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This study develops a robust machine learning model based on artificial neural
networks to classify six flow patterns in oil-water two-phase flow within
horizontal pipelines, a key aspect for ensuring operational efficiency, integrity,
and cost-effective design in the oil and gas industry. A database comprising 1,846
experimental data points was assembled from the literature, encompassing
various operating conditions, including fluid properties, superficial velocities,
and pipe diameters. After evaluating 104 network configurations, the optimal
model was selected, achieving an overall accuracy of 95.4%, with training,
validation, and testing accuracies of 97.1%, 92.8%, and 90.3%, respectively, and
a cross-entropy error of 0.024. Themodel demonstrated rapid convergence with
a training time of only 2 s, making it a reliable and computationally efficient tool
for flow pattern recognition. The outcomes of this study provide significant value
for improving pipeline design, optimizing flow assurance strategies, enhancing
corrosion control, and supporting real-time operational decision-making in
multiphase transport systems in the oil and gas industry.
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1 Introduction

The oil and gas industry has increasingly prioritized the development of advanced
technologies for the accurate monitoring and characterization of multiphase flows, which
involve the simultaneous movement of two or more phases, such as liquid, gas, or solid.
These flows may involve immiscible substances (e.g., oil and water) or different phases of
the same component (e.g., steam and liquid water) transported through a pipeline (Díaz
et al., 2021; Al-Naser et al., 2016). Accurate identification of flow patterns in horizontal
pipes is essential across petrochemical and fluid transport operations, as it enables better
system design, enhances operational efficiency, and reduces costs (Alhashem, 2020; Soot,
1970). Proper flow pattern recognition also aids in mitigating corrosion and erosion by
optimizing chemical dosing strategies, ultimately extending the lifespan of pipeline
infrastructure and minimizing maintenance (Al-Sarkhi et al., 2017). Furthermore, flow
patterns strongly influence heat transfer, pressure drop, and phase distribution parameters
critical for the safe and efficient operation of industrial processes (Osundare et al., 2020).
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Flow patterns describe the spatial arrangement of immiscible
phases within a conduit and are determined by variables such as
superficial velocities, fluid properties, pipe geometry, and operating
conditions (El and -Sebakhy, 2010). While traditional identification
techniques such as high-speed imaging, wire-mesh sensors (WMS),
and gamma-ray densitometry have provided valuable insights under
controlled laboratory conditions (Hernández-Cely and Ruiz-Diaz,
2020; Lum et al., 2006; Wang et al., 2024; Abduvayt et al., 2004; Cai
et al., 2012; Dasari et al., 2013), their practical application in real-
time industrial environments remains limited. High
instrumentation costs, complex calibration procedures, and the
need for expert interpretation hinder scalability and automation
(Figueiredo et al., 2016; Perera et al., 2017; Su et al., 2024).

In recent years, Artificial Neural Networks (ANNs) have
emerged as a promising approach for multiphase flow analysis.
Unlike empirical correlations and mechanistic models that require
predefined physical assumptions, ANNs can learn complex,
nonlinear relationships directly from data. This makes them
particularly suitable for classifying flow patterns in highly
dynamic and heterogeneous systems, such as oil-water mixtures
in horizontal pipelines. ANNs offer multiple advantages: they are
inherently scalable, require no predefined assumptions about flow
regime transitions, and can be integrated into autonomous
monitoring systems for continuous operation (Chimeno-Trinchet
et al., 2020; Bahrami et al., 2019; Roshani et al., 2014). Their
adaptability to new data enables rapid recalibration under
changing conditions, a key asset in the context of real-world
operations (Qin et al., 2021; Du et al., 2019).

Multiple studies have demonstrated the effectiveness of data-
driven models in improving predictive accuracy in multiphase flow
systems. For example, Huang et al. (2024) applied Support Vector
Machine (SVM), Random Forest (RF), and an enhanced K-Nearest
Neighbor model (KNN) for regime classification in small modular
reactors, while Sun et al. (2025) employed a particle swarm-
optimized ANN to predict core-annular oil-water flow,
outperforming conventional models in terms of accuracy and
generalization. Çolak (2025) reported a high-fidelity neural model
for predicting waxy crude oil viscosity with a correlation coefficient
of 0.9985. These works confirm the capacity of neural architectures
to capture underlying physical dynamics even in complex, nonlinear
environments. Despite these advances, limitations
remain—especially the limited availability of large, well-labeled
datasets and the interpretability of ANN models, which are often
viewed as black-box systems (Shirley et al., 2012; Xu et al., 2021).

To address these issues, recent studies have explored hybrid
techniques that combine ANNs with radiation-based sensing or
advanced signal processing (Roshani et al., 2021; Salgado et al.,
2010). Deep learning architectures, such as Transformer Neural
Networks and Long Short-TermMemory (LSTM) models, have also
been applied to multiphase systems, achieving improved
performance in flow pattern recognition and volume fraction
estimation (Ruiz-Díaz et al., 2024a; Hernández-Salazar et al.,
2024). However, most of these approaches either target
gas–liquid systems or rely on small or highly specific datasets,
limiting their generalizability to oil-water flow conditions.

This study addresses a critical gap in the current literature
related to the accurate predictive modeling of oil-water flow
patterns in horizontal pipelines using machine learning. While

previous studies have often relied on limited datasets or focused
on specific flow regimes, this work integrates the most
comprehensive and diverse experimental database reported to
date for oil-water systems. A machine learning model based on
ANNs was developed to classify six distinct flow patterns, providing
a robust, scalable, and generalizable tool for flow pattern
recognition. This approach aims to support more reliable flow
assurance, pipeline design, and operational decision-making in
the oil and gas industry, by addressing limitations associated with
traditional empirical correlations and mechanistic models.

2 Materials and methods

2.1 Database structuring

The database used for training, validation, and testing of the
ANN was compiled from experimental studies on oil–water two-
phase flow in horizontal pipes, incorporating data from 11 published
works and totaling 1,846 experimental points (Figure 1).

Table 1 summarizes the main characteristics of the studies
included in the database. Flow pattern data were extracted from
flow regime maps reported in the selected studies. The extracted
variables include superficial water velocities (Vsw) between
0.01097 and 3.7193 m/s, superficial oil velocities (Vso between
0.01044 and 3.0392 m/s, mixture velocity (Vm) between
0.02631 and 5.4714 m/s and fluid volume fractions of oil (Co)
and water (Cw). Other important characteristics included in the
data collection to characterize the fluid are oil viscosity (µo) between
0.00188 and 5.6 Pa · s, oil density (pO) from 800 to 910 kg/m3, and
pipe internal diameter (D) between 1.9 and 10.64 cm.

2.2 Liquid-liquid two-phase flow patterns in
horizontal pipes

In the experimental studies reviewed, various flow patterns
typically associated with oil-water two-phase flow in horizontal
pipelines were identified. These include stratified flow (ST),
stratified with mixture (ST & MI), slug flow (S), annular flow
(AN), oil-in-water dispersion (Do/w), and water-in-oil dispersion
(Dw/o). However, a notable inconsistency was observed in the
terminology used across different studies to describe similar or
equivalent flow regimes, which may lead to confusion in data
interpretation and modeling. To address this, flow patterns
exhibiting analogous physical characteristics were grouped under
unified nomenclature, as shown in Figures 2, 3. The groupings are
as follows:

• Annular Flow (AN): This category includes flow regimes such
as Annular Flow (AN) and Annular Core Flow and Oil-in-
Water Dispersion (AN-o/w).

• Oil-in-Water Dispersion (Do/w): This group comprises
Dispersion of Oil in Water (Do/w), Thin Oil Layer at the
Top of the Pipe and Fine Oil Dispersion in Water (ThO/TP &
FDO/W), Dispersion of Oil in Water and Water (Do/w & w),
Layers of Water-in-Oil and Oil-in-Water with Water (w/o–o/
w, w), and Oil-in-Water Emulsion (O/W).
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FIGURE 1
Distribution of data points by author.

TABLE 1 Characteristics of the experimental database on horizontal pipelines by authors.

Authors Internal pipe
diameter

(m)
Pipe

material
Oil

viscosity
(Pa.s)

Water
viscosity
(Pa.s)

Oil
density
( kg
m3)

Water
density
( kg
m3)

Presented flow pattern
nomenclature

Abduvayt et al.
(2004)

0.1064 Acrylic 0.00188 0.00072 800 1,000 ST-S, O/TP &W, ST-WD/O &OD/W,
ST-WD/O & W, SR-WD/O & W,
ThO/TP & FDO/W, DW/O & W, FD
W/O & FDO/W

Al-Sarkhi et al.
(2017)

0.0508
0.0508

Plexiglass 0.013
0.0288

0.00097
0.00097

858.5
884

994
1,037

ST, ST-MI, SW
ST, ST-MI

A et al. (2014) 0.019
0.0254

Acrylic 0.012
0.012

0.001
0.001

875
875

998
998

AN, Bb, Dw/o, DC, Do/w, ST.

Cai et al. (2012) 0.1 Stainless steel 0.002 0.000898 825 997 Dispersed W/O, semi-dispersed W/O,
Smooth stratified, stratified with
globules, Stratified with mixing layer

Dasari et al.
(2013)

0.025 Perspex 0.107 0.001 889 1,000 Do/w, Dw/o, P, S, SM, SW

Grassi et al.
(2008)

0.021 Polycarbonate 0.799 0.0013 886 1,000 AN, AN-o/w, Do/w, PL/SL, ST

Ibarra et al.
(2015)

0.032 Acrylic 0.0054 0.0009 825 998 D, D owandw, DC, ST, SWD

Montoya et al.
(2009)

0.0445 Plexiglass 0.0884 0.000898 884 1,000 Do/w and w, o/w, ST, ST & MI

Nädler and
Mewes (1997)

0.059 Perspex 0.027 0.001053 850 998 w/o & W, O/W, SM, ST, W & o/w, W/
O, w/o-o/w & W

Rodriguez and
Oliemans (2006)

0.0828 Stainless steel 0.00717 0.00076 831.4 1,070 Do/w and w, Dw/o & Do/w, o/w, ST,
ST & MI, w/o

Shi and Yeung
(2017)

Shi et al. (2017)

0.026
0.026

Perspex
Perspex

5.6
5

0.001235
0.001002

910
910

999
997

Core flow, Dispersed oil lumps, Oil
plugs
Core annular flow, Oil lumps, Oil plugs
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• Slug Flow (S): This includes Plug (P), Slug (S), Bubble (Bb),
and Dispersed Oil Lumps (Oil Lumps).

• Dispersion of Water in Oil (Dw/o): This grouping includes
Dispersion ofWater in Oil (Dw/o), FineWater in Oil and Fine
Oil in Water Dispersions (FDW/O & FDO/W), Dispersion of
Water in Oil and Water (W/O &W), and Unstable Water-in-
Oil Emulsion (W/O).

• Stratified Flow (ST): This category encompasses Stratified
(ST), Oil at the Top of the Pipe and Water (O/TP & W),
and Wavy Stratified Flow (SW).

• Stratified Flow with Mixture (ST & MI): This includes
Stratified with Mixing Layer (ST & MI), Stratified with
Water Droplets in Oil and Water (SR-WD/O & W),
Stratified with Water Droplets in Oil and Oil Droplets in

FIGURE 2
Grouping of flow pattern nomenclatures: annular flow, dispersion of oil in water flow, and slug flow.
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Water (ST-WD/O & OD/W), and Dual Continuous (DC)
flow patterns.

Flow pattern transitions are influenced by superficial velocities
and fluid properties. For low superficial velocities of both phases, the
flow pattern is stratified (ST) with complete separation of the two
fluids. As the oil velocity (Vso) increases, it begins to sweep the
water, causing ripples at the interface and leading to a wavy stratified
flow pattern.

Further increases in Vso, intensify the interfacial instability,
causing wave break-up and dispersion of water droplets within
the oil phase, resulting in the Dw/o pattern. Conversely, increasing
the superficial water velocity (Vsw) from the wavy stratified state
gives rise to stratified with mixture (ST & MI), characterized by an
interfacial emulsion of oil and water droplets. With continued
increases in Vsw, the flow evolves into Do/w & w and eventually
a uniform oil-in-water dispersion (Do/w).

At lower oil velocities, the wavy interface occasionally touches
the upper wall, forming a plug or slug flow pattern with irregular,
deformed plug shapes. Sometimes, this appears as larger, elongated
droplets or clusters of irregular droplets.

Analysis of the compiled experimental database reveals
correlations between flow pattern occurrence, pipe diameter, and
fluid viscosity. In pipes with diameters equal to or greater than
0.032 m up to 0.1064 m, the flow pattern categories observed are Do/
w, Dw/o, ST, and ST & MI. In contrast, smaller diameter pipes
(0.019–0.032 m) also exhibit annular (AN) and slug (S)
flow patterns.

Fluids with high viscosity (5 and 5.6 Pa·s) in pipes with the
smallest diameters (0.026 m) only exhibited AN and S patterns.
Similarly, in fluids with the next highest viscosity (0.799 Pa·s) and a
pipe diameter of 0.021 m, the same flow regimes were observed.
These findings suggest that high-viscosity fluids in narrower pipes
are more likely to produce annular and slug flow patterns.

FIGURE 3
Grouping of flow pattern nomenclatures: dispersion of water in oil flow, stratified flow, stratified flow with mixture.
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After the flow pattern nomenclatures were consolidated into six
categories based on the nature of the observed flow, Table 2 presents
the distribution of the 1,846 experimental data points compiled from
the literature.

The variables obtained from the literature to structure the
database are: superficial water velocity (Vsw), superficial oil
velocity (Vso), mixture velocity (Vm), pipe diameter (D), oil
viscosity (µo), water volumetric fraction (Cw), oil volumetric
fraction (Co) and oil density (pO).

Superficial velocity is an important parameter when injecting
fluids into a pipe, and it plays a fundamental role in forming flow
patterns. The superficial velocity of a phase is the volumetric flow
rate of the phase, which represents the volumetric flow rate per unit
area. In other words, the superficial velocity of a phase is the velocity
that would occur if that phase of the respective substance flowed
through the pipe alone (Shoham, 2005). Thus, the superficial
velocities of the liquid phases of water (Vsw) and oil (Vso) are
respectively calculated with Equations 1, 2:

Vsw � qw
Ap

(1)

Vso � qo
Ap

(2)

where Ap is the cross-sectional area of the pipe, qw is the volume
flow rate of the water, and qo is the volume flow rate of the oil. The
velocity of the mixture is the total volumetric flow rate of both
phases per unit area, which is called the center-of-volume velocity
and is given by Equation 3

Vm � qw + qo
Ap

� Vsw + Vso (3)

The water volume fraction (Cw) is the fraction of a volume
element in a two-phase flow field occupied by the liquid phase of
water, and the oil volume fraction (Co) corresponding to the fraction
of a volume element in a two-phase flow field occupied by the liquid
phase of oil, are calculated with Equations 4, 5:

Cw � Vsw

Vsw + Vso
(4)

Co � Vso

Vsw + Vso
(5)

It should be remembered that the sum of the volume fraction of
water and the volume fraction of oil results in 1. Adding Equations 4,
5 gives Equation 6:

Vsw

Vsw + Vso
+ Vso

Vsw + Vso
� 1 (6)

An alternative way to calculate the volume fraction of the oil is
defined in Equation 7:

Co � 1 − Cw (7)

2.3 Data pre-processing

In machine learning, complex nonlinear processes present a
great diversity in the dimensionality of inputs and outputs and the
size of the dataset. The complexity of neural network models and
the computational load increase significantly with data
dimensionality (Zhao et al., 2023). To address this problem, the
dimensionality of the data should be reduced without
compromising the modeling accuracy. Order reduction
techniques are divided into supervised or unsupervised
selection. In labeled data sets, supervised selection reveals the
importance of features through correlation with the target
variable and between subsets of variables (Xie et al., 2023).
Supervised selection includes feature extraction and feature
selection methods. Traditional extraction methods, such as
partial least squares and principal component analysis (PCA),
create new features in a low-dimensional space, keeping most of
the relevant information, but may lack physical interpretability.
Initially, we considered using this method to reduce the dimension
of the database, but due to the lack of physical interpretability
obtained, we chose to look for another method. On the other hand,
feature selection methods choose a subset of the original features
highly correlated with the system output and more interpretable,
so this method was preferred. Feature selection techniques are
classified into envelope, filter, and intrinsic methods. The filter
method is selected, which is generally used as data preprocessing
(Guyon and De, 2003), which selects variables based on statistical
features, such as Pearson’s correlation, to evaluate the relationship
between input variables and choose the most relevant ones (Liu
et al., 2022).

2.3.1 Normalization
To train the network, it is essential to homogenize the

information that will be used as input for the machine learning
model. This provides the network with precise data that allows for
the prediction of the relationship between the supplied variables and
the pattern.

For this reason, a normalization of the input variables was
performed within defined limits of 0–1. Normalization is defined
as a rescaling of the original data such that it falls within a specific
range (Ruiz-Díaz et al., 2024b). The input vector of the network,
which contains the variables Vsw, Vso, Vm, Cw, Co, D, µo and pO, is
normalized using Equation 8:

X
Normalized � X−Xmin

Xmax−Xmin

(8)

where Xnormalized corresponds to the normalized value that takes a
value between 0 and 1, X represents the specific value of the sample
for the variable to be normalized, and Xmin and Xmax correspond to
the minimum and maximum values within the dataset for the
variable being normalized.

TABLE 2 Distribution of data points obtained according to the flow pattern.

Flow pattern A D w/o D o/w S ST ST & MI

Number of data points 169 285 379 185 430 398

% of Data points 9.15% 15.44% 20.53% 10.02% 23.29% 21.56%
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2.3.2 Statistical metrics for evaluating correlation
between variables

Once the values have been normalized, the most widely used
statistical evaluation method for correlation is Pearson’s correlation
coefficient, which captures the linear relationship between two
matrices (Xie et al., 2023). Two highly correlated variables may
provide redundant information. In these cases, one of the correlated
variables can be removed to simplify the process.

Equation 9 calculates Pearson’s correlation coefficient between a
feature (x) and a label (y) with n training examples.

r � ∑n
i�1(xi − �x) yi − �y( )����������������������∑n

i�1 xi − �x( )2∑n
i�1 yi − y( )2√ (9)

where �x y �y are the means of the two vectors, respectively, the
coefficient range is between −1 and 1, where a value of zero implies
no linear correlation. Values close to 1 and −1 indicate positive and
negative correlations, respectively.

Table 3 presents a correlation matrix between the input
variables, showing the level of correlation between them to
reduce redundancy by eliminating those with high dependence
on each other.

The qualitative interpretation of this property follows the
suggestions of (Cohen, , 1988), which are widely accepted in the
scientific community. Table 4 shows the classification and
interpretation of the magnitude of Pearson’s correlation
coefficient, applicable to any pair of variables. It considers the
absolute value of the coefficient so that the magnitude is
independent of the sign.

For this work, one variable from each pair of evaluated variables
showing a strong Pearson correlation (with a coefficient value
greater than 0.8) was removed.

The water volumetric fraction (Cw) and oil volumetric fraction
(Co) showed a strong correlation with a value of −1, so the oil
volumetric fraction (Co) was discarded from the database.
Additionally, the variables superficial water velocity (Vsw) and
mixture velocity (Vm) had a correlation coefficient of 0.837,
indicating a strong correlation, and thus the mixture velocity
(Vm) was excluded from the database.

As a result, the input variables to be used are reduced to
superficial water velocity (Vsw), superficial oil velocity (Vso),
water volumetric fraction (Cw), pipe diameter (D), oil viscosity
(µo) y and oil density (pO).

2.3.3 Codification
The database defines the flow pattern as a categorical variable, so

the label for the different categories must be coded. A number from
0 to 5 is assigned to each of the six defined flow patterns. A data
preprocessing method known as one-hot encoding was used to
convert the categorical variables as integers into new categorical
columns with a binary value of 1 or 0. This way, each new column
represents a variable category, as shown in Table 5. If this column
represents a category, it is assigned a 1; otherwise, it is 0 (Liu
et al., 2022).

2.4 Structuring of the artificial neural
network model

This study uses an ANN to generate a model capable of
predicting flow patterns. ANNs are machine learning-based
tools designed for information processing and are intended to
emulate how the human brain handles information (Abba et al.,
2020). They are composed of different neurons as processing units
connected with adjustable weights and biases. Figure 4 presents the
standard structure of an artificial neuron. ANNs can be
successfully applied in learning, association, classification,
generalization, characterization, and optimization functions.
Since ANNs can work with incomplete data and tolerate errors,
they can easily create models for complex problems (Jorjani
et al., 2008).

The ANN used in this study is a feedforward backpropagation
neural network, one of the fundamental architectures in machine
learning and artificial intelligence. In general, a feedforward

TABLE 3 Correlation matrix of input variables.

Input variables Vso [m/s] Vsw [m/s] Vm [m/s] Cw [-] Co [-] D [m] ρO [kg/m3] µo [Pa.s]

Vso [m/s] 1,000

Vsw [m/s] 0.053 1.000

Vm [m/s] 0.590 0.837 1.000

Cw [-] −0.590 0.542 0.115 1.000

Co [-] 0.590 −0.542 −0.115 −1.000 1.000

D [m] 0.196 −0.242 −0.088 −0.279 0.279 1.000

ρo [kg/m3] −0.270 0.111 −0.058 0.296 −0.296 −0.799 1.000

µo [Pa.s] −0.175 0.022 −0.078 0.195 −0.195 −0.167 0.448 1.000

TABLE 4 Interpretation of the magnitude of Pearson’s correlation
coefficient.

Range of values for rxy Interpretation

0.00≤ |rxy| < 0.10 Null correlation

0.10≤ |rxy| < 0.30 Weak correlation

0.30≤ |rxy| < 0.50 Moderate correlation

0.50≤ |rxy| < 1.00 Strong correlation
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ANN consists of multiple neural units (connected to each other
by weighted connections) with activation functions, each of
which takes the neuron’s net input, activates it, and produces
a result that is used as input for other units (Argatov, 2019). This
structure allows information to propagate from the inputs to the
outputs in a single direction and uses the backpropagation
algorithm to adjust the weights and minimize errors during
training. This type of network structure consists of an input
layer, hidden layers, an output layer, neurons, a target variable,
activation functions, and a training algorithm (Abdel Azim,
2020). The presence of one or more hidden layers allows the
network to model non-linear and complex functions. The
mathematical expression that defines the net input Si to the
neural network is obtained through Equation 10 as presented
by (Hernández-Cely et al., 2022).

Si � ∑m
j�1
xiwij + bj (10)

where Si is the net input to node j in the hidden layer, xi are the
inputs to node j (or outputs from the immediately preceding layer),
wij are the synaptic weights representing the strength of the
connection between nodes i and j, i is the number of nodes, and
bj is the bias associated with each node j.

2.4.1 Feedforward backpropagation neural
network architecture

Once the information has been processed, the internal structure
of the feedforward backpropagation ANN is defined. Figure 5
presents a general diagram of this type of neural network
architecture. It can be seen that in the first hidden layer, the
number of inputs is defined, which is a vector containing the
input parameters used to generate predictions. Then, the output
layer is described, producing the final prediction of the model. The
number of neurons in this layer corresponds to one neuron per class
in multi-class classification problems. In this case, there are six
neurons, one for each flow pattern developed inside the horizontal

TABLE 5 One-Hot coding for the categorical variable.

ID Flow pattern One-hot encoder representation

ST ST & MI D o/w D w/o AN S

0 ST 1 0 0 0 0 0

1 ST & MI 0 1 0 0 0 0

2 D o/w 0 0 1 0 0 0

3 D w/o 0 0 0 1 0 0

4 AN 0 0 0 0 1 0

5 S 0 0 0 0 0 1

FIGURE 4
The standard model of an Artificial Neuron.
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pipes. The selection of the specific topology of the ANN is explained
in Section 2.5.

2.4.2 Activation functions
The neurons in the hidden layer use the sum of the inputs with

synaptic weights as a propagation rule to apply an activation
function, which introduces non-linearity to the ANN, allowing
the model to learn and represent complex data relationships
(Goodfellow et al., 2016). Commonly used activation functions
for function approximation are the sigmoid, hyperbolic tangent,
and linear functions, with the sigmoid being the most widely used
for non-linear relationships. The sigmoid activation function was
selected for the hidden layers based on its well-documented
effectiveness in multi-class classification tasks involving
moderate-sized datasets. This function provides smooth, bounded
outputs in the [0, 1] range, which complements the Softmax
function used in the output layer. To validate this choice,
preliminary tests were conducted using activation functions such
as ReLU and hyperbolic tangent (tanh). While ReLU is
computationally efficient and widely adopted in deep learning, it
introduced instability during training in our model, particularly in
configurations with multiple hidden layers. The tanh function also
yielded lower validation accuracy and slower convergence compared
to sigmoid. Therefore, the sigmoid function was retained for its
superior consistency and overall model performance in this specific
classification task. This study uses the sigmoid activation function in
the hidden layers. This function converts any real value into a value
between 0 and 1, making it helpful in predicting a binary class label.
In the output layer, the Softmax activation function is used. Softmax
is typically employed as the final activation function in a neural
network to transform outputs into a probability representation,
bounding the values in a range from 0 to 1 in a vector, such that

the sum of all probabilities in the vector equals 1 for all possible
outcomes or classes. Mathematically, the sigmoid activation
function, according to (Razavi et al., 2003), is defined as in
Equation 11:

f yj( ) � 1
1 + e−yj

(11)

where yj is the output of node j and, in turn, serves as the input
element to the nodes of the next layer.

The Softmax activation function S defined by Equation 12 as:

S y( )i � exp yi( )
∑n

j�1exp yj( ) (12)

where y is an input vector to a Softmax function, yi is the i-th
element of the input vector, which can take any value between
negative and positive infinity, exp (yi) is the standard exponential
function applied to yi. The term ∑n

j�1exp (yj) refers to a
normalization term. This ensures that the output vector values
sum to 1 for the i-th class, and each value is within the range of
0–1, thereby forming a valid probability distribution.

2.4.3 Loss function
It is worth mentioning that machine learning models learn

through a loss function, which is a method for determining how
effectively a specific algorithm models the provided data. The loss
function will generate a high value if the predictions are far from the
actual results. For the problem at hand, the chosen loss function, an
important parameter indicating the performance of the ANNmodel,
is cross-entropy loss, as it is the most common for multi-class
classification problems.

This cross-entropy loss increases as the probability obtained
from the Softmax function diverges from the true label. Cross-

FIGURE 5
The general structure of a Feedforward Backpropagation ANN.
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entropy loss is measured as a number between 0 and 1, where
0 represents a perfect model. Mathematically, it is defined as shown
in Equation 13:

LCE � −1
n
∑n
i�1
∑c
j�1
Tj

i( ) log Sj
i( )( ) (13)

where c represents the classes, n is the number of samples, Tj is the
true label, and Sj is the Softmax probability for the jth class.

A training algorithm must be implemented for the neural
network to learn the relationship between the data, and a
training algorithm must be implemented. Gradually, during the
training of the model, the synaptic weights are adjusted iteratively to
minimize prediction error. Adjusting the synaptic weights defines
the model’s training (Gómez et al., 2004), and as the model
continues to train and the loss function error is minimized, the
model is said to be learning.

2.5 Model selection and evaluation

2.5.1 Artificial neural network topology
At this stage of designing the ANN, the network topology is

defined, which involves the structural configuration of the model,
including the number of layers, the number of neurons per layer,
and the training algorithm. This stage is critical because the topology
directly influences the model’s representation capacity and learning
effectiveness. The topology must be tailored to the specific problem
being addressed. Due to the lack of standardized techniques for this
task, an approach based on experience and trial-and-error is often
used, testing various configurations until finding the most suitable
one for the flow pattern classification problem (Chauvin and
Rumelhart, 1995).

2.5.2 Optimization parameters
An iterative and systematic experimental process uses

MATLAB’s Neural Network Pattern Recognition tool to select
the ANN topology. Various ANN configurations are created and
optimized within the tool. Choosing an appropriate training
algorithm is crucial to optimize the adjustment of synaptic
weights and minimize the loss function value. Therefore, the five
most commonly used and recommended training functions for
classification problems in MATLAB are evaluated: TRAINSCG
(Scaled Conjugate Gradient), TRAINBFG (BFGS Quasi-Newton),
TRAINRP (Resilient Backpropagation), TRAINCGP (Polak-Ribiére
Conjugate Gradient), and TRAINCGB (Conjugate Gradient with
Powell/Beale Restarts). Additionally, key characteristics are
considered in the model selection process to evaluate its
performance, such as accuracy, loss function value, and ANN
training time. Accuracy is obtained from the data in the
confusion matrix, the loss function value is determined according
to Equation 13, and training time is measured in seconds, indicating
how long the ANN takes to train.

2.5.3 Confusion matrix
The confusion matrix is a fundamental tool in machine learning

for evaluating the performance of a classification model. It allows for
the visualization of the model’s predictions against actual values and

facilitates the identification of specific errors (Powers, 2011). It is
necessary to calculate its components, such as True Positives (TP),
False Negatives (FN), False Positives (FP), and True Negatives (TN).
Several essential metrics can be derived from the confusion matrix to
assess the model’s performance, including precision, recall, F1 score,
and accuracy. Precision is the proportion of true positives over the
total predicted positives, recall is the proportion of true positives
over the total actual positives, the F1 score is the harmonic mean of
recall and precision, and accuracy is the proportion of all correct
predictions. These are respectively defined by Equations 14–17

Precision � TP

TP + FP
(14)

Recall � TP

TP + FN
(15)

F1 � 2 *
Precision *Recall
Precision + Recall

(16)

Accuracy � TP + TN

TP + TN + FP + FN
(17)

3 Results

This section presents the numerical values obtained from the
iterative and organized process of testing and selecting the ANN
structure. These results were derived from all the simulations carried
out under different topological configurations, in which all the data
from the simulation process were recorded. Subsequently, an
analysis and model selection were performed to identify the one
that presented the best performance results in predicting flow
patterns. Various configurations were structured by adjusting
parameters such as the training algorithm, the number of hidden
layers, and the number of neurons in each hidden layer.

For each of the structured models, the following parameters
were kept constant: the data distribution was set at 70% for the
training stage, 15% for the validation stage, and 15% for the testing
stage. The activation function for all hidden layers was the sigmoid
function, and the Softmax activation function was used for the
output layer. The error function to be optimized was cross-entropy,
and two retrainings were performed for each configuration.
Modifying the script lines generated by MATLAB’s Neural
Network Pattern Recognition tool made all adjustments to the
parameters. All experimental tests were conducted on an MSI
Raider GE76 computer with a 12th Gen Intel(R) Core (TM) i7-
12700H 2.70 GHz processor, 16 GB of installed RAM, and a 64-bit
operating system, X64 processor.

Table 6 presents the configurations generated with different
combinations of parameters to be applied to the ANNmodels. They
were evaluated according to the training functions shown in Table 7.
In this manner, 200 ANN tests were initially performed based on
100 different parameter configurations, from which the models that
yielded the best performance values were identified, focusing on
cross-entropy and those achieving over 90% accuracy in flow pattern
predictions. Once these configurations were identified, the ANN
model tests were repeated to obtain a second verification of the
results and to filter the evaluated topologies to those that
demonstrated the highest prediction accuracy across both
retraining for flow patterns.
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Table 8 presents the best results obtained from testing the
different configurations in the topology for each training
function. Additionally, it.

Table 8 presents a comparative summary of five ANN models
trained with different algorithms, showing the accuracy values from
the confusion matrices for the training, validation, and testing
stages, as well as from the overall confusion matrix. All models
use the same activation and loss functions but vary in topology and
training method. Model 1 (TRAINRP) achieved the best overall
performance, with the highest total accuracy (94.6%), strong
validation and test accuracy, and a short training time (3 s),

making it the most balanced and efficient configuration. Model 2
(TRAINSCG) also performed well, offering good accuracy (92.3%)
with the shortest training time (1 s), indicating its suitability for fast
iterative training. Model 3 (TRAINBFG) achieved competitive
accuracy (91.2%) and low cross-entropy loss, but required 133 s
to train. This extended time is due to the computational complexity
of the BFGS algorithm and the use of a deeper network (5 hidden
layers). Models 4 and 5 (TRAINCGP and TRAINCGB) yielded
acceptable but slightly lower accuracies and higher loss values,
despite fast training times. Overall, the results highlight
TRAINRP as the most effective training function in terms of
performance and computational efficiency. Once the learning
algorithm was defined, a final experiment was conducted,
maintaining the established parameters from Model 1, except for
the number of neurons per hidden layer. This was further evaluated
with 40, 50, 60, and 70 neurons to observe the performance and
accuracy of the ANN model.

Table 9 presents the results of training the ANN model with 40,
50, 60, and 70 neurons in the hidden layers. The minimum cross-
entropy error values were identified from the information collected,
being 0.0342 and 0.024 for 40 and 50 neurons in the hidden layers,
respectively, and total accuracy values of 92.7% and 95.4%. By
analyzing the information presented in Table 9, it was
determined that the optimal ANN for developing the predictive
flow pattern model for two-phase (oil-water) flow in a horizontal

TABLE 6 Parameter configurations for different structured ANNs.

Number of
hidden layers

Number of neurons in
hidden layers

Retraining Activation function in
hidden layers

Activation function in
the output layer

Loss
function

3 15 2 Sigmoid Softmax Cross-Entropy

20

25

30

5 15 2 Sigmoid Softmax Cross-Entropy

20

25

30

7 15 2 Sigmoid Softmax Cross-Entropy

20

25

30

10 15 2 Sigmoid Softmax Cross-Entropy

20

25

30

15 15 2 Sigmoid Softmax Cross-Entropy

20

25

30

TABLE 7 Training algorithms to be evaluated.

Training
functions

Training algorithms

TRAINSCG Scaled conjugate gradient backpropagation

TRAINBFG BFGS quasi-Newton backpropagation

TRAINRP Resilient Backpropagation

TRAINCGP Conjugate gradient backpropagation with Polak-
Ribiere updates

TRAINCGB Conjugate gradient backpropagation with Powell-
Beale restarts
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pipe is the one that integrates the Resilient Backpropagation learning
algorithm with three hidden layers, each with 50 neurons. The
configuration of the selected model’s parameters is presented
in Table 10.

With the selected ANN configuration, the model achieved a
cross-entropy loss of 0.024, with a training accuracy of 97.1%,
validation accuracy of 92.8%, and test accuracy of 90.3%. The
overall classification accuracy, calculated from the complete
confusion matrix across all data partitions, reached 95.4%,
making this configuration the most effective among the
104 models evaluated. Figure 6 illustrates the evolution of
cross-entropy loss throughout the training process for the
training, validation, and testing stages. The best validation
performance was observed at epoch 103, with a cross-entropy
value of 0.03213. The training process was terminated at epoch
109 using early stopping criteria, which halts training when the

validation error does not improve over six consecutive epochs
(patience = 6). The final model thus corresponds to the point of
minimum validation error, ensuring both high accuracy and
generalization.

The model’s performance and accuracy data are
complemented by an error histogram, presented in Figure 7,
showing the error values obtained in each stage of the ANN’s
development. The histogram exhibits a centered normal
distribution, with a clear central and narrow tendency towards
error values close to zero, indicating that the model is well-trained
and highly accurate. The high frequency observed in the central
column, where most data comes from the training, validation, and
testing stages, suggests that the model generalizes well and does not
overfit the training data.

Figure 8 illustrates the ROC (Receiver Operating Characteristic)
curves corresponding to the (a) training, (b) validation, (c) testing,

TABLE 8 Accuracy and performance results in models obtained under different parameter configurations.

Parameters Model 1 Model 2 Model 3 Model 4 Model 5

Training function TRAINRP TRAINSCG TRAINBFG TRAINCGP TRAINCGB

Activation function in hidden layers Sigmoid Sigmoid Sigmoid Sigmoid Sigmoid

Activation function in the output
layer

Softmax Softmax Softmax Softmax Softmax

Loss function Categorical cross-
entropy

Categorical cross-
entropy

Categorical cross-
entropy

Categorical cross-
entropy

Categorical cross-
entropy

Number of hidden layers 3 3 5 5 3

Neurons in hidden layer 30 30 25 30 20

Training accuracy (%) 95.7 92.7 91.6 92 91.8

Validation accuracy (%) 91.7 91 89.9 90.3 89.5

Test accuracy (%) 92.1 91.3 90.3 90.6 87.7

Total accuracy (%) 94.6 92.3 91.2 91.5 90.8

Performance (Cross-Entropy) 0.0272 0.0366 0.0432 0.0406 0.043

Training time (S) 3 1 133 3 1

TABLE 9 Results of varying the number of neurons per hidden layer using the Resilient Backpropagation learning algorithm in ANN model 1.

Number of
neurons per
hidden layer

Retraining Cross-
entropy
error

Training
accuracy (%)

Validation
accuracy (%)

Test
accuracy

(%)

Total
accuracy

(%)

Training
time (S)

40 1 0.0375 94.1 87.4 90.6 92.6 0

40 2 0.0342 94.9 89.2 85.9 92.7 0

50 1 0.024 97.1 92.8 90.3 95.4 2

50 2 0.0251 96.3 90.3 90.6 94.5 1

60 1 0.4476 22.7 18.4 21.7 21.9 0

60 2 0.5061 12.4 10.8 12.3 12.1 0

70 1 0.6011 21.1 30.7 20.2 22.4 0

70 2 0.5576 19.7 19.1 16.6 19.1 0
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and (d) overall stages of the ANN model. These plots provide a
visual assessment of the classifier’s ability to distinguish between the
six flow pattern classes across different stages of model development.

In each subplot, the ROC curve compares the model’s true
positive rate (TPR) against the false positive rate (FPR) across
various classification thresholds. The area under each ROC curve
(AUC) serves as a scalar metric for the model’s discriminative
power, with values closer to 1 indicating near-perfect
classification. The diagonal line in each plot represents the
performance of a random classifier (AUC = 0.5), which serves as
a baseline for comparison.

In the training stage (Figure 8a), the ROC curves demonstrate
excellent separation between classes, with all curves approaching the
top-left corner, reflecting high sensitivity and low false positive rates.
This indicates that the model has learned the patterns in the training
data effectively. A similar trend is observed during the validation
stage (Figure 8b), suggesting that the model maintains
generalization capability and avoids overfitting. The testing stage
(Figure 8c) also shows strong ROC curves, further validating the
model’s robustness and confirming that the classification
performance remains stable on previously unseen data.

The overall ROC plot (Figure 8d), which aggregates
performance across all stages, shows that the classifier

consistently performs well across the six flow pattern categories.
The concentration of the curves toward the upper-left corner
signifies high true positive rates with minimal false classifications.
These results reinforce the ANN model’s capacity to reliably
differentiate among complex flow regimes under varying
operating conditions.

Together, these ROC analyses underscore the high sensitivity
and specificity of the selected ANN configuration. The network’s
performance across all evaluation stages aligns with the confusion
matrix results and statistical metrics, providing strong evidence of
the model’s effectiveness for real-time multiphase flow pattern
recognition in horizontal oil-water pipeline systems.

Figure 9 presents the confusion matrices obtained during the (a)
training, (b) validation, (c) testing, and (d) overall evaluation phases
for the selected ANN model. These matrices provide a detailed
breakdown of the model’s prediction performance for each of the six
flow pattern categories: stratified, stratified with mixture, oil-in-
water dispersion, water-in-oil dispersion, annular, and slug.

In each matrix, the diagonal elements represent the TP—that is,
the number of instances correctly classified as a specific flow pattern.
Off-diagonal entries reflect misclassifications, further categorized as
FP and FN. A false positive occurs when the model incorrectly

TABLE 10 Configuration of parameters and results of the selected ANN Model.

Hyperparameter Selection Others Selection

Training algorithm Resilient Backpropagation Training accuracy (%) 97.1

Activation function in hidden layers Sigmoid Validation accuracy (%) 92.8

Activation function in the output layer Softmax Test accuracy (%) 90.3

Loss function Categorical cross-entropy Total accuracy (%) 95.4

Number of hidden layers 3 Training time (S) 2

Neurons in hidden layer 50 Cross-Entropy error 0.0240

FIGURE 6
Variation of cross-entropy due to iteration change in the ANN
with the selected configuration. FIGURE 7

Error histogram in the training, validation, and testing stages for
the ANN model.
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predicts a sample as belonging to a given class, while a false negative
arises when the model fails to recognize an instance of that class. The
TN, although not explicitly visible in the matrix, can be inferred as
all other correctly classified instances not associated with the current
class under evaluation.

The confusion matrices show a high concentration of values
along the diagonal, indicating that the majority of predictions across
all evaluation stages were correct. In the training stage (Figure 9a),
the model achieved an accuracy of 97.1%, confirming its strong
capacity to learn from the dataset. During the validation phase
(Figure 9b), accuracy slightly decreased to 92.8%, suggesting that the
model generalizes well to unseen data while maintaining high
predictive consistency. The testing stage (Figure 9c) resulted in
an accuracy of 90.3%, demonstrating reliable performance even
on completely new data. Finally, the overall confusion matrix
(Figure 9d), which aggregates predictions from all stages, reports
a high total classification accuracy of 95.4%, underscoring the

robustness and generalization capability of the selected ANN
configuration.

Beyond overall accuracy, the confusion matrices also reveal
class-specific performance trends. Certain patterns such as Do/w
and Dw/o exhibit nearly perfect classification with minimal off-
diagonal values, suggesting that the model captures their
distinguishing features with high fidelity. Meanwhile, flow
patterns such as S and ST & MI, which are often characterized
by overlapping or transitional behaviors, show slightly higher
misclassification rates, pointing to the physical complexity and
subtlety involved in accurately separating these regimes.

In Table 11, the respective precision, recall, and F1 values for
each flow pattern are presented, along with the accuracy values for
both the confusion matrix in the testing stage and the overall
confusion matrix, calculated according to Equations 14–17.
Accuracy refers to the proportion of all correctly classified
samples across all classes, calculated as (sum of diagonal entries)/

FIGURE 8
ROC curve in (a) training stage, (b) validation stage, (c) testing stage, (d) overall confusion matrix.
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(total number of samples). Precision, recall, and F1-score are
computed per class, and their values reflect the model’s behavior
in distinguishing each individual flow pattern. The averages refer to
the mean of these class-specific values. For example, for the testing
stage, referencing the ST pattern, the true positives value is TP = 55,
from the diagonal entry corresponding to the ST class in the test
stage confusion matrix, see Figure 9c. By summing the other values
on the main diagonal, the TN total is 195. Summing the other values
in the ST row gives the FP as 6, and summing the other values in the
ST column gives the FN as 8. Notice that for a multiclass confusion
matrix, accuracy is computed as the sum of all correct predictions
(250) over the total number of predictions (277). The values shown
for precision, recall, and F1 are class-specific, but accuracy
is aggregate.

Based on the information shown in Table 11, the following
average values were determined for the different flow patterns
within the testing stage of the model: an average precision of

89.8%, an average recall of 90.3%, an average F1 score of 89.9%,
and an accuracy of 90.3%. From the overall confusion matrix, an
average precision of 95.5%, an average recall of 95.8%, an average
F1 score of 95.6%, and an accuracy of 95.4% were obtained.

To ensure the credibility of the proposed ANN model, the
dataset was randomly partitioned into 70% for training, 15% for
validation, and 15% for testing. The model’s performance was
evaluated through multiple statistical metrics, including accuracy,
precision, recall, F1-score, and cross-entropy error, across all three
data partitions. Confusion matrices and ROC curves were used to
provide a comprehensive visualization of the classifier’s behavior.
Additionally, retraining was conducted for each configuration to
verify repeatability and robustness, with consistent outcomes
observed between runs.

The credibility of the model is reinforced by the use of a large
and diverse dataset compiled from 11 independent experimental
studies, representing a wide range of fluid properties, pipe diameters,

FIGURE 9
Confusion matrix in (a) Training stage, (b) Validation stage, (c) Testing stage, (d) Overall confusion matrix. The reported accuracy values represent
overall classification accuracy, not class-averaged metrics.
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and flow regimes. This diversity enhances the model’s generalization
capabilities and supports its applicability across varied operating
conditions.

4 Conclusion

A two-phase oil-water flow database in horizontal pipes was
structured based on information reported in the literature by various
authors, yielding 1,846 experimental data points. The dataset
included parameters related to oil-water multiphase flows, such
as the superficial velocities of the oil and water fluids, water
volumetric fraction, pipe diameter, oil viscosity, and oil density.
Six representative flow pattern categories were defined and
standardized: stratified, stratified with mixture, slug, annular, oil-
in-water dispersion, and water-in-oil dispersion.

An ANN model using feedforward backpropagation was
developed in MATLAB® and its Neural Network Pattern
Recognition tool. Through an iterative and systematic
experimental process, 339 training sessions were performed
based on 104 different ANN topological configurations to
select the optimal model. The final model consisted of an
input layer with six neurons corresponding to each input
variable, three hidden layers with 50 neurons each, and an
output layer with six neurons. The resilient backpropagation
training algorithm was employed, with sigmoid activation
functions in the hidden layers and softmax in the output
layer, using cross-entropy as the loss function.

The developed ANN model demonstrated outstanding
performance, achieving a training accuracy of 97.1%, a validation
accuracy of 92.8%, a testing accuracy of 90.3%, and an overall
accuracy of 95.4%. These results suggest that the trained model is
highly effective at predicting the six flow patterns. Notably, the
training process required only 2 s, indicating high computational
efficiency. The precision of the ANN model in recognizing flow
patterns suggests opportunities to optimize pipeline design and
maintenance processes by estimating critical process parameters,
such as pressure gradients and volumetric fractions in the
flow system.

Beyond its strong predictive performance, the proposed model
demonstrates substantial potential for practical deployment in

industrial settings. Its ability to classify flow patterns with high
reliability and low latency makes it suitable for integration into real-
time monitoring systems, such as SCADA platforms or embedded
diagnostic tools for pipeline infrastructure. This opens opportunities
for automated decision-making in flow assurance, chemical dosing
optimization, corrosion control, and maintenance scheduling, all of
which are critical for operational safety and efficiency in the oil and
gas industry.

Additionally, because the model was trained on a diverse and
comprehensive experimental database, it offers high scalability and
adaptability across a broad range of pipeline geometries, fluid
properties, and operating conditions. These features enable its
use in varied field applications, including offshore platforms,
onshore transport systems, and laboratory-scale experimental
setups, without significant retraining or hardware constraints.

Nevertheless, several limitations should be acknowledged. First,
the model was trained on laboratory-generated data, which may not
fully capture the complexities encountered in field-scale operations,
such as temperature fluctuations, scale deposition, or transient
behaviors. Second, an imbalance in the number of data points
per flow pattern category may lead to classification bias toward
the majority classes. Third, as with most neural network
architectures, the model functions as a “black box”, offering
limited interpretability regarding the physical mechanisms
underlying its predictions.

To address these limitations, future work will focus on external
validation using new experimental data from controlled laboratory
test rigs and real pipeline operations. The integration of explainable
AI techniques and comparisons with alternative machine learning
models will also be explored to enhance interpretability and
benchmarking. Moreover, the construction of a more balanced
and expanded database, particularly in underrepresented flow
pattern classes, is recommended to enhance robustness and
reduce bias in predictive performance.
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TABLE 11 Metrics to evaluate model performance across different flow patterns based on the confusion matrix.

Flow pattern Testing stage Overall confusion matrix

Precision [%] Recall [%] F1 [%] Accuracy [%] Precision [%] Recall [%] F1 [%] Accuracy [%]

ST 90.2 87.3 88.7 90.3 95.7 93 94.3 95.4

ST & MI 85.5 92.5 88.7 92.7 96 94.3

D o/w 96.1 86 90.7 98.4 94.7 96.5

D w/o 92.3 98 95 96.6 98.2 97.4

A 93.8 93.8 93.8 98.2 97.6 97.9

S 80.8 84 82.4 91.2 95.1 93.1

Average 89.8 90.3 89.9 95.5 95.8 95.6
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