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Bearings are essential in machinery. Damage to them can cause financial losses
and safety risks at industrial sites. Therefore, it is necessary to design an accurate
diagnostic model. Although many bearing fault diagnosis methods have been
proposed recently, they still cannot meet the requirements of high-accurate
prediction of bearing faults. There are several challenges in this: 1) In practical
settings, gathering sufficient and balanced sample data for training diagnostic
network models proves challenging. 2) The damage to bearings in real industrial
production sites is not singular, and compound faults are also a huge challenge
for diagnostic networks. To address these issues, this study introduces a novel
fault diagnosis model called EMALKNet that integrates DCGAN with Efficient
Multi-Scale Attention (EMAGAN) and RepLKNet-XL, enhancing the detection and
analysis of bearing faults in industrial machinery. This model employs EMAGAN to
explore the underlying distribution of raw data, thereby enlarging the fault sample
pool and enhancing the model’s diagnostic capabilities; The large kernel
structure of RepLKNet-XL is different from the current mainstream small
kernel and has stronger representation extraction ability. The proposed
method has been validated on the Paderborn University dataset and the
Huazhong University of Science and Technology dataset.
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1 Introduction

Bearings are a key component that can withstand and reduce friction in mechanical
equipment. Bearings play a crucial role in today’s engineering applications and daily life,
finding extensive applications across diverse mechanical devices (Huang et al., 2019; Zhu
et al., 2021; Du et al., 2024; Fan et al., 2024; Zhang andWu, 2024). However, in the industrial
generation, the long-term work of many mechanical equipment will lead to various types of
bearing failures, which have a great impact on production (Schwendemann et al., 2021; Li
et al., 2024). It is crucial to design an accurate mechanical equipment prediction and
maintenance system based on bearing fault diagnosis to avoid economic losses and
personnel injuries caused by bearing damage (Du et al., 2022b; Jia et al., 2023; Zhu and
Fang, 2024).

Technological advancements have broadened the use of artificial intelligence across
numerous domains. Particularly in fault diagnosis, deep learning (DL) has become an
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essential technique for predicting and diagnosing bearing issues
(Chen et al., 2019; Du et al., 2022a). Pan et al. (2023) proposed the
SENet-TSCNNmodel, integrating squeeze-excitation networks with
a dual-stream CNN architecture, demonstrating high precision and
robust generalization in fault diagnosis. An and Wang (2022)
introduced a rolling bearing fault diagnosis method combining
an overlapping group sparse model with a deep compound
convolutional neural network. Convex optimization was applied
to the sparse optimization model to extract fault characteristics from
compound bearings, which were then diagnosed and classified using
a novel deep compound convolutional neural network model. This
method effectively detects and classifies faults in rolling bearings
under both steady and varying conditions. However, these methods
have been validated only with enough, single-fault datasets. This
means that bearing fault diagnosis still needs to overcome the
following two challenges: 1) Model training demands substantial
data, yet operational bearings typically remain fault-free, leading to
scarce and imbalanced sample data (Ruan et al., 2021). 2) In
industrial environments, bearings often experience multiple
concurrent faults (Xu et al., 2022).

To address the small sample issue, this paper introduces the
Deep Convolutional Generative Adversarial Networks with Efficient
Multi-Scale Attention (EMAGAN). Research indicates that Variable
Auto Encoders (VAE) can address this problem by capturing
essential features and reconstructing new samples resembling the
originals. However, VAE training can be challenging and may yield
low-fidelity samples (Zhang et al., 2021). Similar to VAE, there is
also a Generative Adversarial Network (GAN). GAN can also
generate new data similar to real data distribution, which has
been proven by scholars to be helpful for expanding the sample
size of bearing fault diagnosis (Shao et al., 2019; Zhang et al., 2020;
Peng et al., 2021). However, GAN training often faces stability issues
and can produce low-quality samples. In contrast, this paper
introduces Efficient Multi-Scale Attention (EMA) in Deep
Convolutional Generative Adversarial Networks (DCGAN) to
enhance the balance between global structure and local details,
resulting in more realistic image generation (Ouyang et al., 2023).

To address the challenges posed by compound faults to
diagnostic models, this paper uses RepLKNet-XL as a
classification model. Huang et al. (2018) employed a Deep
Decoupling Convolutional Neural Network (DDCNN) to
automatically and effectively identify and decouple compound
faults in rotating machinery. However, this method necessitates
manual design of decoupling and merging strategies between labels,
relying on the expertise and domain knowledge of experienced
professionals. Chen et al. (2023) proposed an integrated approach
for diagnosing compound faults in industrial robots, utilizing two
compact transformer networks for accurate fault detection in noisy
settings. However, this approach is complex and requires a
substantial dataset. Conversely, this paper highlights that
RepLKNet-XL excels in extracting global features and analyzing
the intrinsic characteristics of samples, showcasing its robust
diagnostic capabilities.

The contributions of our work include the following.

1. It introduces a model that combines EMAGAN and
RepLKNet-XL to diagnose compound bearing faults,
enhancing the model’s diagnostic capabilities by expanding

fault samples and leveraging the strong feature extraction of
RepLKNet-XL’s large kernel structure.

2. Introducing EMA into Deep Convolutional Generation
adversarial Network (DCGAN), the stability and
convergence speed of GAN can be improved. EMALKNet
leverages EMAGAN to generate additional fault samples,
effectively addressing the challenge of data scarcity
and imbalance.

3. By utilizing the large kernel structure of RepLKNet-XL, the
model is capable of extracting more robust features from the
data, contributing to its superior performance in diagnosing
compound bearing faults under various conditions.

2 Fundamental theory

2.1 Continuous wavelet transform

In this paper, the sample data consists of the bearing’s vibration
signal, characterized as a 1D time series. To facilitate better feature
extraction, the 1D data is converted into 2D images using continuous
wavelet transform (CWT) (Antoine et al., 1993; Zhao et al., 2023). At
present, the image recognition technology is more mature, the use of
image classification can achieve good fault diagnosis results.
Compared with Fourier transform, CWT converts data into 2D
image can retain both frequency information and time
information. The expression of wavelet transform is:

CWTx p, q( ) � 1��
p

√ ∫+∞

−∞
ψp,q

t − q

p
( )x t( )dt (1)

In Eq. 1, ’p’ and ’q’ are defined as the scale and displacement
parameters of the signal, respectively, with ψ serving as the
wavelet basis function. The experiments described in this
document employ the compound Morlet wavelet for the
wavelet basis.

φ t;ω0, σ( ) � π−1/4eiω0te−
t2

2σ2 (2)
Where Formula 2, ω serves as the frequency parameter, influencing
the wavelet function’s frequency, while σ is a scale parameter that
governs the wavelet’s spread in the time domain and impacts
its bandwidth.

2.2 Theory of DCGAN

Deep Convolutional Generative Adversarial Network
(DCGAN), a variation of the GAN, comprises a Generator (G)
and a Discriminator (D). Generate samples similar to real data by
randomly inputting noise of a specified size into generator G, and
optimize G’s performance in the direction of deceiving the
discriminator. The discriminator D continuously optimizes
network parameters to distinguish between real sample data
and generated data. The two constantly engage in adversarial
training and progress together (Goodfellow et al., 2014). To
evaluate the effectiveness of both the generator and
discriminator simultaneously and provide feedback, the
following loss function is introduced:
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min
G
max

D
V D,G( ) � Ex~pdata x( ) logD x( )[ ]

+ EZ~Pz z( ) log 1 −D G z( )( )( )[ ] (3)

where x ~ pdata (x) denotes that x takes the dataset of real images and
Z ~ Pz(z) denotes that it takes the randomly generated noisy data.
Eq. 3 visually expresses the adversarial relationship between D and
G. For D, the loss function needs to bemaximized, and for G, the loss
function needs to beminimized (Goodfellow et al., 2014;Wang et al.,
2017). Compared with GAN, DCGAN can better learn the feature
representation of images by introducing convolutional layer, batch
normalization and full convolutional network structure, thus
improving the quality and stability of generated images (Radford
et al., 2015).

2.3 Efficient multiscale attention module for
cross-space learning

The EMAmodule’s structure, illustrated in Figure 1, operates by
initially grouping a feature X ∈ RC×H×W into
X � [X0, Xi,.....XG−1], X ∈ RC//G×H×W. It then calculates attention
weight descriptors from the grouped feature map using a parallel
subnet consisting of three separate branches. The first two of the
three parallel branches are grouped and encoded in two spatial
directions, respectively, which are first average pooled, then
connected along the height direction and simultaneously
convolved using a 1 × 1 size convolution kernel, and finally
activated by a sigmoid. The final branch in the network employs
a single 3 × 3 convolutional kernel to encapsulate multi-scale
features. This arrangement preserves precise spatial information

in the channel during the extraction of attention weight descriptors.
The outputs from the two parallel branches are then merged
following cross-spatial learning, enhancing pixel-level pairwise
relationships and emphasizing the overall context across all pixels.�������
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2.4 RepLKNet classification model

RepLKNet is an oversized kernel classification model (Ding
et al., 2022), which applies multiple oversized kernels, such as
31 × 31 convolutional kernels, in CNN to effectively improve the
actual sensory field of the network. Post-experimentation, it was
found that enhancing the actual sensory field significantly boosts the
network’s accuracy in diagnosing faults. The network’s structure is
depicted in Figure 2. The “Stem” denotes the initial layer where
multiple convolutional layers are employed early on to enhance
detail capture. The stem sequence starts with a 3 × 3 convolution
featuring 2× downsampling, followed by a 3 × 3 depth-wise (DW)
convolutional layer to detect low-level patterns, a 1 × 1 convolution,
and another depth-wise 3 × 3 convolution for further low-level
pattern analysis. In Figure 2, Stages 1–4 are composed of
multiple RepLK blocks, each featuring shortcuts and DW K × K
large kernels. Additionally, a 1 × 1 convolution is applied both
before and after each DW convolution. Each large DWconv is
reparameterised with a 5 × 5 kernel. Besides the large

FIGURE 1
EMA structure diagram.
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convolutional layers that ensure ample receptive field and spatial
information aggregation, the depth of the model also significantly
influences its representational capabilities. Increasing the depth by
using a 1 × 1 conv layer provides more nonlinearities and
information communication across channels. Drawing inspiration
from the feed-forward networks (FFNs) prevalent in transformers
and MLPs, a CNN-like ConvFFN block is crafted, incorporating
shortcuts, dual 1 × 1 batch normalization (BN) layers, and GELU
activation. Transition in the figure is then a transition block
consisting of 1 × 1conv and 2×downsampling of 3 × 3conv. In
this configuration, B represents the number of RepLK blocks, C
is the channel dimension, and K denotes the kernel size. There are
four RepLK blocks in the network structure, so the RepLKNet
architecture consists of [B1; B2; B3; B4], [C1; C2; C3; C4], [K1;
K2; K3; K4].

3 Proposed method

As mentioned above, DCGAN consists of G and D. The two
are constantly fighting against each other, and ideally they will
promote each other to enhance the ability of extracting image
features. Therefore when only EMA is added to D, the
discriminative ability of D will be improved, and D is more
likely to find defects in G-generated samples, which will lead to
more realistic G-generated samples. Figure 3 is the structure of G
of EMAGAN designed in this paper, which consists of one fully
connected layer, three inverse convolutional layers, three BN
layers, and the activation function used is tanh. The structure of
D of EMAGAN designed in this paper is shown in Figure 3, which
consists of two convolutional layers, two EMA modules, one fully
connected layer and one BN layer, and the activation function
used is leaky_relu function and sigmoid function, and the EMA
modules act after the two convolutional layers respectively. After
passing random noise into the trained EMAGAN, it can be

obtained to generate new samples, and subsequently the
dataset can be preprocessed. The processed data is fed into the
RepLKNet classification model mentioned above, and the
parameters of the RepLKNet classification model are set to
B = [2; 2; 18; 2], C = [256; 512; 1024; 2048], and K = [27; 27;
27; 13]. From Eq. 4, it’s clear that when weights are uniform, the
effective receptive field size increases linearly with the kernel size,
K (Luo et al., 2016). Thus when K = [27; 27; 27; 13], RepLKNet
can obtain higher feature integration capability and more
compound capture patterns, which helps to extract features
that help to extract more global and compound features.
Figure 4 shows the overall diagnostic flow of the model. The
pseudo-code for this method is detailed in Table 1.

4 Experimental design

The experimental platform in this paper is a server based on
NVIDIA RTX4090 24G and Intel Xeon Gold 6430.

4.1 Introduction and pre-processing
of dataset

The Paderborn dataset is used for the experiments in this
paper. The dataset was gathered and released by the University of
Paderborn using the rolling bearing condition test bed at the
Department of Design and Drive Technology. The test bench is
composed of five parts: motor, torque measuring shaft, rolling
bearing test module, flywheel, and load motor. The dataset
includes data for normal bearings, single fault bearings,
multiple single fault bearings, and compound fault bearings.
Motor current is recorded at a frequency of 64 kHz, vibration
signals at 64 kHz, mechanical parameters at 4 kHz, and
temperature at 1 Hz (Lessmeier et al., 2016). The data bearing

FIGURE 2
The architecture of RepLKNet.
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type collected in this dataset is the 6203 bearing. To be closer to
the real situation, the data samples selected in this paper are all
real damage samples.

Once the dataset is selected, the initial step involves processing
the original vibration signal. The sampling formula used in this
study is detailed below:

sample � point_num − sample_size
stride

+ 1 (5)

where stride represents the sampling step size, point_num indicates
the total count of vibration points, and sample_size refers to the
vibration count at each sampling point. In this experiment, the stride
and sample_size are set at 900, with each dataset file containing
200 sampling points. The vibration data sampled from the window
was then converted into a time-frequency plot using Eq. 5, and the
image size was compressed to 64 × 64 to reduce the amount of
computation.

FIGURE 3
Flowchart of GAN. Left is the generator and right is the discriminator.

FIGURE 4
General schematic of the suggested approach. On the left is EMAGAN’s training process, and on the right is RepLKNet-XL, using the trained G to
expand the sample, and completing the diagnosis.
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4.2 Case 1: low speed and high torque fault
diagnosis based on the data set of Paderborn
University

4.2.1 Experiment 1: methods for comparison
EMALKNet diagnostic effect of this summary of the samples

taken for the experiment as Table 2, all the eight kinds of data are
real damage data. In the table, the bearing code N09 indicates that
the bearing speed is 900rpm,M07 indicates that the torque is 0.7Nm,
F10 indicates that the radial force is 10n, and the last three digits
indicate the bearing code; for the combination of damages, Single
indicates a single fault, Repetitive indicates that the same kind of
damages occurs in several places, and Multiple indicates that a
mixture of multiple damages; IN indicates the damage of the inner
ring of the bearing, and OUT indicates the damage of the outer ring.

In this section, the paper details a comparative experiment
designed to showcase the diagnostic strengths of the proposed
model and underline its enhancements relative to existing
methods. The experiment was selected to compare 2DCNN (a),
ResNet50 (b), RepLKNet-XL (f) and proposed EMALKNet (h)
model. Before the formal experiment began, we conducted a pre-
experiment to assess the effects of different learning strategies on
these models’ convergence speed and accuracy. The models chosen
for this pre-experiment were 2DCNN, ResNet50, and (EMAGAN)
RepLKNet. The models were trained using three distinct strategies:
fixed learning rate, adaptive learning rate, and cosine annealing. For

each training category, 200 samples were utilized, maintaining a 7:
3 ratio between the training and validation sets. The training process
consisted of 300 uniform rounds, and this procedure was replicated
five times. The experiment followed these parameters consistently,
and the results are depicted in the accuracy image shown in Figure 6.
Table 3 illustrates the results of the comparison. From the analysis of
Table 3, it can be concluded that cosine annealing is the optimal
strategy for 2DCNN, while the adaptive learning rate strategy yields
the best results for ResNet50 and (EMAGAN)RepLKNet.
Furthermore, as observed from Figure 5, all three models achieve
good convergence after only 200 rounds of training.

Referring to the pre-experiment results and To simulate the
small sample situation, the samples used in the formal experiments
are the same as those in the pre-experiment, the batch_size is
uniformly set to 64, and the epochs are uniformly set to 200.
The ratio of training set and validation set is set as 7:3. The
learning strategy for 2DCNN uses cosine annealing, and the rest
of the model learning strategies use Adaptive learning rate. Mixup
(Zhang et al., 2017) is also introduced to enhance the data in the
experiments. Mixup serves to allow the model to disrupt the order of
the incoming samples in each validation set during the validation
process, so as to improve the model’s generalisation ability. The G
learning rate in EMAGAN was set to 0.0002, G was set to 0.00002,
the number of samples used was 200 and batch_size was set to 64.
The samples used in EMALKNet are expanded with real and
generated samples in the ratio of 1:4.

TABLE 1 Proposed methodology in pseudocode format.

Step Operation Output

1 Load vibration signal data signal

2 Apply Continuous Wavelet Transform to the signal images

3 Train EMAGAN with images Trained EMAGAN model

4 Generate samples using the trained EMAGAN generated_samples

5 Initialize RepLKNetXL instance RepLKNet

6 Train RepLKNetXL with real and generated samples, including labels Trained the RepLKNetXL model

7 Predict test data using the trained RepLKNetXL prediction_results

TABLE 2 This is the data set selected for case 1 and case 2.

Serial number Name of setting Location of injury degree of damage Damage package Type of injurya

1 STRb_K001 None

2 STR_KA04 OUT 1 Single Damage type 1

3 STR_KA16 OUT 2 Repetitive Damage type 1

4 STR_KB23 IN&OUT 2 Multiple Damage type 1

5 STR_KB24 IN&OUT 3 Multiple Damage type 1

6 STR_KB27 IN&OUT 1 Multiple Damage type 2

7 STR_KI04 IN 1 Multiple Damage type 1

8 STR_KI17 IN 1 Repetitive Damage type 1

aDamage type 1 is fatigue: pitting; Damage type 2 is Plastic deform: Indentations.
bSTR stands for N09 M07 F10 in case 1; STR stands for N15 M01 F10 in case 2.
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Figure 6; Table 4 show the diagnostic effectiveness of each model
under real sample conditions, where the samples used for diagnosis
were obtained by randomly re-sampling from the dataset with 300 of
each data selection. Specifically, 2DCNN has the highest accuracy of
only 88.25%, ResNet50 and RepLKNet have relatively better
accuracies of 92.88% and 93.08%, respectively, whereas the
diagnostic method proposed in this paper is as high as 96.71%,
which is higher than those of the other three models by 8.64%,
3.83%, and 3.63%, respectively.

In this experiment, we evaluated the performance of a
compound bearing fault diagnosis model that identifies and
classifies different types of faults through machine learning
classification tasks. The results are shown in the Table 5. The
results show that the model exhibits high accuracy and recall in
various categories, with K001, KA04, and KI04 achieving an
accuracy of over 97%, demonstrating the effectiveness of the
model in identifying these specific types of faults. The overall
accuracy of the model is 96.71%, with macro average accuracy,
recall rate, and F1 score all exceeding 96.7%, indicating that the
model has high accuracy and reliability in handling compound fault
diagnosis tasks.

The results demonstrate that the model introduced in this study
effectively handles compound fault diagnosis, even with limited
samples. The significant improvement compared to the RepLKNet
model underscores that employing GANs and their derivatives to
augment sample sizes can successfully mitigate the challenge of
insufficient samples in fault diagnosis. Meanwhile, by analysing the
confusion matrices of the four models in Figure 7, it is not difficult to
find that EMALKNet also outperforms the other three models in the
diagnosis of two same faults, KB23 and KB24, with different damage
levels, which further illustrates that the large kernel feature of
RepLKNet has a stronger help in the extraction ability of
fault samples.

In addition to the aforementioned three classical algorithms, this
study further evaluates three cutting-edge fault diagnosis methods:
(c) VMamba, (d) MF-Vit and (e) SENet-TSCNN. SENet-TSCNN
integrates Squeeze-and-Excitation Networks with Two-Stream
Convolutional Neural Networks, utilizing Continuous Wavelet
Transform to transform raw data into time-frequency images for
diagnostic purposes (Pan et al., 2023). MF-Vit employs both discrete

and continuous wavelet transformations to process raw vibration
signals, coupled with a vision transformer model to detect faults (Xu
et al., 2023). VMamba, a vision-based network, amalgamates state-
space models with 2D selective scanning to foster efficient visual
representation learning (Liu et al., 2024). The experimental design of
this section adhered to the original parameter settings of these
methodologies. Results are delineated in Table 4. Comparative
analysis reveals that the accuracy of the method developed in this
paper surpasses those of VMamba (c), MF-Vit (d), and SENet-
TSCNN (e) by 6.01%, 1.5%, and 4.59%, respectively. In comparison
with the most advanced current methods, these findings underscore
the distinct advantages of EMALKNet in performing composite fault
diagnosis under conditions of limited sample sizes.

4.2.2 Experiment 2: ablation study on the EMAGAN
An ablation experiment was designed in this vignette, and the

data set selected for this experiment is the same as that of
Experiment One. Under the same conditions, the dataset in
Table 2 is learnt and new samples are generated using EMAGAN
and DCGAN respectively, and the size of the learnt dataset is also
200. The G learning rate in EMAGANwas set to 0.0002, G was set to
0.00002, the number of samples used was 200 and batch_size was set
to 64. The loss function image for EMAGAN and DCGAN are
shown in Figure 8. Through comparison, it can be found that the
EMAGAN designed in this paper starts to converge stably at about
500 epochs, which is 300 epochs earlier than that of DCGAN.
800 samples are generated by DCGAN, and the 800 samples are
randomly divided into the training set and the validation set
according to the ratio of 7:3 with the original 200 samples. Then
RepLKNet is used for classification, and 300 real samples are
randomly selected to test the diagnostic effect of RepLKNet in
the real sample situation. The experiment was repeated five times
and compared with the results of EMALKNet. The comparison
results are shown in Table 4, from which it can be seen that
EMALKNet (d) is 2.05% more accurate than EMALKNet without
EMA (g). Combined with the loss function in Figure 8 it can be seen
that EMAGAN has stronger feature extraction capability and better
convergence and excellent sample expansion capability than
DCGAN, which are all due to EMA’s cross-latitude interaction
and multi-scale attention.

TABLE 3 Pre-experimental results. In bold is the optimal result of each experiment.

Module name strategiesa 1 (%) 2 (%) 3 (%) 4 (%) 5 (%)

2DCNN Type 1 85.83 85.42 86.67 87.92 86.46

Type 2 87.71 87.29 57.08 48.33 78.34

Tpye 3 69.53 73.52 56.04 57.08 12.50

RepLKNet Type 1 85.00 86.67 86.25 85.20 87.29

Type 2 90.12 91.25 90.42 89.95 88.23

Type 3 92.92 91.04 93.96 91.46 92.50

ResNet50 Type 1 90.42 88.54 88.13 88.96 86.88

Type 2 91.25 89.79 87.92 90.21 87.92

Type 3 92.71 92.50 92.71 92.50 92.50

aType 1 stands for Cosine annealing ; Type 2 stands for Fixed learning rate; Type 3 stands for Adaptive learning rate.
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4.3 Case 2: high speed and low torque fault
diagnosis based on the data set of Paderborn
University

This subsection reevaluated the performance of the proposed
method by selecting samples with varying conditions from the

University of Paderborn dataset. The sample data selected for this
experiment are shown in Table 2, where the bearing code N15 indicates
that the bearing speed is 1500 rpm, M01 indicates that the torque is
0.1Nm, F10 indicates that the radial force is 10n, and the last three digits
indicate the bearing code. The difference between experiment 1 and
experiment 2 is that the speed of experiment 2 is faster, and the

FIGURE 5
The performance of different learning strategies in three models.
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operating conditions of the two are very different. The training strategy
and sample processing method are the same as experiment 1. The
experiment was repeated for five times. Figure 6 shows the results of the

five experiments, and the diagnostic accuracy rate is all about 98.8%,
which proves that EMALKNet still has high diagnostic accuracy even
under the two different working conditions of faster rotating speed and
smaller torque. It shows that EMALKNet has strong generalization
and stability.

4.4 Case 3:composite fault diagnosis fault
diagnosis based on the data set of HUST

4.4.1 Introduction of dataset
The dataset utilized in this study was sourced from Huazhong

University of Science and Technology (HUST) and was generated using
the Spectra-Quest mechanical fault simulator, specifically designed for
bearing failure analysis. The data pertains to an ER-16K bearing model,
featuring an axle diameter of 38.52mm and a ball diameter of 7.94 mm.
Data acquisition was conducted at a sampling frequency of 25.6 kHz,
capturing data points under various operational states, including health,
inner ring failure, outer ring failure, rolling element failure, and
compound failure. For each condition, a total of 262,144 data points
were recorded (Zhao et al., 2024). In this experiment, the data set
simulates the bearing diagnosis under the noise condition. The selected
data sets for this analysis are detailed in Table 6, with “H” denoting

FIGURE 6
The left is a comparison of all the models in case 1. The right is On the right is the result of case 2.

TABLE 4 This is the results of the formal experiment in Case 1. In bold is the optimal result of each experiment.

1 (%) 2 (%) 3 (%) 4 (%) 5 (%)

a 87.92 88.25 86.71 88.17 86.13

b 92.21 92.71 92.17 92.17 92.88

c 90.29 90.67 89.79 90.70 90.10

d 94.50 93.01 95.21 94.31 94.77

e 90.34 91.57 90.64 92.12 91.88

f 92.79 92.96 92.58 92.47 93.08

g 93.04 94.15 93.82 93.71 94.54

h 95.54 95.50 96.71 96.21 95.71

(a) 2DCNN; (b) ResNet50; (c) Vmamba; (d) MFVit; (e) SENet-TSCNN; (f) RepLKNet-XL; (g) EMALKNet without EMA; (h) EMALKNet.

TABLE 5 The evaluation indicators of the EMALKNet model.

Precision Recall F1-score Support

K001 0.9739 0.9933 0.9835 300

KA04 0.9862 0.9533 0.9695 300

KA16 0.9430 0.9933 0.9675 300

KB23 0.9763 0.9600 0.9681 300

KB24 0.9727 0.9500 0.9612 300

KB27 0.9416 0.9667 0.9539 300

KI04 0.9901 0.9967 0.9934 300

KI17 0.9552 0.9233 0.9390 300

Accuracy 0.9671 2,400

Macro Avg 0.9674 0.9671 0.9670 2,400

Weighted Avg 0.9674 0.9671 0.9670 2,400
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healthy bearings and “B” indicating damaged bearings. “C” represents
mixed damage conditions; “I” signifies damage to the bearing’s inner
ring; “O” denotes outer ring damage. “0.5X” was used to describe
moderate injury, whilemore severe injuries were categorized differently.
A constant operating frequency of 80 Hz was maintained throughout
the experiments.

4.4.2 Contrast experiment
The experimental data were initially transformed into time-

frequency representations using wavelet transformation, resulting in
300 samples. Out of these, 200 samples were selected for further
augmentation via EMAGAN-based synthesis. Subsequently, these
200 augmented samples were randomly divided into a training set
and a validation set, maintaining a ratio of 7:3. The remaining
100 samples were reserved for the testing phase, with the test
accuracy being the primary metric of evaluation. All other

experimental configurations were consistent with those outlined
in Case 1. In this experiment, a comparative analysis is conducted,
encompassing the examination of three traditional methodologies
alongside three state-of-the-art approaches. The ablation
experiment was also designed. The experimental results are
summarized in Table 7.

Through comparative analysis, it has been observed that the
method proposed in this paper still exhibits excellent diagnostic
performance on the HUST dataset, with the highest accuracy
reaching 100% and the lowest being 99.5%. The diagnostic
accuracy has seen an improvement of 8.7%, 2.33%, 2.83%, 4.83%,
1.33%, and 4.17% compared to 2DCNN, ResNet50, RepLKNet-XL,
Vmamba, MFVit, and SENet-TSCNN, respectively. Furthermore,
the ablation study indicates that the accuracy of EMALKNet is 1.5%
higher than that of EMALKNet without EMA, which underscores
the superior feature extraction capability of EMAGAN.

FIGURE 7
Confusion matrix of test results for the four models.
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5 Discussion of the limitations of
this method

While the proposed method exhibits certain superiority in the
diagnosis of compound faults in bearings under small sample
conditions, it is not without its limitations. Initially, the extensive
architecture of the method’s large core network is substantial,
demanding significant computational resources, which implies

the requirement for sophisticated computational equipment for
practical implementation. Additionally, the method introduced in
this paper shares some inherent limitations with existing
approaches; for example, in case 1, the diagnostic performance
on the KI17 dataset is comparable to other methods and does
not effectively address the diagnosis of the “Plastic deform:
Indentations” type of damage. Finally, in real-world industrial
environments, bearing speeds and operating conditions may

FIGURE 8
Loss function for EMAGAN and DCGAN.

TABLE 7 This is the results of the formal experiment in Case 3. In bold is the optimal result of each experiment.

1 (%) 2 (%) 3 (%) 4 (%) 5 (%)

a 90.00 91.50 90.67 89.33 91.33

b 97.67 97.00 96.67 97.17 96.83

c 95.17 94.33 94.00 95.33 94.67

d 98.67 97.67 98.17 97.50 97.17

e 95.83 95.83 95.00 95.33 95.17

f 98.17 97.17 96.83 97.33 97.17

g 98.50 97.17 97.83 98.00 98.50

h 100.00 100.00 99.83 99.50 100.00

(a) 2DCNN; (b) ResNet50; (c) Vmamba; (d) MFVit; (e) SENet-TSCNN; (f) RepLKNet-XL; (g) EMALKNet without EMA; (h) EMALKNet.

TABLE 6 This table is the data set selected for case 3.

Serial number Name of setting (Hz) Damage type Degree of damage

1 H_80 None

2 B_80 Ball 2

3 C_80 Combination 2

4 I_80 In 2

5 O_80 Out 2

6 0.5X_C_80 Combination 1
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fluctuate in real time, a challenge that the method presented in this
paper has yet to overcome.

6 Conclusion

This study presents a cutting-edge approach for diagnosing
bearing faults in machinery with limited sample availability by
introducing a new model called EMALKNet that integrates
EMAGAN with RepLKNet-XL. This innovation leverages the
Efficient Multi Scale Attention mechanism within a Deep
Convolutional Generative Adversarial Network framework to
enhance sample quality and quantity, effectively overcoming
traditional challenges of data scarcity and imbalance. The model’s
utilization of RepLKNet-XL’s large kernel structure enables it to
extract compound fault features with high precision, improving
accuracy and robustness in fault diagnosis under compound and real
conditions.

Future research can focus on enhancing the model’s adaptability
across various industrial settings and optimizing real-time
processing capabilities for widespread practical application.
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