, i.e., Ton (50, 75, 100 μs), Vg (30, 35,40 V)
and Ip (9, 12, 15 A). The corresponding weights of MRR, TWR, CIR
and CYL were estimated as 0.164, 0.128, 0.402 and 0.306 respectively
using EM. Finally, the EDM process was optimized applying
CODAS method with identification of the optimal settings of the
input parameters as Ton = 100 μs, Vg = 40 V and Ip = 9 A, providing
the measured values of MRR, TWR, CIR and CYL as 0.168 g/min,
0.017 g/min, 0.003 mm and 0.046 mm respectively.

4.10 MARCOS method

The MARCOS (Stević et al., 2020) is a recently developed
MCDM tool, based on specifying the inherent relationship
between the alternatives and some reference values. Usually, the
ideal and the anti-ideal solutions are treated as the references. These
relationships lead to the calculation of utility functions and a
compromise ranking of the alternatives under consideration. The
utility functions define the positions of all the alternatives with
respect to ideal and anti-ideal solutions. The best alternative must be
located nearest to the ideal solution and farthest from the anti-ideal
solution. Treating Ip, Ton and Vg as the input parameters and MRR
and SR as the responses, Biswal et al. (2022) applied MARCOS
method for optimization of an EDM operation considering L9 OA as
the design plan, deionized water as the dielectric and Al 6061-WC-
B4C and Al 7175-WC-B4C as the work materials. It was interestingly
noticed that there had been two different combinations of the EDM
parameters for the two considered work materials. Finally, tensile
strength, ultimate tensile strength and hardness values of the
machined components were measured to validate the
applicability of EDM process in machining of composite materials.

4.11 DEAR method

The DEAR method (Liao and Chen, 2002) is an easy to
understand and implement tool and can be effectively integrated
with Taguchi methodology to act as a multi-objective optimization
technique to search out the most suitable intermix of input
parameters of any of the machining processes. In this method,
the alternatives are ranked based on the computed values of multi-
response performance index. It has the inherent advantage of
calculating the corresponding criterion weight considering the
ratio of the criterion value for any alternative to the sum of
criteria values for all the alternatives. Table 6 depicts the
applications of Taguchi-DEAR method in optimizing EDM
processes. Sameer et al. (2021) performed EDM operation on
maraging steel treating Ip, DT and PF as the input parameters
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and MRR, SR and TWR as the responses and optimized the said
process using Taguchi-DEAR method. In the similar direction, an
EDM operation on titanium alloy was optimized by Phan et al.
(2021) with identification of the optimal combination of EDM
parameters as Ton = 1,000 μs, Vg = 55 V and Ip = 40 A which
would yield the corresponding values of MRR, SR and TWR as
0.0139 g/min, 9.313 μm and 0.0089 g/min respectively.

4.12 GRA method

The GRA technique (Kuo et al., 2008) is based on the concept of
grey theory, where it is assumed that any system in nature is neither
white nor black, but it is mostly grey. A grey system deals with those
problems with some known and some unknown information. It has
proved itself as one of the most powerful tools in optimizing
machining processes in presence of incomplete experimental
dataset, measurement error and “larger-the-better” and “smaller-
the-better” responses. In this method, the absolute difference
between two data sequences is evaluated, while calculating the
approximate grade of correlation existing between them. The
basic objective of GRA is to transform multiple responses into a
single performance measure (GRG) which finally helps in ranking of
the considered alternatives (experimental trials). Its uncomplicated
mathematical steps and independency of criteria weights make it a
popular choice in optimizing diverse machining processes. In
Table 7, details of the EDM operations are presented which have
been optimized using GRA technique.

Soepangkat et al. (2014), Dewangan et al. (2015b), Prabhu and
Vinayagam (2015), Vijayanand and Ilangkumaran (2017) and
Sharma et al. (2021) conducted EDM operations on various
difficult-to-cut advanced engineering materials based on
Taguchi’s OA plans and attempted to integrate GRA with fuzzy
logic to frame simple “If-Then” clauses to depict the relationships
between the calculated GRG values and different input parameters.
It would also lead to identification of the optimal combinations of
EDMparameters achieving the target response values. Treating Ton,
Vg, DF and type of the tool material as the EDM parameters and
MRR, SR, TWR, WLT, SCD and MH as the responses, Sahu and
Mahapatra (2021) first compared the performance of the tool made
of AlSi10 Mg over solid copper and graphite electrodes. A novel
optimization technique, combining desirability-based GRAwith FA,
was later employed to optimize the said process. Finally, the

response values at varying combinations of the EDM parameters
were predicted using LSSVM while achieving satisfactory values of
the root mean squared error.

4.13 Utility theory

Every product needs to be manufactured keeping in mind the
need and expectation of the end users (customers). In general, utility
can be defined as the usefulness of a specific product/process with
reference to the customer expectations having its performance
evaluated based on various objectives. The performance scores of
a product/process are assessed with respect to each quality attribute
and aggregated together to define a composite index (utility) (Kumar
et al., 2000). Based on L18 OA design plan, Chandrashekarappa et al.
(2021) machined HCHCr D2 steel material considering Ton, Ip and
type of the tool material as the process variables and MRR, SR and
TWR as the outputs. Graphite, copper and brass were used as the
tool materials, distilled water and kerosene were utilized as the
dielectric medium and the settings of Ton and Ip were maintained
between 50 μs and 100 μs and 3 A and 9 A respectively. Weights of
MRR, SR and TWR were estimated employing PCA and CRITIC
methods. Both the optimization approaches, i.e., Taguchi-PCA-
utility and Taguchi-CRITIC-utility had yielded the same
combination of EDM parameters, i.e., distilled water as the
dielectric, graphite as the tool material, Ip = 9 A and Ton =
50 μs as the optimal choice, providing the corresponding values
of MRR, SR and TWR as 0.0632 g/min, 1.68 μm and 0.012 g/min
respectively.

4.14 Multiple MCDM methods

It can be noticed from this literature review that some of the
researchers have applied multiple MCDMmethods for optimization
of EDM processes. Those techniques have mainly been employed to
validate the optimal parametric combination derived by one method
against the other and it has been interestingly noticed that in most of
the cases, they have provided the same intermix of EDM parameters.
Table 8 shows applications of multiple MCDMmethods considered
for optimizing the EDM processes. From this table, it can be
unveiled that the researchers (Das et al., 2018; Pradhan, 2018;
Yuvaraj and Suresh, 2019; Kumar and Mondal, 2020; Kumar and

TABLE 6 DEAR method.

Author(s) Design
plan

Dielectric Material EDM parameters Responses

Reddy and Reddy
(2016)

L9 OA EDM Oil Al 6082 Ip (8–24 A), Ton (50–150 μs), Toff
(35–95 μs)

MRR (49.12 mm³/min), TWR (0.392 mm³/
min), SR (8.96 μm)

Vaddi et al. (2018) L9 OA EDM oil Ti-6Al-4V Ton (100–200 μs), Toff (65–185 μs), Ip
(12–28 A)

MRR (2.30 mm3/min), SR (7.02 μm), TWR
(0.84 mm3/min)

Sameer et al. (2021) L9 OA EDM oil Maraging steel
C300

Ip (10–20 A), DT (10–14 mm), PF
(0.2–0.6 MPa)

MRR (56.907 mm3/min), SR (4.4 μm), TWR
(0.016 mm3/min)

Phan et al. (2021) L16 OA Water Ti alloy Ton (100–1,500 μs), Ip (10–40 A), Vg
(40–55 V)

MRR (0.0139 g/min), SR (9.313 μm)

TWR (0.0089 g/min)
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TABLE 7 GRA method.

Author(s) Design
plan

Dielectric Material EDM parameters Responses Other
tools

Ay et al. (2013) L16 OA Deionized water Inconel 718 Ip (100–1,000 mA), Ton
(3–50 μs)

Taper ratio (0.280), hole dilation
(57 μm)

Regression
analysis

Manivannan and Kumar
(2013)

L9 OA IPOL spark oil AISI D2 tool
steel

Ip (5–15 A), Ton (20–75 μs), Toff
(15–30 μs)

TWR (0.8840%), MRR (0.4750 g/
min), SR (3.43 μm)

Dewangan and Biswas
(2013)

L27 OA EDM oil AISI P20 tool
steel

Ip (2–8 A), Ton (100–500 μs),
IEG (90–250 μs), work time

(0.2–1 s), TL (0–1.4 s)

MRR (10.4700 mm3/min), TWR
(0.01091 mm3/min)

Gopalakrishnan et al.
(2013)

L18 OA Kerosene Al 6063 Ip (16–32 A), Ton (2–8 μs), Toff
(5–9 μs)

TWR (5.732%), MRR (0.2583 g/min),
SR (12.243 μm)

Vg (40–60 V)

Muthuramalingam and
Mohan (2013)

L9 OA Kerosene AISI 202 steel Ip (9–15 A), Vg (40–70 V), DF
(40%–80%)

MRR (15.78 mm3/min), SR (6.42 μm)

Pradhan (2013a) CCD EDM oil AISI D2 tool
steel

Ip (4–10 A), Ton (100–300 μs),
Vg (40–60 V), DF (80%–90%)

MRR (32.551 mm3/min), TWR
(0.036 mm3/min), ROC (0.215 μm)

PCA

Pradhan (2013b) CCD EDM oil AISI D2 tool
steel

Ip (1–9 A), Ton (50–100 μs), Vg
(40–60 V), DF (80%–90%)

WLT (6.19 μm), SR (2.15 μm), SCD
(0.0482 μm/μm2)

Regression
analysis

Laxman and Raj (2014) L27 OA EDM Oil Titanium alloy Ip (9–15 A), Ton (10–50 μs), Toff
(50–100 μs), TL (5–20 μs)

MRR (7.7 mg/min), TWR
(0.20 mg/min)

Palanisamy et al. (2014) L9 OA Kerosene Ti-6Al-4V Ip (4–12 A), Ton (100–600 μs),
Toff (20–75 μs)

TWR (5.2%), MRR (0.0097 g/min), SR
(4.68 μm)

Soepangkat et al. (2014) L18 OA Deionized water AISI D2 tool
steel

Ip (10–20 A), Ton (180–300 μs),
Vg (30–60 V), DF (40%–60%)

MRR (39.52387 mm3/min), SR
(5.37 μm)

Fuzzy logic

Mhatre et al. (2014) L18 OA IPOL spark
erosion oil

Ti-6Al-4V Ip (9–27 A), Ton (100–300 μs),
Vg (40–60 V)

MRR (0.00919 g/min), TWR
(0.0021 g/min), SR (3.510 μm)

DF (4%–12%)

Vikas and Kumar (2014) L27 OA Paraffin oil EN 41 Ip (8–24 A), Ton (200–400 μs),
Toff (2,100–2,300 μs), Vg

(40–80 V)

SR (14.97 μm), Rq (18.57 μm), Rsk
(0.54 μm), Rku (3.06 μm), Rsm

(0.23 μm)

Seelan and Rajesh (2014) L9 OA EDM oil Al alloy Ip (4–8 A), Ton (5–8 μs), Toff
(6–10 μs)

MRR (133.333 mm3/min), TWR
(0.893 mm3/min), SR (8.717 μm)

Kumar et al. (2014) L27 OA EDM oil Al 6351 Ip (5–15 A), Ton (50–100 μs), Vg
(40–50 V), DF (40%–80%)

TWR (0.25%), SR (4.54 μm), PE
(2.13 kW)

Tiwari et al. (2014) L9 OA Kerosene Carbon fiber
epoxy

composite

Ip (1–5 A), Ton (120–180 μs), Vg
(20–60 V)

MRR (0.000492 g/min), TWR
(0.000023 g/min)

DF (40%–60%)

Xess et al. (2014) L16 OA EDM oil Ti-6A-4V Ip (10–40 A), Ton (50–200 μs),
DF (30%–60%)

MRR (4.68 mm3/min), SR (8.7 μm),
OC (0.38 mm)

Vg (40–70 V)

Nayak and Routara
(2014)

L9 OA Paraffin oil Tungsten
carbide

Ip (20–24 A), Ton (10–100 μs),
Toff (10–20 μs)

MRR (0.5524 mm3/min), TWR
(0.3521%), SR (1.8672 μm)

Gaikwad et al. (2014) L18 OA Water, oil Ti-6Al-4V Ip (24–42 A), Ton (20–400 μs),
DF (10%–12%)

MRR (1 g/min), TWR (28.476%), SR
(0.78471 μm)

Vg (50–100 V), working time
(5–15 s), retraction distance
(1–2 mm), PF (0.3–1 kgf/cm2)

Kumar and Kumar
(2014)

L18 OA IPOL spark
erosion oil

Al MMC Ip (9–15 A), Ton (100–300 μs),
Vg (45–65 V)

MRR (0.1210 g/min), TWR
(0.0014%), SR (6.3 μm)

Dewangan et al. (2015b) CCD EDM oil AISI P20 tool
steel

Ip (1–5 A), Ton (10–150 μs),
work time (0.2–1 s), TL (0–1.5 s)

WLT (6.954 μm), SCD (0.0202 μm/
μm2), SR (2.06 μm)

Fuzzy logic

(Continued on following page)
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TABLE 7 (Continued) GRA method.

Author(s) Design
plan

Dielectric Material EDM parameters Responses Other
tools

Prabhu and Vinayagam
(2015)

L9 OA Kerosene AISI D2 tool
steel

Ip (2–8 A), Ton (1–5 μs), Vg
(60–100 V)

MRR (0.535 g/min), SR (0.706 μm) Fuzzy logic

Kolahan and
Moghaddam (2015)

L36 OA Kerosene AISI 2312 Ip (2.5–7.5 A), Ton (10–75 μs),
Toff (25–200 μs), DF (0.4–1.6),

Vg (50–60 V)

MRR (0.352 g/min), TWR (0.00342 g/
min), SR (0.669 μm)

Radhika et al. (2015) L9 OA Kerosene Al-Si10 Mg
alloy

Ip (10–30 A), Ton (120–420 μs),
PF (100–200 kPa)

SR (3.376 μm), MRR (25.2340 g/h),
TWR (0.0976 g/h)

Priyadarshini and Pal
(2015)

L25 OA EDM oil Ti-6Al-4V Ip (10–50 A), pulse width
(5–30 μs), Vg (6–10 V),

DF (8–12)

MRR (1.324 mm3/min), TWR
(0.3271 mg/min), SR (0.986 μm)

Singh et al. (2015) L9 OA EDM oil SS 304 Ip (8–16 A), Ton (50–150 μs),
Toff (20–50 μs), Vg (40–60 V)

MRR (36.56 mm3/min), TWR
(19.28 mm3/min)

Mohanty and Rana
(2015)

L9 OA Deionized water High carbon
steel

Ip (5–15 A), Ton (100–500 μs),
Vg (30–50 V)

MRR (20.3604 mm3/min), SR
(4.5915 μm), TWR (1.3502 mm3/

min), ROC (4.3345 mm)

Selvarajan et al. (2016) L18 OA EDM oil Si3N4-TiN
composite

Ton (6–15 μs), Ip (2–5 A), PF
(15–17 kg/cm2), Toff (10–22 μs)

MRR (0.0250 g/min), TWR (0.001 g/
min), CIR (0.012 mm), CYL
(0.015 mm), PER (0.210 mm)

Marichamy et al. (2016) L9 OA Kerosene Duplex brass Ton (100–200 μs), Ip (3–14 A),
Vg (40–60 V)

TWR (0.843 mm3/min), MRR
(17.28 mm3/min), SR (12.48 μm)

Kolli and Adepu (2016) L9 OA EDM oil +
surfactant

Ti-6Al-4V Ip (10–20 A), Ton (25–65 μs),
Toff (24–48 μs), surfactant

concentration (0.25–0.75 g/L)

MRR (2.213 mm3/min), SR (2.98 μm)

Mazarbhuiya et al. (2016) L8 OA Hydrocarbon oil Aluminium Ip (8–16 A), Ton (463–1,010 μs),
PF (5–10 kgf/cm2)

MRR (12.11 mg/min), SR (22.3 μm)

Rath (2017) L27 OA EDM oil EN 19 Ton (1,000–3,000 μs), Ip
(20–30 A), DF (8%–12%)

MRR (15.3483 mm3/min), SR
(6.9876 μm), TWR (0.0005 mm3/

min), OC (0.3 mm)

Tamang et al. (2017) L9 OA Deionized water SS 304 Ton (100–200 μs), Ip (10–14 A),
Vg (30–50 V)

OC (128.67 μm), TA (0.0089°) DFA

Vijayanand and
Ilangkumaran (2017)

L9 OA Kerosene Monel 400 Ton (4–6 μs), Toff (2–4 μs),
Ip (4–6 A)

MRR (0.01010 mm3/min), TWR
(0.07985 mm3/min)

Fuzzy logic

Meena et al. (2017) L9 OA Hydrocarbon oil Titanium
grade 2

Pulse width (0.5–2.0 μs), Ip
(20–50 A), frequency

(100–150 kHz)

MRR (0.006495 mm3/min), TWR
(0.005959 mm3/min), OC (0.048 mm)

Vinoth Kumar and
Pradeep Kumar (2017)

L18 OA IPOL spark
erosion oil

AISI D2 tool
steel

Ton (100–300 μs), Ip (9–12 A),
Vg (45–65 V)

MRR (0.1210 g/min), SR (6.5 μm),
TWR (0.0014 g/min)

Anand et al. (2017) L9 OA Kerosene oil HCHCr steel Ton (50–250 μs), Ip (5–15 A), Vs.
(10–30 V), Vg (85–115 V)

MRR (16.92 mm3/min), SR (11.5 μm)

Mishra and Routara
(2017)

L9 OA Paraffin oil EN 24 Ton (10–100 μs), Toff (10–20 μs),
Ip (10–20 A), PF
(0.25–0.75 kg/cm2)

MRR (0.31992 mg/min), TWR
(0.00555 mg/min)

Selvarajan et al. (2017) L25 OA EDM oil Si3N4-TiN
composite

Ton (4–8 μs), Toff (8–12 μs), Ip
(3–7 A), Vg (30–40 V), PF

(14–18 kg/cm2)

MRR (0.0163 g/min), SR (0.593 μm),
TWR (0.0026 g/min), ROC

(0.2965 mm), CIR (0.147 mm), CYL
(0.197 mm), PER (0.181 mm), TA

(6.824°)

Regression
analysis

Reddy et al. (2018) L9 OA EDM oil SS304 Ton (50–150 μs), Toff (35–95 μs),
Ip (8–24 A)

MRR (14.50 mm3/min), SR (9.39 μm),
TWR (0.78 mm3/min)

Dewan et al. (2018) L9 OA EDM oil Nimonic 90 Ton (2–10 μs), Toff (2–10 μs), Ip
(10–30 A)

MRR (41.000 g/min), SR (0.4060 μm)

Chauhan et al. (2018) L9 OA Water SS 304 Ton (10–30 μs), Toff (2–6 μs), Ip
(1–5 A), PF (0.5–1.2 kg/cm2)

MRR (0.001245378 mg/min), TWR
(0.0000015 mg/min)
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TABLE 7 (Continued) GRA method.

Author(s) Design
plan

Dielectric Material EDM parameters Responses Other
tools

Gangil and Pradhan
(2018b)

CCD EDM oil Ti-6Al-4V Ton (50–100 μs), Ip (4–12 A), Vg
(30–50 V), DF (14%–18%)

MRR (0.417 mm3/min), SR (6.01 μm),
TWR (0.105 mm3/min)

PCA

Kumar et al. (2018) L9 OA EDM oil Ti-6Al-4V Ton (100–200 μs), Ip (12–18 A),
Vg (40–60 V)

MRR (0.046068089 g/min), SR
(2.9 μm), Rz (17.8 μm), Rt (24.2 μm)

Dastagiri et al. (2018) L9 OA Water SS316 Ton (100–300 μs), Toff (2–20 μs),
Ip (3–35 A)

MRR (58.088 mm3/min), SR (9.4 μm),
TWR (11.1685 mm3/min)

Shukla and Dhakad
(2018)

L9 OA EDM oil Al alloy Ton (50–150 μs), Ip (4–2 A), DF
(5%–9%), RC (0–4.2 g)

MRR (58.405 mm3/min), TWR
(0.969 mm3/min), ROC (0.195 mm),

flatness (0.044 mm)

Aravindan et al. (2018) L9 OA Castrol Holo 401 SS 316 Ton (8–12 μs), Toff (6–10 μs), Ip
(0.2–0.8 A)

MRR (0.0468 mm3/min), SR
(0.6253 μm), TWR (0.0131 mm3/min)

Gowthaman et al. (2018) L27 OA EDM oil Monel Ton (204–409 μs), Toff
(2048–2,867 μs), Ip (9–15 A), Vg

(80–150 V)

MRR (1.024 gm/s), SR (6.39 μm)

Tharian et al. (2019) L9 OA Deionized water Al 7075 Ton (25–100 μs), Toff
(25–100 μs), Ip (5–10 A)

MRR (1.92 g/min), SR (1.299 μm)

Hanif et al. (2019) BBD Kerosene AISI D2 steel Ip (9–15 A), Sg (2–6 mm),
dielectric type (distilled water,
kerosene, transformer oil)

MRR (17.23 mm3/min), SR (3.86 μm)

Moharana and Patro
(2019)

BBD Kerosene EN 8 Ton (10–200 μs), Toff (10–50 μs),
Ip (4–24 A), PF

(0.25–0.75 kgf/cm2)

MRR (0.4703 mm3/min), SR
(2.1029 μm), TWR

(0.0005945 mm3/min)

Senthilkumar and
Muralikannan (2019)

L27 OA Kerosene Al MMCs Ton (50–100 μs), Ip (9–15 A), Vg
(30–40 V)

MRR (0.3011 mm3/min), SR
(6.2667 μm), TWR (0.0313 mm3/min)

Sah and Gangil (2019) L9 OA EDM oil Carbon fiber
nano

composite

Ton (24–28 μs), Ip (6–10 A), Vg
(60–80 V), DF (60%–90%)

MRR (0.00004308 g/min), TWR
(0.411212 g/min)

Matharou and Bhuyan
(2020)

L16 OA Kerosene- based
EDM oil

Hybrid MMC Ton (25–100 μs), Ip (3–12 A), DF
(2%–8%), Sg (3–6 mm), tool

material (Cu, Gr), DT
(10–15 mm)

MRR (5.8746 mm3/min), SR
(4.09 μm), TWR (0.35749 mm3/min)

PCA

Kumar and Dhanabalan
(2020)

L18 OA Kerosene Inconel 718 Ton (200–600 μs), Toff
(10–40 μs), Ip (4–12 A)

MRR (0.0022 g/min), TWR (0.016 g/
min), squareness (89.67 mm), flatness

(0.040 mm)

Nguyen et al. (2020) L25 OA Deionized water High Cr tool
steel

Ton (18–75 μs), Toff (9–37 μs),
Ip (1–5 A), Vg (30–70 V)

MRR (41.7 mg/min), SR (2.896 μm),
MH (1,188.480 HV), WLT

(22.453 μm)

Kumar and Soota (2020) BBD EDM oil Zircaloy Ton (10–20 μs), Toff (4–8 μs), Ip
(5–15 A)

MRR (0.209 × 10−3 mm3/min), TWR
(1.59 × 10−3 mm3/min)

Mazarbhuiya and Rahang
(2020)

L9 OA EDM oil Aluminium Ton (100–400 μs), Ip (2–4 A),
compact load (5–15 ton)

MRR (131.33 mg/min), SR (4.5 μm),
TWR (620.13 mg/min)

Sharma (2020) BBD EDM oil Tungsten
carbide

Ton (10–40 μs), Toff (2–8 μs), Ip
(6–18 A)

MRR (2.4126 mm3/min), SR
(1.19 μm), MH (1346 HV)

Phimoolchat and
Muttamara (2020)

L27 OA Kerosene Al 2024 Ton (4–12 μs), Ip (6–14 A), Vo
(80–220 V), DF (33%–75%)

MRR (35.116 mm3/min), SR
(4.975 μm), TWR (10.892 mm3/min)

Zeng et al. (2021b) L18 OA Kerosene ZrO2 ceramics Ip (2–4 A), IH (0.4–1.2 A), PD
(50–200 μs)

MRR (0.2012 mm3/min), SR
(3.37 μm), TWR (0.0055 g/min)

AHP

EJI (2–4 s), Vs. (40–70 V)

Sharma et al. (2021) L16 OA EDM oil Graphite iron Ton (30–120 μs), Ip (32–44 A),
IEG (0.011–0.014 mm)

MRR (187.005 mm3/min), OC
(0.0193 mm)

Fuzzy logic

Sahoo et al. (2021a) BBD Deionized water Nitinol MRR (0.0164 g/min), TWR
(0.0.0064 g/min), TA (0.0097 radians)
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Rai, 2020; Sahu andMahapatra, 2020; Bhosale et al., 2021; Srinivasan
et al., 2021b; Jana et al., 2021; Patnaik et al., 2022) have maximally
preferred to employ both GRA and TOPSIS in identifying the
optimal combinations of the EDM parameters. During machining
of Si3N4-TiN ceramic material using an EDM process, Srinivasan
et al. (2021b) applied both GRA and TOPSIS to achieve the same
optimal intermix of EDMparameters as Ip = 10 A, Ton = 8 μs, Toff =
4 μs, PF = 20 kg/cm2 and Vs. = 32 V to achieve the measured
response values as MRR = 0.00584 g/min, SR = 1.41 μm, TWR =
0.00118 g/min, PER = 0.0321 mm and PAR = 0.0411 mm. The
corresponding regression equations correlating the considered
responses and EDM parameters were also formulated which had
been subsequently optimized using TLBO algorithm. Prabhakar
et al. (2021) proposed the combined application of MOORA and
ELECTRE methods to develop an integrated MCDM tool to
optimize the EDM operation on titanium alloy. The influences of
various input variables, like Ton, Toff and Ip on MRR, SR and TWR
were investigated and it was concluded that an optimal intermix of
EDM parameters as Ton = 60 μs, Toff = 8 μs and Ip = 7 A would
provide the enhanced performance of the said EDM process.

5 Results and discussion

The main objective of this review paper is to explore the
applications of various MCDM techniques as multi-objective
optimization tools to determine the most appropriate
combinations of input parameters for having enhanced
machining performance of EDM processes. The shortlisted
research works are extensively studied to extract the relevant
information with respect to experimental design plans employed,
dielectrics used, work materials machined, input parameters and
responses considered along with their settings/measured values,
MCDM tools deployed and their applications along with other
mathematical techniques. The results of these analyses are
graphically portrayed in Figures 2–4. It can be noticed from
Figure 2A that 82.5% the past researches have preferred to
conduct EDM experiments based on Taguchi methodology
(i.e., L8, L9, L16, L18, L21, L25, L27 and L36) to examine the
influences of different input parameters on the responses. This is
because of its many advantageous features, like ability to provide
robust design solutions with reduced experimental cost, inclusion of

TABLE 7 (Continued) GRA method.

Author(s) Design
plan

Dielectric Material EDM parameters Responses Other
tools

Ton (2–6 μs), Toff (5–9 μs), Ip
(12–22 A), Vg (40–60 V), PF

(50–100 kg/cm2)

Sahu and Mahapatra
(2021)

L27 OA EDM oil Ti-4Al-6V Ton (100–300 μs), Ip (20–30 A),
Vg (20–30 V), DF (65%–85%),
tool material (AlSi10Mg, Cu, Gr)

MRR (0.4440 mm3/min), SR (6.5 μm),
TWR (0.32 mm3/min), SCD
(0.011439 μm/μm2), WLT

(15.1050 μm), MH (519.37 VH)

FA, LSSVM

Fatatit and Kalyon (2021) L18 OA Kerosene DIN
1.2767 steel

Ton (50–800 μs), Toff
(50–800 μs), Ip (6–25 A)

MRR (25.24 mm3/min), TWR
(0.15 mm3/min)

Singh and Singh (2021) L18 OA Deionized water Nimonic 75 Ton (120–200 μs), Toff
(15–90 μs), Ip (6–12 A), Vd
(40–50 V), TL (2–4 s), tool

material (Cu, Br)

MRR (334.57 mg/min), SR (8.7 μm)

TWR (0.7103 mg/min)

Sivaraj et al. (2021) L9 OA Kerosene Al-TiC
composite

Ton (50–100 μs), Ip (5–15 A), Vg
(50–60 V)

MRR (0.3497 g/min), TWR
(0.00204 g/min)

Sahoo et al. (2021b) CCD EDM oil Inconel 600 Ton (100–300 μs), Toff
(60–100 μs), Ip (5–15 A)

MRR (2.671783 mm3/min), SR
(4.190333 μm), TWR
(0.001116 mm3/min)

RSM

Somasundaram and
Kumar (2022)

L16 OA Water AZ31 Mg alloy Ton (10–40 μs), Toff (5–8 μs), Ip
(3–12 A), tool material (Cu,

Br, Gr)

MRR (7.5512 mm3/min), SR (3.2 μm),
TWR (0.0042 gm/min), OC

(0.0140 mm), TC (0.061 mm), CIR
(0.0184 mm), CYL (0.0421 mm)

TOPSIS

Karmiris-Obratański
et al. (2022)

L16 OA Hydrocarbon
fluid

CALMAX tool
steel

Ton (12.8–100 μs), Vg
(80–200 V), Ip (5–17 A)

MRR (7.979 mm3/min), SR (6.13 μm),
TWR (0.100 mm3/min), WLT

(6.35 μm)

Jampana et al. (2022) L16 OA EDM oil SS630 Ton (15–45 μs), Toff (20–90 μs),
Ip (6–18 A), PF (2–8 MPa)

MRR (9.121 mm3/min), SR (3.56 μm)

Pragadish et al. (2022) L9 OA Cardanol oil Silicon steel Vg (25–75V), green dielectric
(0%–15%), coating thickness

(0–2 μm)

MRR (9.69 mm3/min), TWR
(1.09 mm3/min)

Akgün (2022) L27 OA Kerosene Monel K500 Ip (12–42 A), Ton (3–9 μs), Vg
(50–100 V), tool material (Cu,

Gr, W-Cu)

MRR (0.085 g/min), TWR (0.0075 g/
min), SR (1.67 μm)

Regression
analysis
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both qualitative and qualitative variables, easy mathematical steps,
availability of user-friendly software, etc. Among various Taguchi’s
OAs, L9 OA has been maximally utilized (39.4%), followed by L18
OA (13.9%) and L27 (13.1%) OA design plans. It is interestingly
noticed that in the past studies, maximum number of EDM
experiments has been carried out considering three parameters
set at three different operating levels which have led to selection
L9 OA as the most suitable design plan based on the computed
degrees of freedom. Besides OAs, CCD (10.2%) and BBD (7.3%)
have also been employed which would lead to development of the
corresponding polynomial regression equations correlating EDM

parameters and responses. Those equations have later been
optimized using GA (2), NSGA-II (1), TLBO (2), MOPSO (1),
QPSO (1), GP (1), FA (1) and CS (1) algorithms in the continuous
solution space. The numerical value in the parenthesis indicates the
number of occurrences of those techniques in the reviewed articles
for EDM processes optimization.

Figure 2B provide information with respect to different types of
dielectrics used by the past researchers. EDM oil (EDM-30, EDM
SAE 40, EDM SE0501, EDM SAE 450, D323, HD-1, HD-11, etc.) has
been the mostly utilized dielectric (43.6%), followed by deionized
water (12.1%) and plain water (7.9%). To achieve sustainable and

TABLE 8 Multiple MCDM methods.

Author(s) Design Dielectric Material EDM parameters Responses MCDM Other
tools

Plan

Kasdekar and
Parashar (2015)

L9 OA Water EN 353 Ip (9–25 A), Ton (10–87 μs),
Toff (4–11 μs), concentration of

dielectric (1–5 g/L)

MRR (30.63 mg/min), TWR
(2.98 mg/min), SR (3.98 μm)

TOPSIS,
WSM, WPM

EM

Das et al. (2018) L9 OA Water MDN
300 steel

Ton (25–65 μs), Toff (24–48 μs),
Ip (10–20 A)

MRR (32.323 mm3/min), SR
(6.0668 μm), TWR
(5.0482 mm3/min)

GRA,
TOPSIS

Fuzzy logic

Pradhan (2018) CCD EDM oil AISI D2 tool
steel

Ton (100–300 μs) MRR (32.551 mm3/min), TWR
(0.036 gm/min), ROC (0.215 μm)

TOPSIS,
GRA

EM

Ip (4–10 A), Vg (40–60 V), DF
(80%–90%)

Yuvaraj and
Suresh (2019)

L18 OA EDM oil Inconel 718 Ton (100–200 μs), Toff
(20–40 μs), Ip (10–14 A), Vg

(30–50 V)

MRR (0.019137 mm3/min), TWR
(0.00261 g/min), OC (0.2419 mm),

ROC (0.04839 mm)

TOPSIS,
GRA

Kumar and Rai
(2020)

L9 OA Kerosene Al 7050 Ton (50–150 μs), Toff
(20–40 μs), Ip (6–10 A)

MRR (0.0338 g/min), SR
(4.84122 μm)

TOPSIS,
GRA

WLT (40.751 μm)

Kumar and
Mondal (2020)

L27 OA EDM oil AISI M2 steel Ton (45–96 μs), Ip (2–7 A), Sg
(4–6 mm)

MRR (0.006088 mm3/min), SR
(1.45 μm), TWR

(0.035611 mm3/min)

TOPSIS,
GRA

Sahu and
Mahapatra (2020)

L9 OA EDM 30 oil AISI
1040 steel

Ton (100–300 μs), Ip (10–30 A),
tool material (AlSi10Mg, Cu, Br)

MRR (0.4525 mm3/min), SR
(4.6777 μm)

TOPSIS,
GRA

SCD (0.013614 μm/μm2), WLT
(18.2403 μm), MH (547.57 VH)

Jana et al. (2021) L9 OA Canola oil AISI D2 steel Ip (6–8 A), Ton (300–500 μs),
Vs. (40–60 V)

MRR (5.97 × 10−3 g/min), SR
(1.8 μm), TWR (0.30 × 10−3 g/min)

TOPSIS,
GRA

Bhosale et al.
(2021)

L18 OA Kerosene Ferrous clay
matrix

Ton (400–600 μs), Ip (3–7 A),
Vs. (48–50 V), RC (0%–5%)

MRR (0.1157 g/min), SR (3.66 μm),
TWR (0.0167 g/min)

GRA,
TOPSIS

Dey et al. (2021) CCD Hydrocarbon
oil

Al 6061-
cenosphere

Ton (210–1,010 μs) MRR (0.6843 g/min), SR
(14.2872 μm), TWR (0.0019 g/min)

TOPSIS,
VIKOR

AHP

Ip (6–10 A), RC (2%–6%), PF
(0.2–0.6 MPa)

Srinivasan et al.
(2021b)

L25 OA Deionized
water

Si3N4-TiN
ceramic

Ton (5–9 μs), Toff (2–10 μs), Vs.
(28–36 V)

MRR (0.00584 g/min), SR
(1.41 μm), TWR (0.00118 g/min),

PER (0.0321 mm), PAR
(0.0411 mm)

GRA,
TOPSIS

TLBO

Ip (4–12 A), PF (12–20 kg/cm2)

Prabhakar et al.
(2021)

L25 OA EDM oil Ti-4Al-6V Ton (15–75 μs), Toff (2–10 μs),
Ip (7–35 A)

MRR (0.1 mm3/min), SR
(0.847 μm)

MOORA,
ELECTRE

TWR (0.0016 mm3/min)

Patnaik et al.
(2022)

L9 OA EDM oil Inconel 718 Ton (250–1,000 μs), Vg (4–8 V),
Ip (20–40 A)

MRR (25.4297 mm3/min), SR
(2.98233 μm), TWR
(0.27960 mm3/min)

TOPSIS,
GRA, PSI
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dry machining environment while avoiding the perilous effects of
EDM oil, it is noticed that deionized water and plain water have
emerged out as user-friendly and less hazardous dielectric fluids
during EDM operations (Figure 2C). The EDM process is extremely

suitable to generate complex shape geometries in many of the hard-
to-cut engineering materials having higher strength-to-weight ratio.
Figure 2D shows the applications of EDM processes in machining of
some of the major work materials, such as medium and high carbon

FIGURE 2
Graphical representation of the reviewed paper in terms of (A) design plan used (B) dielectric medium (C) trend of dielectric usage over the years (D)
material machined (E) tool material (F) process parameter considered (G) response studied and (H) MCDM tools employed by the researchers.
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steels (34.3%) (making of shafts, crankshafts, axles, gears, couplings,
forgings, etc.), titanium and its alloys (14.6%) (used in airplanes,
missiles and rockets), aluminium and its alloys (13.9%) (used in
electric and electronic industries, making of automotive and
aerospace body structures, solar equipment), Inconel (10.2%)
(making of propeller blades, propulsion motors, wire rope,

sheathing for underwater communication cables), aluminium
MMCs (7.3%) (huge applications in defence, aerospace,
automotive and aviation industries), other composites (5.1%)
(used in chemical, paper, oil and gas industries, water treatment
plants), ceramics (2.9%) (making of bio-implants, body armours,
spark plugs, fiber optics, race car brakes, chemical sensors), Nimonic

FIGURE 3
Ranges of main EDM parameters. (A) Pulse-on time (B) pulse-off time (C) paeak current (D) gap voltage.
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(2.9%) (for gas turbine components, nuclear boiler tube supports,
automobile exhaust valves) and tungsten carbide (2.2%) (mainly
used as cutting tool material for various machining operations).
Other work materials, like magnesium and its alloys, Zircaloy,
Monel, brass, copper and Nitinol have also been occasionally
machined using EDM processes, but are not shown in Figure 2D
due to their least number of occurrences (≤2) in the
reviewed articles.

Figure 2E illustrates the trend of tool material usage in EDM
research. Copper stands out as the most commonly used tool
material, being featured in 63.6% papers. This prevalence is likely
due to copper’s excellent electrical conductivity and thermal
properties, making it an effective electrode material for the EDM
process. Electrolytic copper was used in 10.6% papers, is a refined
version of copper that usually offers higher purity and, consequently,
better performance in EDM. Brass was also used in 9.1% papers, is
also a favorable choice due to its good machining properties and
cost-effectiveness. Composite tool materials, used in 8.3% papers,
indicate an interest in exploring the benefits of composite electrodes,
such as improved wear resistance or specialized machining
capabilities, which can be tailored by combining different
materials. Graphite, though less frequently used, appearing in

only 3.8% papers, offers advantages such as higher melting points
and the ability to achieve finer finishes. Its lower popularity could be
due to its brittleness and the challenges associated with handling and
machining graphite electrodes. Tungsten carbide, mentioned in 3%
papers, is known for its hardness and high wear resistance, making it
suitable for precision machining, although its use is less due to
higher material costs. Nickel-coated aluminum found use only in
1.5% papers, suggesting that it may be a relatively new area of
exploration in EDM tool materials, possibly offering a combination
of the lightweight properties of aluminum with the superior surface
characteristics of a nickel coating.

The performance of EDM processes with respect to MRR, SR
(average surface roughness value, Ra), TWR, form errors (flatness,
squareness, CYL, CIR, PAR and PER), OC, ROC, etc., is noticed to
be significantly affected by the considered input parameters. Thus, it
is highly recommended to operate the EDM processes while setting
those parameters at their optimal levels. The major input parameters
taken into account by the past researchers during EDM of diverse
work materials are exhibited in Figure 2F which reveals that Ip has
been the most important parameter (97.8%), followed by Ton
(94.2%), voltage (55.5%), Toff (46%), DF (24.1%), type of the
tool material (11.7%), PF (10.2%) etc. On the other hand,

FIGURE 4
Ranges of main responses. (A) material removal rate (B) tool wear rate (C) surface roughness.
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Figure 2G provides information about some of the most important
responses measured to evaluate the machining performance of EDM
processes. MRR has been maximally considered (92.7%), which has
been followed by TWR (74.5%), SR (73%), form errors (13.9%), OC
(8.76%), ROC (7.3%), WLT (6.57%), SCD (5.84%), MH (4.38%), TA
(2.92%) and RLT (1.46%) according to their descending importance
to represent performance of the EDM processes. In all the reviewed
articles, the value of SR has mainly been measured in terms of Ra
(average surface roughness). Besides Ra, other roughness
parameters, like root mean square roughness (Rq), skewness of
surface profile (Rsk), kurtosis of surface profile (Rku), mean width of
roughness profile (Rsm) and ten-point surface roughness (Rz) have
also been occasionally considered to represent surface quality of the
machined components. But, the correlations between those
roughness parameters have never been evaluated. There are also
some unimportant EDM parameters, like C, GC, Sg, RC, DT, etc.,
and responses, such as PFE, fractal dimension, RS, SEC, N, MC,

taper ratio, PE, TC, etc., considered by the past researchers in their
experimental studies which are not included while developing
Figures 2F, G due to their least number of occurrences in the
reviewed articles.

Figure 2H depicts the quantum of different MCDM tools
deployed for optimization of EDM processes in the reviewed
research articles. The GRA technique has found maximum
applications (52.6%), followed by TOPSIS (9%), MOORA
(3.65%), VIKOR (3.65%), PROMETHEE (2.92%) and DEAR
(2.92%) methods. Other MCDM methods, such as AHP,
COPRAS, PIS, EDAS, CODAS, MARCOS and utility theory have
also been occasionally utilized for the same purpose. The high
popularity of GRA is perhaps due to its simplicity and efficiency
in handling uncertainty and incomplete data. GRA integrates
smoothly with the Taguchi method and simplifies multivariate
analysis by converting multiple performance measures into a
single composite score. Further, GRA does not require the

FIGURE 5
Co-citations of different keywords in the surveyed research articles.
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weighting of criteria which reduces the computational load for
researchers. Although the researchers have preferred to assign
equal importance to the responses under consideration during
optimization of EDM processes using different MCDM tools
mainly to reduce the computation complexity, several subjective
techniques, like AHP (13) and Simo’s weighting method (1) and
objective techniques, like PCA (7), EM (4), SDV (1), WPCA (1) and
CRITIC (1) have been employed for estimating the relative
importance of different responses. To deal with uncertainty
involved during allotting criteria weights, fuzzy set theory (4) has
also been combined with MCDM methods. Integration of fuzzy
logic withMCDMmethods (7) has helped the researchers to develop
the corresponding “If’-Then” rules to explore the relationships
between EDM parameters and responses.

Although the operating level of each of the EDMparameters largely
depends on the type of the work material and feature to be machined,
interaction between the work and tool materials and manufacturer and
model of a particular EDM setup; based on the reviewed articles, an
attempt is put forward in Figure 3 to portray the settings of four main
EDM parameters, i.e., Ton, Toff, Ip and Vg, as considered by various
past researchers, in the form of box plots. It is interesting to notice that
those settings are widely varying, leading to large number of outliers
towards higher levels of all the considered parameters. For Ton
parameter, the lower and upper whisker values of the developed box
plot are 0.5 μs and 463 μs respectively; while the corresponding mean
and median values are 163 μs and 100 μs respectively (excluding the
outliers). Similarly, the lower and upper whiskers, mean and median
values for Toff, Ip and Vg can be obtained. It can be noted that for Toff,
the mean of the box plot is well above the upper whisker indicating that
a few studies have considered extreme high values for Toff during
experimentation as compared to bulk of other studies. Thus, the mean
value of the process parameter range in such cases is not a true
representation of Toff considered by the past research community.
Thus, it can be concluded from Figure 3 that the future researchers
should attempt to set the corresponding values of Ton, Toff, Ip and Vg
as 100 μs, 20 μs, 10 A and 50 V (all median values) respectively for
having the best performance of an EDM process. It would eventually
relieve the operators to conduct pilot runs or rely on trial-and-error
approach for having the idea regarding the initial settings of different
EDM parameters prior to any real-time experiment, thereby saving
machining cost and time.

In EDM process, different physical properties of the work
material, machining time, material of the tool and operating levels
of the input parameters under consideration significantly influence
the achieved responses values. In Figure 4, values of three main
responses, i.e., MRR, TWR and SR attained by the earlier researchers
at the derived optimal intermixes of the considered EDM parameters
are depicted in the form of box plots. While developing the box plots
for MRR and TWR, their volumetric measured values are converted
into corresponding gravimetric values and their unit is kept as mg/
min. Those response values also widely vary depending on the type of
the work material machined, tool material used and settings of the
EDM parameters. For MRR, the values of lower and upper whiskers,
mean and median are observed to be 0.001 mg/min, 357.332 mg/min,
157.710 mg/min and 35.706 mg/min respectively (excluding the
outliers). On the other hand, those values for TWR are 0.002 mg/
min, 23.294 mg/min, 16.000 mg/min and 1.361 mg/min respectively.
In case of SR, lower and upper whiskers, mean and median values are

obtained as 0.080 μm, 12.480 μm, 5.177 μm and 4.185 μm
respectively. Thus, irrespective of the work and tool materials and
input parameter settings, the achievable MRR, TWR and SR would be
35.706 mg/min, 1.361 mg/min and 4.185 μm respectively
(considering their median values).

The co-citations of different keywords as considered in the
reviewed articles with the focal keyword “Optimization of EDM
process using MCDM methods” are plotted in Figure 5. From this
figure, it can be interestingly unveiled that “Electrical discharges,”
“Surface roughness,” “Material removal rate,” “Cutting tools,”
“Multi-objective optimization,” “Wear of materials,” “Grey
relational analysis,” “TOPSIS” and “Taguchi methods” are
strongly related when different MCDM methods have been
employed for optimizing the performance of EDM processes. Co-
existence of other keywords, such as “Process parameters,”
“Optimization,” “Tool wear rate,” “Electrodes,” “MCDM,”
“L9 orthogonal arrays,” “Decision making,” “Current,” “Pulse-on
time,” “Aluminium alloys,” “Titanium alloys” etc., also closely
matches with the observations of this review paper.

6 Conclusions and future directions

Based on the information extracted after comprehensively
reviewing 137 research articles published during 2013–2022 and
available in the SCOPUS database, the following conclusions can
be drawn:

a) Keeping in mind the widespread applications of EDM processes
in many of the modern-day industries to generate complex shape
features on diverse difficult-to-cut work materials, their
optimization using MCDM methods appears as a topic of
immense interest among the research community.

b) The major advantage of MCDM-based optimization of EDM
processes lies in the fact that in most of the cases, the derived
optimal combinations of the input parameters would be
among the conducted experimental runs, relieving the
machinists to perform additional experiments.

c) Taguchi’s L9 OA plan has been maximally employed by the
past researchers to carry out EDM experiments. On the other
hand, EDM oil has been the most preferred dielectric fluid and
medium and high carbon steels have been mostly machined
using EDM processes. With respect to input and output
parameters, peak current has been the most important
EDM parameter and MRR has been maximally considered
to characterize the performance of EDM processes.

d) Due to its uncomplicated computational steps and
independency of criteria weighting technique, GRA has
appeared to be the most popular multi-objective
optimization tool to determine the optimal parametric
combinations of EDM processes. On the other hand, the
earlier researchers have preferred application of AHP to
measure weights of different responses under consideration.

e) With respect to four most important EDM parameters,
i.e., Ton, Toff, Ip and Vg, the future researchers are advised
to conduct EDM experiments while setting their
corresponding operating values at 100 μs, 20 μs, 10 A and
50 V respectively.
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f) Irrespective of the work and tool materials and ranges of the
input parameters, the achievable values of the three most
important responses, i.e., MRR, TWR and SR would be
35.706 mg/min, 1.361 mg/min and 4.185 μm respectively.

g) It would act as a valuable data repository to explore the
stochastic behaviour of EDM processes and guide the future
researchers in setting the operating levels of the main input
parameters, relieving them to conduct pilot experiments while
saving experimental cost and time.

h) “Optimization of EDM process using MCDM methods” is
strongly interlinked with “Electrical discharges,” “Surface
roughness,” “Material removal rate,” “Cutting tools,”
“Multi-objective optimization,” “Wear of materials,” “Grey
relational analysis,” “TOPSIS” and “Taguchi methods.”

This review on the applications of MCDM techniques for
parametric optimization of EDM processes proposes the
following future research directions:

a) Applications of various metaheuristics for optimizing EDM
processes may be explored.

b) Further review may be conducted on MCDM techniques and
metaheuristics deployed to derive the optimal performance of
other traditional as well as non-traditional
machining processes.

c) The scope of other newly developed but yet to be popular
MCDM tools, like combined compromise solution (CoCoSo),
multi-attributive ideal-real comparative analysis (MAIRCA),
multi-attributive border approximation area comparison
(MABAC) etc., may be exploited to optimize EDM processes.

d) It is advised to estimate the relative importance of the
responses using objective weighting methods, like CRITIC,
method based on the removal effects of criteria (MEREC) etc.,
to derive more pragmatic solutions.

e) Integration of MCDM methods with fuzzy set, intuitionistic
fuzzy set, hesitant fuzzy set, neutrosophic fuzzy set etc., is
highly encouraged involving multiple decision makers to
qualitatively evaluate significance of the responses in
uncertain group decision making environment.

f) The extracted information with respect to process parameter
settings and achieved response values may be treated as the
inputs to any of the machine learning algorithms to design and
develop the corresponding predictive models.

g) Future research should explore the integration of machine
learning with MCDM techniques to enhance predictive
accuracy and process optimization.

h) Additionally, investigating environmentally friendly EDM
processes aligns with global sustainability goals, presenting
a critical avenue for further studies.

The major limitations of this paper are consideration of only
MCDM techniques for optimizing EDM processes as a review topic,
exclusion of conference papers and book chapters from the scope of
review, omitting the derived optimal values of EDM parameters
from further analysis (due to lack of exact information) and
dependency on only SCOPUS database.
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Glossary

AHP Analytic Hierarchy Process

C Capacitance

Cent Circularity at entry

CIR Circularity

COPRAS COmplex PRoportional ASsessment

CS Cuckoo Search

DF Duty Factor

DT Tool Diameter

EDM Electrical Discharge Machining

EJT Electrode jumping-up time

EM Entropy Method

GA Genetic Algorithm

GP Genetic Programming

GRG Grey Relational Grade

IH Auxiliary current with high voltage

LSSVM Least Square Support Vector Machine

MC Machining Cost

MH Micro-hardness

MOORA Multi-Objective Optimization on the basis of Ratio Analysis

MRR Material Removal Rate

N Noise

OA Orthogonal Array

PAR Parallelism

PD Pulse Duration

PF Flushing Pressure

PROMETHEE Preference Ranking Organization METHod for Enrichment Evaluation

QPSO Quantum-behaved Particle Swarm Optimization

RC Percentage of Reinforcement

ROC Radial Overcut

RSM Response Surface Methodology

SDV Standard Deviation

Sg Spark Gap

SS Stainless Steel

TC Taper Cut

TLBO Teaching Learning-based Optimization

Ton Pulse-on time

TWR Tool Wear Rate

Vg Gap voltage

Vo Open voltage

WLT White Layer Thickness

WPM Weighted Product Model

Frontiers in Mechanical Engineering frontiersin.org25

Pendokhare et al. 10.3389/fmech.2024.1404116

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2024.1404116


BBD Box-Behnken Design

CCD Central Composite Design

Cexi Circularity at exit

CODAS COmbinative Distanced-based Assessment

CRITIC CRiteria Importance Through Intercriteria Correlation

CYL Cylindricity

DEAR Data Envelopment Analysis Ranking

DFA Desirability Function Approach

EDAS Evaluation based on Distance from Average Solution

EJI Interval of electrode jumping

ELECTRE ELimination Et Choice Translating REality

FA Firefly Algorithm

GC Gap Control

GRA Grey Relational Analysis

IEG Inter-electrode Gap

Ip Peak Current

MARCOS Measurement Alternatives and Ranking according to COmpromise Solution

MCDM Multi-Criteria Decision Making

MMC Metal Matrix Composite

MOPSO Multi-objective Particle Swarm Optimization

MW Mean Weight

NSGA-II Non-dominated Sorting Genetic Algorithm-II

OC Overcut

PCA Principal Component Analysis

PE Process Energy

PER Perpendicularity

PFE Plasma Flushing Efficiency

PSI Preference Selection Index

RLT Recast Layer Thickness

RS Residual Stress

SCD Surface Crack Density

SEC Specific Energy Consumption

SR Surface Roughness

TA Taper Angle

TL Tool Lift Time

Toff Pulse-off Time

TOPSIS Technique for Order of Preference by Similarity to Ideal Solution

Vd Discharge Voltage

VIKOR VlseKriterijumska Optimizacija I Kompromisno Resenje

Vs. Servo Voltage

WPCA Weighted Principal Component Analysis

WSM Weighted Sum Model
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