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Indroduction: Magnesium alloy ZE41 is highly valued in industrial applications
due to its superior properties such as high strength-to-weight ratio, corrosion
resistance, and low density. However, the welding of magnesium alloys poses
significant challenges. Friction Stir Additive Manufacturing (FSAM) offers a
promising alternative to traditional welding methods, especially for ZE41 alloy.
Among the FSAM process parameters, tool overrun—the distance the tool travels
beyond the joint interface—plays a critical role in influencing joint integrity and
overall performance. A research gap exists in integrating mechanical output
parameters and acoustic signal features for the optimization of FSAM in
magnesium alloys. Addressing this gap requires a robust Decision Support
System (DSS).

Methods: This study proposes a dedicated DSS to optimize the FSAM process for
ZE41 alloy. The DSS incorporates expert linguistic evaluations modeled using T-
spherical fuzzy sets and determines experiment rankings using the TODIM (an
acronym in Portuguese for Interactive Multi-Criteria Decision Making) method.
The experiments systematically varied three transverse speeds (20, 40, and 60
mm/min), two rotational speeds (500 and 1200 rpm), and two tool overruns (0.5
and 1 day). The evaluation criteria included mechanical properties—tensile
strength, percentage elongation at break, and Brinell hardness—as well as
acoustic emission (AE) signal features such as peak amplitude, absolute
energy, and centroid frequency.

Results: The DSS effectively ranked the experimental runs by integrating
mechanical performance and AE signal analysis. Among the configurations,
the setup with a transverse speed of 40 mm/min, rotational speed of 500
rpm, and tool overrun of 1 day emerged as the best performing. The output
metrics showed improved mechanical integrity and consistent AE characteristics
under this setting.

Discussion: The proposed DSS demonstrated robustness, maintaining a
consistent ranking of experimental results even when the weights and the
attenuation factor in the TODIM method were varied. This confirms the
reliability of the DSS for optimizing FSAM process parameters. The integration
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of fuzzy logic and multi-criteria decision-making provides a comprehensive
framework for addressing the complexities of FSAM in magnesium alloys, and
can be extended to similar materials and processes in further studies.

KEYWORDS

friction stir additive manufacturing, magnesium alloy ZE41, additive manufacturing,
TODIM, acoustic emission

1 Introduction

Magnesium alloy ZE41 is widely used in automotive, aerospace,
and electronics industries for its high strength-to-weight ratio,
excellent corrosion resistance, and lightweight properties.
However, welding this alloy presents challenges such as low
melting point, high reactivity, susceptibility to cracking, and
porosity formation, necessitating extensive post-weld processing.
Friction stir additive manufacturing (FSAM) offers a solution by
combining friction stir welding (FSW) with additive manufacturing,
using a solid-state process to avoid melting and minimize defects
like cracking and intermetallic formation. FSAM enables precise
control over deposition parameters and allows the incorporation of
reinforcing agents, enhancing component performance.

FSAM has been applied across diverse alloy systems. Aluminum
alloys are among the most extensively studied materials for FSAM
due to their widespread industrial applications in aerospace,
automotive, and marine sectors. Researchers have investigated
the microstructural evolution, mechanical properties, and
processing parameters of FSAM-deposited aluminum alloys. For
example, Dai et al. (2024) demonstrated the successful FSAM of Al-
Cu-Mg alloy with tailored microstructures and enhanced
mechanical properties. Additionally, studies by Chaudhary et al.
(2023a) and Jiang et al. (2023) explored the effects of deposition
temperature and feed rate on the microstructure and mechanical
behavior of FSAM-deposited aluminum alloys, providing valuable
insights for process optimization and property enhancement. FSAM
of titanium alloys has attracted considerable attention for producing
lightweight, high-strength components with complex geometries.
Notable studies by Kalashnikov et al. (2021) and Jie et al. (2024)
investigated the microstructural characteristics and mechanical
properties of FSAM-deposited titanium alloys, highlighting the
influence of processing parameters on grain refinement and
texture development. Steel alloys are essential materials in
manufacturing, construction, and transportation industries due to
their versatility, strength, and affordability. Recent studies by
Roodgari et al. (2020) and Derazkola et al. (2020) investigated
the microstructural evolution and mechanical behavior of FSAM-
deposited steel alloys, focusing on the effects of alloy composition,
heat treatment, and deposition strategy. These investigations
provide valuable insights into optimizing FSAM processes for
various steel grades, paving the way for applications in tooling,
automotive, and energy sectors. Chaudhary et al. (2023b)
investigated the microstructural evolution and phase
transformations in FSAM-deposited nickel-based superalloys,
elucidating the effects of thermal history, tool geometry, and
deposition parameters on microstructure and mechanical
properties. Notable investigations by Joshi et al. (2022) and Dixit
et al. (2023) explored the feasibility of FSAM for magnesium alloys,

highlighting the challenges of processing such as low melting point,
high reactivity, and susceptibility to defects. These studies provide
valuable insights into optimizing FSAM processes for magnesium
alloys and expanding their applications in lightweight engineering.
Several magnesium alloys have been investigated through FSAM.
Joshi et al. (2022a) investigated additive friction stir deposition of
AZ31B magnesium alloy using MELD® technology. A refined grain
structure and strengthened basal texture were observed in the
additively produced samples compared to the feed material. The
additively produced samples also exhibited slightly higher hardness.
This work highlights a solid-state additive manufacturing approach
for magnesium, offering potential for structural applications in
automotive components and biomedical implants. Wlodarski
et al. (2021) explored additive friction stir layer welding
(AFSLW) of AZ31 magnesium alloy, successfully fabricating a
seven-layer structure free of volumetric defects. Although the
AFSLW material showed lower tensile and fatigue strengths
compared to wrought AZ31-H24 due to heat input reducing cold
work strengthening, it maintained similar fatigue crack initiation
mechanisms. The study demonstrated AFSLW’s capability to
produce large, defect-free structures with predictable mechanical
properties. Some of the other explored alloys are AZ61 (Luo et al.,
2018; Luo et al., 2017), AZ80 (Yang et al., 2014), and ZK60 (Lin et al.,
2017; Hu et al., 2022) AZ31 is a widely used magnesium alloy,
known for its good weldability and high strength-to-weight ratio.
AZ61 and AZ91 alloys offer improved strength and creep resistance
compared to AZ31, making them suitable for high-performance
applications. ZK60 is another commonly investigated magnesium
alloy, characterized by its excellent castability and moderate
strength. These alloys have been selected for FSAM investigations
due to their relevance in aerospace, automotive, and consumer
electronics industries.

The production of high-quality parts with desired mechanical
properties and structural integrity can be addressed through careful
parameter optimization, and stringent process controls to minimize
defects such as porosity, cracking, and intermetallic formation.
Various process parameters have been considered to optimize
deposition quality and mechanical properties. These parameters
include rotational speed, traverse speed, deposition temperature,
feed rate, tool geometry, and preheating conditions. For example,
Joshi et al. (2022) investigated the effect of process parameters on
FSAM of AZ31B magnesium alloy, varying parameters such as tool
linear velocity, deposition material feed rate, tool residence time and
feed resistance time. Similarly, Verma et al. (2018) found that higher
rotational speeds and lower traverse speeds resulted in finer grain
sizes and improved mechanical properties in FSAM-deposited
AZ31B magnesium alloy. Asadi et al. (2016); Raj et al. (2024)
observed that FSAM-deposited AZ91 magnesium alloy exhibited
refined grains and enhanced tensile strength when using a tapered
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pin tool and preheating temperature of 300°C. The impact of tool
overrun on the mechanical and morphological properties of 2-plate
laminate joints fabricated using Friction Stir Additive
Manufacturing (FSAM) is one of the critical considerations for
ensuring the quality and reliability of the joining process. Tool
overrun, referring to the distance traveled by the tool beyond the
joint interface during FSAM, can significantly influence joint
integrity and performance. Excessive tool overrun may result in
inadequate material mixing and bonding at the joint interface,
leading to reduced tensile strength and fatigue resistance due to
the presence of microstructural defects and stress concentration
points. Moreover, improper tool overrun can alter material flow
patterns within the joint zone, resulting in irregular weld seam
morphology, surface defects, and non-uniform microstructures. To
systematically investigate the impact of tool overrun, controlled
FSAM experiments with varying tool traverse distances should be
conducted and the process parameters should be optimized and
hence control tool overrun to achieve high-quality, defect-free joints
with tailored mechanical properties. This would aid in ensuring the
reliability and performance of FSAM-fabricated 2-plate laminate
components for diverse industrial applications.

The mechanism for the stringent process controls to
minimize defects such as porosity, cracking, and intermetallic
formation includes monitoring welding processes, such as visual
inspection and post-weld examination. However, the said
monitoring techniques have limitations in detecting defects in
real-time and may not provide sufficient insight into the welding
dynamics. Literature associated with the process monitoring of
metal additive manufacturing process (MAM) has been depicted
in Table 1. In recent years, there has been a growing interest in
employing advanced monitoring techniques to enhance the
quality and reliability of FSW of magnesium alloys. In-situ
process monitoring techniques offer real-time feedback on the
dynamic behavior of the FSAM process, which is particularly
crucial for magnesium alloys due to their unique material
properties and processing challenges. By systematically investigating
this relationship, researchers can gain insights into the intricate
mechanisms governing joint quality and performance in FSAM of
magnesium ZE41 alloy. Bridging this gap in research holds significant
potential for advancing process optimization strategies and ensuring
the production of high-quality, defect-free joints in magnesium
ZE41 alloy components fabricated via FSAM.

Several studies have demonstrated the effectiveness of AE
monitoring for detecting defects and monitoring the welding
process in various materials, including steel, aluminum, and
titanium alloys. Also, there have been investigations on the
optimization the various parameters such as rotational speed,
traverse speed, and different tool runs to yield better mechanical
properties. However, there still remains research gap in the
domain of Friction Stir Additive Manufacturing (FSAM),
particularly concerning magnesium ZE41 alloy wherein the
output process parameters as well as the acoustic signal
features have been considered simultaneously to obtain
optimal processing conditions. However, this seems to be a
complex problem and needs to be dealt with a dedicated
decision support system. Decision support systems (DSS) can
be pivotal in optimizing Friction Stir Additive Manufacturing
(FSAM) process parameters considering simultaneously the
mechanical properties and acoustic emission signal features
that characterize the quality of the process. Incorporating
acoustic emission (AE) characteristics such as peak amplitude,
absolute energy, and centroid frequency significantly enriches the
study by providing crucial insights into joint integrity and failure
detection. Peak amplitude indicates the severity of damage
events, with higher values signaling substantial stress, such as
crack initiation or propagation. Absolute energy quantifies the
total energy released during these events, offering a
comprehensive view of cumulative damage, essential for
understanding material degradation over time. Centroid
frequency, which reflects the type of damage mechanism,
helps distinguish between large-scale failures like crack growth
and finer phenomena like micro-cracks. Collectively, these AE
parameters facilitate real-time, non-destructive monitoring of
structural health, making them vital for predicting and
preventing joint failure. Hence, the other objective of the
presented work is to propose a dedicated DSS that can
consider the aforementioned critical aspects while providing
optimal processing parameters.

The remainder of this article is structured as follows: Section 2
outlines the experimental methodology employed in this study,
including the materials, equipment, and procedures used for
FSW and AE monitoring. Section 3 presents the results and
analysis of the experiments, focusing on the relationship between
AE signals and welding parameters, as well as the detection of defects

TABLE 1 Process monitoring of metal additive manufacturing process.

AM process Materials Sensors Refs

SLM SS304 Microphone Ye et al. (2018)

SLM SS Fiber Bragg grating sensor Shevchik et al. (2018)

SLM SS316L High-speed camera Zhang et al. (2018)

SLM Zinc IR Camera Grasso et al. (2018)

SLM In718 High-speed camera, optical microscope Scime and Beuth (2019)

SLM In625 Photodetector, high-speed camera, IR camera Montazeri and Rao (2018)

SLM In718 Digital single lens reflex camera Caggiano et al. (2019)

DED Ti-6AL-4V Pyrometer, IR-camera, CT Scan Khanzadeh et al. (2019)
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in the welded joints. Finally, Section 4 concludes the article with a
summary of the key findings and recommendations for future
research directions.

2 Methodology

This section of the presented work is segmented into two main
parts for clarity and organization. Section 2.1 delineates the
experimental setup, detailing the apparatus, procedures, and
parameters employed in the experimentation. Meanwhile, Section
2.2 focuses on elucidating the proposed decision-support system,
outlining its design, functionality, and potential application.

2.1 Experimental set-up

The experimentation involved the utilization of 5 mm
magnesium ZE41 alloy plates as the feed material. This choice
was made based on the desirable chemical composition and
mechanical properties outlined in Tables 2, 3, respectively. To
conduct the experiments, a specialized tapered cylindrical
threaded tool, as depicted in Figure 1, was employed. The
experiments were conducted utilizing a friction stir welding
machine, with acoustic emission sensors utilized to capture
signals during the experimental process. The experimental setup,
as illustrated in Figure 1, was designed to ensure precise control and
measurement throughout the experiments.

TABLE 2 Chemical composition of magnesium ZE41.

Element Zinc, Zn Rare earths Zirconium, Zr Magnesium, Mg

Content (%) 3.5–5 0.8–1.7 0.4–1 Balance

TABLE 3 Mechanical properties of magnesium ZE41.

Tensile strength Modulus of elasticity Poisson’s ratio Elongation Brinell hardness

218 MPa 44.12 GPa 0.35 4.50% 55–70

FIGURE 1
Tool pin profile used in the experimentation and the experimental set-up.
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A standardized protocol was implemented across all
experiments to maintain consistency and reliability of results.
This protocol involved a dwelling time of 10 s, an axial downward
force of 5 kN, and a 2.5° tool post tilt angle. To assess the impact
of various process parameters on the outcomes, three distinct
transverse speeds (20, 40, and 60 mm/min), two rotational speeds
(500 and 1,200 rpm), and two tool overruns (0.5 days and 1 day)
were systematically varied. Additionally, process outcomes such
as tensile strength, % elongation at break, Brinell hardness, and
acoustic emission characteristics including peak amplitude and
centroid amplitude were evaluated. Incorporating acoustic
emission (AE) characteristics such as peak amplitude and
centroid frequency significantly enriches the study by
providing crucial insights into joint integrity and failure
detection. Peak amplitude indicates the severity of damage
events, with higher values signaling substantial stress, such as
crack initiation or propagation. Centroid frequency, which
reflects the type of damage mechanism, helps distinguish
between large-scale failures like crack growth and finer
phenomena like micro-cracks. Collectively, these AE
parameters facilitate real-time, non-destructive monitoring of
structural health, making them vital for predicting and
preventing joint failure.

The experimental design employed the L9 orthogonal array,
facilitating nine experiments. This design offers a balanced and
efficient approach to evaluating the effects of the aforementioned
factors on the process outcomes. Each factor was assigned three runs
at each level to ensure comprehensive coverage of the experimental
space and reduce the potential for bias. The details of the
experiments, including the specific combinations of process
parameters tested, are presented in Table 4.

Throughout the experimentation process, meticulous attention
was paid to maintaining consistent testing conditions and ensuring
accurate data collection. Acoustic emission sensors were utilized to
capture signals generated during the welding process, providing
valuable insights into the process dynamics and aiding in the
analysis of process outcomes. The systematic variation of process
parameters allowed for the identification of optimal settings for
achieving desired welding characteristics and mechanical properties
of the magnesium ZE41 alloy plates.

2.2 Proposed decision-support system

This section discusses the prerequisite definitions required to
build-up the decision-support system. The proposed decision-
making framework models the linguistic evaluations from the
experts using T-Spherical fuzzy sets. T-Spherical fuzzy sets offer
several advantages over other types of fuzzy sets, primarily due to
their ability to model uncertainty and vagueness more effectively in
certain applications. One key advantage is their capacity to represent
uncertainty in a more symmetrical and uniform manner compared
to other fuzzy sets, such as triangular or trapezoidal fuzzy sets. This
symmetry can lead to smoother and more intuitive membership
functions, facilitating easier interpretation and manipulation in
fuzzy logic systems. Additionally, T-Spherical fuzzy sets exhibit a
higher degree of flexibility in capturing uncertain or imprecise
information, enabling them to handle a wider range of input data
distributions with greater accuracy and precision. The ranking
process has been accomplished using one of the versatile multi-
criteria decision-making approach referred to as the TODIM (an
acronym in Portuguese for Interative Multi-criteria Decision
Making) approach. The TODIM (Interactive and Multicriteria
Decision Making) method stands out among other Multi-
Criteria Decision Making (MCDM) tools due to its unique
ability to incorporate decision maker’s preferences, handle
incomplete information, maintain transparency and
intuitiveness, offer flexibility and adaptability, and enable
sensitivity analysis. By allowing decision makers to express
their preferences and attitudes towards risk, TODIM ensures
that the final decision reflects subjective judgments, enhancing
satisfaction and acceptance. Section 2.1.1 shreds light on the
definitions associated with T-Spherical fuzzy sets. The
conceptual framework regarding the TODIM approach has
been enumerated in Section 2.2.2. Section 2.2.3 is about the
proposed decision-support system.

2.2.1 Basic definitions

Definition 1: Mahmood et al. (2019) T-Spherical fuzzy set can be
defined as follows using Equation 1:

TSFS � 〈x, α3 x( ), β3 x( ), γ3 x( )( )〉 ∣∣∣∣xϵX{ } (1)

TABLE 4 Details of experiments.

Experiments Transverse speed (mm/min) Rotational speed (rpm) Tool overrun (d)

1 20 500 0.5

2 20 1,200 1

3 40 1,200 0.5

4 40 500 1

5 60 500 0.5

6 60 1,200 1

7 20 1,200 0.5

8 40 500 1

9 60 1,200 0.5
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where the membership degree, non-membership degree and
abstinence degree are denoted with α3(x), β3(x) and γ3(x)
respectively. Each of these belongs to the universal set i.e., TSFS
and lies in the range [0,1]. Moreover, the following condition needs
to be satisfied:

0≤ αq
3 x( ) + βq3 x( ) + γq3 x( )≤ 1.

Definition 2: Ju et al. (2021) the score value for a TSFN can be
calculated using the formulation expressed in Equation 2.

δ � 1 + αq − βq − γq

2
(2)

The score values are used to compare two TSFNs. If A1 and A2

are two TSFNs having their score values as δ1 and δ2, then:

1) A1 >A2, if δ1 > δ2
2) In case δ1 � δ2, then A1 � A2. In this case, the calculation of

accuracy values for the TSFNs A1 andA2 should be processed.

This can be determined through Equation 3:

σ � αq + βq + γq (3)

Therefore, in continuation of the discussion made in Equation 2,

1. A1 >A2, if σ1 > σ2
2. In case σ1 � σ2, then A1 � A2.

Definition 3: Mahmood et al. (2019) the arithmetic operations
between TSFNs can be expressed using Equations 4–7:

A1 ⊕ A2 �
������������
αq1 + αq2 − αq1α

q
2

q

√
, β1β2, γ1γ2( ) (4)

A1 ⊗ A2 � α1α2,
������������
βq1 + βq2 − βq1β

q
2

q

√
,

�����������
γq1 + γq2 − γq1γ

q
2

q

√( ) (5)
ω.A � �����������

1 − 1 − αq( )ωq
√

, βω, γω( ) (6)
Aω � αω,

�����������
1 − 1 − βq( )ωq

√
,

�����������
1 − 1 − γq( )ωq

√( ) (7)

Definition 4: Aczél and Alsina (1982) the Aczel-Alsina
operation on two TSFNs can be described using the following
Equations 8–11:

A1⊕AAA2 �
���������������������������������������
1 − exp − −ln 1 − αq1( )( )( )μ + −ln 1 − αq2( )μ( )1/μ{ }q

√{ ,������������������������������
exp − −ln βq1( )( )( )μ + −ln βq2( )μ( )1/μ{ }q

√
,������������������������������

exp − −ln γq1( )( )( )μ + −ln γq2( )μ( )1/μ{ }q

√ }
(8)

A1⊗AAA2 �
������������������������������
exp − −ln αq1( )( )( )μ + −ln αq2( )μ( )1/μ{ }q

√{ ,���������������������������������������
1 − exp − −ln 1 − βq1( )( )( )μ + −ln 1 − βq2( )μ( )1/μ{ }q

√
,���������������������������������������

1 − exp − −ln 1 − γq1( )( )( )μ + −ln 1 − γq2( )μ( )1/μ{ }q

√ }
(9)

ω.AAA �
���������������������������
1 − exp − ω −ln 1 − αq

1( )( )μ( )1/μ{ }q

√{ ,���������������������
exp − ω −ln βq1( )( )μ( )1/μ{ }q

√
,

���������������������
exp − ω −ln γq1( )( )μ( )1/μ{ }q

√
(10)

Â
AA.ω �

���������������������
exp − ω −ln αq1( )( )μ( )1/μ{ }q

√{ ,���������������������������
1 − exp − ω −ln 1 − βq1( )( )μ( )1/μ{ }q

√
,���������������������������

1 − exp − ω −ln 1 − βq1( )( )μ( )1/μ{ }q

√ }
(11)

Definition 5: Wang et al. (2023) the aggregation of a set of TSFNs
using T-Spherical fuzzy Aczel-Alsina Weighted Hammy Mean
(TSFAAWHM) operator can be performed through the following
Equation 12:

TSFAAWHM ε( ) A1, A2, ..., An( ) �
⊕︸︷︷︸

1≤ i1 < i2 < ...< iϵ ≤ n
⊗ε
j�1wijAij( ) 1

ε

Cε
n

(12)
where ε � 1, 2, ..., n, is one of the variable parameters for the
TSFAAHM operator.

Cε
n � n!

ε!(n−ε)! is the coefficient that follows the following
condition: 1≤ i1 < i2 < ...< iϵ ≤ n and w � (w1, w2, ...wn) denotes
the weight vector associated with the set of TSFNs.

2.2.2 The TODIM approach
The TODIM approach is one of the versatile decision-making

approaches that consider the psychological behaviour of experts
towards their potential ability to take risks. It is based on prospect
theory and was proposed by Gomes and Lima (1992). The approach
ranks the alternatives based on overall dominance score
Equation 13:

ξ i �
∑n

j�1δ Ai, Aj( ) −min∑n
j�1δ Ai, Aj( )

max∑n
j�1δ Ai, Aj( ) −min∑n

j�1δ Ai, Aj( ) (13)

wherein, δ(Ai, Aj) represents the dominance degree and can be
obtained through the following Equation 14:

δ Ai, Aj( ) � ∑m
c�1
∅c Ai, Aj( ) (14)

In Equation 15, the local dominance degree, represented as
ϕc(Ai, Aj), of alternative Ai over Aj under a particular criteria c is
obtained through the employability of Equation 15:

∅c Ai, Aj( ) �
�����������
wcr pij − pik( )∑n

j�1wcr

√√
if pij − pik( )> 0

0, if pij − pik( ) � 0

−1
θ

���������������∑n
j�1wcr pij − pik( )

wcr

√
if pij − pik( )< 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(15)

The loss of an alternative Ai over Aj is reflected in (pic − pij)< 0,
whereas the gain of an alternative Ai over Aj is reflected in
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(pic − pij)< 0. The attenuation factor (θ) reflects the risk appetite of
the expert and gives rise to different shapes for the prospect value
function in the third quadrant.

2.2.3 The proposed approach
The decision-making frameworks that have been proposed in

the present work is known as T-Spherical fuzzy Aczel-Alsina
Weighted Hammy Mean (TSFAAWHM)-TODIM framework.
Figure 2 depicts the procedural steps involved in the frameworks.
The ensuing discussion is on the procedural steps involved in the
proposed frameworks:

Phase I involves data collection and consists of four main steps. Step
1 involves scrutinizing feasible alternatives associated with the case study.
In the subsequent step (step 2), identifying the set of performance
measures for appraisal is conducted. Step 3 entails selecting experts to
evaluate the alternatives based on their expertise and domain knowledge.
Within this step, subjectiveweighting of expert importance is determined.
Step 4 comprises gathering evaluations from experts, which are in the
formof linguistic assessments. This process constitutes step 4 of Phase I in
the proposed decision-making frameworks.

Phase 2 involves consolidating the information obtained from
various experts and comprises two steps. Step 1 involves converting
linguistic evaluations from the experts into T-Spherical fuzzy
numbers (TSFNs). Then, in step 2, the aggregated converted

linguistic evaluations are processed through the TSFAAWHM
operator, as illustrated in Equation 13.

Phase 3: In this phase of the frameworks, the scrutinized
alternatives are appraised using the TODIM approach. This
phase encompasses four steps. In Step 1, the score values are
calculated using Equation 2. Once the score values have been
calculated for all the elements of the aggregated decision-matrix,
normalization is processed on the calculated values in step 2 of this
phase. In step 3, criteria weights and relative criteria weights are
obtained. The relative criteria weights can be calculated using
Equation 16 as follows:

wrel � wc

wref
(16)

In the above formulation,wrel reflects the relative criteria weight,
wc denotes the criteria weight and wref is the reference weight. The
reference weight is usually the maximum of the criteria weights.
Subsequently, the TODIM approach is employed to rank the
alternatives through the calculations of the overall dominance
score in step 4 of phase 3. The alternative that showcases the
highest overall dominance score is considered the best of all the
considered once. On the other hand, the alternative that scores the
lowest overall dominance score is the inferior among the
considered once.

FIGURE 2
The procedural steps involved in the proposed frameworks.
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FIGURE 3
Power (dB) v/s Frequency curve for experiment 1.

FIGURE 4
Amplitude v/s time curve for experiment 1.
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3 Results and discussion

The experimentation has been conducted based on the design of
experiments showcased in Table 4. The applicability of the decision-
support system aids in identifying the suitable set of process
parameter that results in optimal mechanical properties.

Phase I: The possible scenarios are the nine experiments that
have been conducted with different levels of input parameters.
The performance parameters are the Tensile strength (C1), %
Elongation at break (C2), Brinel hardness (C3) and acoustic
emission characteristics such as peak amplitude (C4), centroid
frequency (C5) and absolute energy (C6) derived from the
recorded AE signals. One such recorded signal for
experiment 1 has been shown in Figures 3, 4. The top view
for the said experiment has been shown in Figure 5. Three
experts have been chosen to provide their evaluations and
depending on the quantum of experience and domain,
following is the weight vector for them: w = (0.394, 0.274,
0.332)T. The evaluations from the expert 1 have been
tabulated in Table 5.

Phase II: Steps (1–2) are pursued to arrive at the aggregated
matrix using TSFAAWHM operator. This has been shown
in Table 6.

Phase 3: As per this phase, the considered experiments are
appraised. The values obtained for criteria and relative criteria
weights have been shown in Table 7. The overall dominance
score and hence the ranks obtained through the proposed
approach has been shown in Figure 6.

As per the ranking results derived using the proposed approach,
experiment 4 is the best performing of all whereas experiment 9 is
the last possible option that can be chosen. This is also evident from
the microstructural image (Figure 7) for experiment 4 where in lease
defects have been observed.

FIGURE 5
Top view of the carried-out experiment 1.

TABLE 5 Evaluation scores from expert 1.

C1 C2 C3 C4 C5 C6

Exp1 Very Low Very Low low Average High High

Exp2 low High Very
Low

Average Average Average

Exp3 Very
High

Very
High

High Very
High

High Average

Exp4 High High High Low Low Low

Exp5 High Average High High Very
High

Very
High

Exp6 High High Average Average Average Average

Exp7 Very Low Low Very
Low

Low Average Average

Exp8 Average Low Average Low Low Low

Exp9 Average Average Very
Low

Average Low High

TABLE 6 The aggregated decision matrix obtained through the TSFAAWHM operator.

C1 C2 C3 C4 C5

Exp1 (0.86, 0.78, 0.88) (0.84, 0.84, 0.91) (0.84, 0.84, 0.91) (0.84, 0.84, 0.91) (0.93, 0.22, 0.77)

Exp2 (0.84, 0.84, 0.91) (0.84, 0.84, 0.91) (0.84, 0.84, 0.91) (0.74, 0.74, 0.96) (0.74, 0.74, 0.96)

Exp3 (0.96, 0.19, 0.74) (0.96, 0.19, 0.74) (0.96, 0.22, 0.65) (0.93, 0.22, 0.77) (0.97, 0.44, 0.51)

Exp4 (0.81, 0.81, 0.92) (0.84, 0.84, 0.91) (0.69, 0.84, 0.98) (0.96, 0.64, 0.48) (0.76, 0.76, 0.95)

Exp6 (0.74, 0.74, 0.96) (0.96, 0.29, 0.65) (0.69, 0.84, 0.98) (0.97, 0.43, 0.56) (0.84, 0.84, 0.91)

Exp7 (0.84, 0.84, 0.91) (0.96, 0.19, 0.74) (0.96, 0.19, 0.74) (0.69, 0.84, 0.98) (0.74, 0.74, 0.96)

Exp8 (0.77, 0.77, 0.95) (0.97, 0.64, 0.48) (0.96, 0.19, 0.74) (0.97, 0.64, 0.48) (0.96, 0.19, 0.74)

Exp9 (0.84, 0.84, 0.91) (0.76, 0.76, 0.95) (0.69, 0.84, 0.98) (0.76, 0.76, 0.95) (0.86, 0.78, 0.88)
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3.1 Reliability analysis of the obtained results

To ensure the credibility of the ranking outcomes, thorough sensitivity
analyses were conducted on both decision-making frameworks. These
analyses focused on examining the impact of changes in the attenuation
factor and criteria weights. By systematically varying these parameters, the
robustness of the ranking results was evaluated. Such meticulous scrutiny
allows for a comprehensive understanding of how alterations in key

factors influence the final rankings. Through these sensitivity analyses, the
reliability and stability of the decision-making process are validated,
enhancing confidence in the accuracy and integrity of the
obtained rankings.

3.1.1 Sensitivity analysis w.r.t attenuation factor
The attenuation factor plays a crucial role in the sensitivity

analysis of ranking results, as it directly influences the degree of
influence that distant data points exert on the ranking outcome. In
the context of decision-making frameworks, the attenuation factor
determines the extent to which the importance of criteria diminishes
with increasing distance from the decision point.

By systematically varying the attenuation factor across a
range of values, such as 0.1, 1, 2, 5, 10, and 50, the sensitivity

FIGURE 6
(a) Overall prospect value and (b) rankings of the experiments.

FIGURE 7
Macrostructural image for experiment 4.

TABLE 7 Criteria and relative criteria weights derived using the proposed
approach.

Wi 0.1751 0.1770 0.1841 0.1677 0.1681 0.1278

wcr 0.9511 0.9614 1.0000 0.9109 0.9131 0.6942
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FIGURE 8
Sensitivity analysis results for the obtained rankings (a) Prospect value v/s Risk factor (b) Ranking results v/s Risk factor.

FIGURE 9
Sensitivity analysis w.r.t. Criteria weights for the ranking results (a) 20% OAT (b) 40% OAT and (c) 60% OAT.
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analysis examines how different degrees of attenuation impact
the prospect value and subsequent ranking results. The results of
this analysis are often visually presented, as showcased in
Figure 8, allowing for clear visualization and interpretation of
the observed variations.

In conducting the sensitivity analysis, attention is particularly
focused on higher values of the attenuation factor. Here, even slight
variations in the ranking results can have significant implications for
decision-making processes. For instance, higher attenuation factors
tend to down weight the influence of distant data points, potentially
leading to shifts in the ranking order or changes in the relative
importance of criteria.

Through this meticulous examination of the attenuation factor’s
impact, decision-makers gain valuable insights into the robustness
and stability of the ranking outcomes. Understanding how changes
in the attenuation factor affect the ranking results enhances
confidence in the reliability of the decision-making process,
enabling informed and strategic decision-making. Moreover, this
analysis contributes to the optimization of the decision-making
framework, ensuring that it accurately reflects the underlying
objectives and preferences of the decision-makers.

3.1.2 Sensitivity analysis w.r.t attenuation factor
Figure 9 illustrates the stability of ranking results under varying

criteria weights. Despite changes in weights, the ranking order
remains consistent. This indicates the robustness of the decision-
making process, as the relative importance of criteria fluctuates.
Stable ranking results ensure confidence in the validity and
reliability of the decision-making framework, facilitating
informed choices. The depiction of these results in Figure 9
offers visual confirmation of the stability of rankings across
different weight configurations, providing valuable insights for
decision-makers.

3.2 Comparative analysis

In this section of the work, comparative analysis of the proposed
approach with that of the existing approaches has been carried out to
further validate the outcomes. For this, two past case studies have
been solved using the proposed approach and the results have been
compared using the spearman’s correlation coefficient.

3.2.1 Case study-1 (selection of additive
manufacturing process for the
automotive industry)

The present case has been adopted from Menekse et al. (2023)
and relates to the selection of additive manufacturing process for the
automotive industry. Seven additive manufacturing processes (Vat
photopolymerization, Material extrusion, Material jetting, Binder
jetting, Powder bed fusion, Direct energy deposition, Sheet
lamination) were ranked using Pythagorean Fuzzy EDAS
approach based on eight criteria. Following ranking order was
established by Menekse et al. (2023): Direct energy deposition >
Binder jetting > Powder bed fusion > Material jetting > Vat
photopolymerization > Material extrusion > Sheet lamination.
The similar case has been solved using our proposed approach
and following ranking order has been established by: Direct energy

deposition > Binder jetting >Material jetting > Powder bed fusion >
Vat photopolymerization > Material extrusion > Sheet lamination.
Spearman correlation coefficient of 0.86 suggests a stringer
correlation between the ranking results obtained using both the
approaches.

3.2.2 Case study-2 (optimization of process
parameters for 3D printed impeller)

The present case has been adopted from Raj et al. (2024) and
relates to the optimization of process parameters for 3D printed
impeller. Five experiments having different levels of input process
parameters (Print speed, Travel speed, Layer height, Infill density,
Extruder temperature and Platform temperature) were appraised
using Fuzzy-AHP-TOPSIS approach based on following output
process parameters: ultimate tensile strength, Young’s modulus,
ultimate flexural strength and ultimate compressive strength.
Following ranking order was established by Raj et al. (2024):
S3 > S2 > S5 > S4 > S1. The similar case has been solved using
our proposed approach and following ranking order has been
established by: S3 > S2 > S4 > S5 > S1. Spearman correlation
coefficient of 0.90 suggests a stringer correlation between the
ranking results obtained using both the approaches.

4 Conclusion

The present work proposes to optimize the process parameters
for Friction Stir Additive Manufacturing Processed Magnesium
Alloy ZE41, which holds significant industrial importance due to
its exceptional combination of properties, including high strength,
excellent corrosion resistance, and lightweight nature. One of the
input process parameters considered during the investigation was
that of tool over run in addition to the transverse speed and
rotational speed of the tool. The process has been optimized for
mechanical properties such as tensile strength, %elongation at break
and Brinel hardness. The quality of the processed alloy have been
monitored through the acoustic emission signals and hence the
various features such as peak amplitude, centroid frequency and
absolute energy have also been considered as output process
parameters. Since the considered parameters are mix of
quantitative and qualitative data, a dedicated decision support
system has been proposed to rank various experiments and
deduce the optimal processing parameters. In the proposed DSS,
the linguistic evaluations from the experts regarding the output
process parameters have been modeled through T-spherical fuzzy
sets and the rankings of the various experiments have been deduced
through the TODIM approach. To evaluate the impact of process
parameters, three transverse speeds (20, 40, and 60 mm/min), two
rotational speeds (500 and 1,200 rpm), and two tool overruns
(0.5 days and 1 day) were systematically varied. It was revealed
that experiment 4 is the best while experiment 9 was the least
favourable option. The sensitivity analysis revealed the robustness of
the proposed DSS. The entire process can be adopted to optimize
other manufacturing processes and hence aid industries in evolving
high quality products for their consumers.

While the research on optimizing process parameters for
Friction Stir Additive Manufacturing (FSAM) of Magnesium
Alloy ZE41 has yielded valuable insights, certain limitations
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warrant discussion. First, the scope of input parameters
considered—limited to tool overrun, transverse speed, and
rotational speed—means other influential factors like cooling
rates, tool tilt angles, and axial force were not explored. These
factors could further influence mechanical properties such as
tensile strength and hardness but were excluded from the current
analysis. Second, the study focuses on a specific material,
ZE41 magnesium alloy, which limits the generalizability of the
results. Magnesium alloys possess unique properties, and the
optimized parameters may not directly apply to other alloys or
composite materials. Another limitation arises from the reliance on
expert evaluations, which, although modeled using a decision
support system (DSS) with T-spherical fuzzy sets and the
TODIM approach, are subjective. The quality of these evaluations
is influenced by the expertise and consistency of the evaluators,
which can introduce a degree of variability.

Future research in Friction Stir Additive Manufacturing (FSAM)
of magnesium alloys like ZE41 could focus on several areas to expand
the knowledge and practical applications of the process. Exploring
additional process parameters, such as tool tilt angle, cooling rate, and
axial force, could provide further insights into optimizing mechanical
properties and acoustic emission characteristics. The current study
mainly focuses on tool overrun, transverse speed, and rotational
speed; however, these other variables could influence the material’s
microstructure and performance. Additionally, expanding the
research to include different materials or composite materials
could yield innovative results. For instance, hybrid composites
incorporating reinforcements like carbon fibers, metallic
nanoparticles, or ceramic particles could enhance the properties of
magnesium alloys, improving their mechanical strength, thermal
resistance, and durability. Another potential research avenue could
involve studying the effect of environmental conditions, such as
temperature and humidity, on the FSAM process and the resultant
material properties. By conductingmulti-objective optimization using
advanced decision-making techniques, such as machine learning
integrated DSS, the efficiency of ranking the experiments could be
further improved. Finally, the process could be extended to optimize
FSAM for different applications, such as aerospace, automotive, or
biomedical fields, where lightweight and high-strength materials are
crucial. This would aid industries in producing high-quality,
application-specific products, thus pushing the frontiers of FSAM
technology.
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