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In the manufacturing process of electric rope shovels, an extensive array of
components need to be processed. Each component is subject to a distinct
sequence of operations, with the number of operations varying by part. Moreover,
each of these operations needs to be processed on specific machines within
specific processing durations. Therefore, the electric rope shovel production
scheduling problem turns out to be challenging for general optimizers, requiring
to find the optimal operation sequence, make trade-offs between multiple
conflicting objectives, and satisfy a series of strict constraints. To address this
production scheduling problem, this paper proposes a neo-cooperation search
based evolutionary algorithm. The proposed algorithm suggests a novel
encoding scheme to represent a solution (i.e., the sequence of operations of
multiple components) with a real decision vector and allocates computational
resources to two cooperating populations for global search and local search,
respectively. The proposed algorithm can effectively balance between
exploration and exploitation, and is shown to outperform state-of-the-art
evolutionary algorithms in the experiments.
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1 Introduction

As a key piece of heavy engineering machinery, electric rope shovels are widely used in
mining, construction, and infrastructure sectors, primarily for handling and excavating
earth, rock, and ore materials (Topno et al., 2021; Wang et al., 2021). With the rapid
development of the global mining and construction industries, the demand for electric rope
shovels has gradually increased, particularly in large open-pit mines andmajor construction
projects, where their work efficiency and production capacity are crucial. Consequently, the
design and production of electric rope shovels have become increasingly complex and
precise, involving the manufacture and assembly of numerous components. These
components typically include core components such as buckets, boom assembly, upper
mechanisms, and propel system, each requiring precision processing and assembly through
multiple stages (Wei et al., 2011; Chen et al., 2021).

During the production process of electric rope shovels, the number of processes and the
technology paths required vary due to the different structures and functions of each
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component. The machining process for each component may
involve several operations, such as cutting, milling, drilling,
welding, and heat treatment, and in each operation, different
machines can often be chosen for processing (Wu et al., 2024;
Babaei Khorzoughi and Hall, 2016). This constitutes a typical multi-
operation, multi-machine scheduling problem. Unlike traditional
assembly line production, the processing technology for electric rope
shovel components exhibits significant flexibility and parallelism.
Therefore, determining a reasonable processing sequence for each
component with the most suitable machines for processing has
become one of the core issues in production scheduling (Lei and
Cai, 2020).

The optimization problems involved in the production of
electric rope shovels can be modeled as single-objective (Rahimi
et al., 2023; Wang P. et al., 2023) or multi-objective optimization
problems (Shao et al., 2024a; Tian et al., 2024b). For single-objective
optimization, the goal is to find a solution that minimizes or
maximizes a certain function under certain constraints (Brest
et al., 2017; Tong et al., 2021; Shao et al., 2025). The optimal
solution of a single-objective problem refers to the solution that
minimizes the objective function among all solutions that satisfy the
constraints. However, since the number of objectives involved in the
above optimization scenarios is usually more than one, there is no
single optimal solution, and it is more reasonable to be modeled as a
multi-objective optimization problem for processing (Tang et al.,
2023; Wang Z. et al., 2023). This way, the optimization goal is to find
a set of solutions that constitute the Pareto optimal solutions.
Continuous optimization and combinatorial optimization are two
important branches of multi-objective optimization problems (Tian
et al., 2022; Tian et al., 2023), and in this study, the research object is
the sequence optimization problems belonging to combinatorial
optimization problems with complex search spaces.

Sequence optimization problems (Guo et al., 2006; Voutchkov
et al., 2005) play a crucial role in various fields, aiming to find the
optimal arrangement order within given constraints to maximize or
minimize one or more objective functions. For instance, in the field
of production manufacturing, job scheduling (Hamscher et al., 2000;
Jamil et al., 2020) is a critical task that involves determining the
sequence of operations in the production process to maximize
productivity and minimize costs. By optimizing the order of jobs,
idle time on the production line can be reduced, equipment
utilization can be improved, and production efficiency can be
optimized. Sequence optimization algorithms (Yang et al., 2021;
Kim and Durlofsky, 2021) can help manufacturing companies better
plan their production processes, enhance productivity, reduce costs,
and improve market competitiveness.

The traveling salesman problem (Saller et al., 2023; Gutiérrez-
Aguirre and Contreras-Bolton, 2024) is another typical case of
sequence optimization problems. In the transportation sector,
route planning for travel is an important problem. This problem
refers to a scenario where a salesman needs to visit multiple cities,
with each city visited only once, and the objective is to find the
shortest route that minimizes the total distance traveled. By
optimizing the order of cities to be visited, the distance traveled
by the salesman can be effectively reduced, resulting in time and cost
savings (Mosayebi et al., 2021; Zhang et al., 2021). This is
particularly significant for logistics and courier industries as it
can improve delivery efficiency, reduce transportation costs, and

enhance customer satisfaction. In the field of bioinformatics,
sequence optimization problems also exist. Genome sequence
analysis (Nakagawa and Fujita, 2018; Xiao et al., 2024) involves
studying and analyzing the genome sequences of organisms to reveal
relationships between genes and discover new genes. By optimizing
the arrangement order of gene sequences, a better understanding of
the interrelationships between genes can be achieved, providing
important foundations for disease treatment, gene editing, and other
related areas.

Compared with general sequence optimization problems
mentioned above, the sequence optimization problems involved
in electric rope shovel production are completely different. In
particular, the production of electric rope shovel is faced with the
need for multi-objective optimization, and the production process
usually involves multiple conflicting objective functions, such as:
minimizing the total production duration, minimizing machine idle
time, balancing workload and improving resource utilization. These
objectives are mutually restricted and cannot be met by a simple
optimization method at the same time. Therefore, the performance
of traditional optimization methods is limited in solving such
complex scheduling problems. In addition, in the production of
electric rope shovel, the dependencies between sequence elements
are more complex and the data sets involved are diverse, which also
poses challenges to the existing multi-objective evolutionary
algorithms. Intuitively, the production scheduling not only needs
to determine the processing sequence of each component, but also to
decide which machine to use for each process. Due to different
components processing requirements and machine performance
differences, scheduling schemes directly affect production
efficiency, processing costs and equipment utilization.

In order to better solve the sequence optimization problems
involved in electric rope shovel production, this paper models them
as a constrained multi-objective sequence optimization problem,
called production scheduling sequence optimization problems
(PSSOPs), where a novel encoding scheme is suggested to
represent a solution (i.e., the sequence of operations of multiple
components) with a single real decision vector. Correspondingly, we
propose an evolutionary algorithm for solving PSSOPs. This paper
makes the following key contributions:

1. An evolutionary algorithm based on a neo-cooperation search
is proposed, known as NCSEA, which allocates computational
resources to two collaboratively optimized populations for
global search and local search, respectively, effectively
balancing exploration and exploitation. Specifically, one
population focuses on the processing of all optimization
objectives produced by the shovel, one population only
selects the optimal solution of a specific objective for search,
and the two populations can adaptively balance the search
granularity of the two populations due to the co-evolution
scheme. Additionally, deep reinforcement learning is used to
learn the optimal mutation granularity for the two populations.

2. Based on the demand data for electric shovel production
scheduling, we developed a test suite containing six test
problems of varying difficulty levels. To validate the
practical performance of the proposed NCSEA in solving
the sequencing optimization problem in electric rope shovel
production scheduling, we compared it with six state-of-the-art
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constrained multi-objective evolutionary algorithms. The
experimental results show that NCSEA outperforms the
compared constrained multi-objective evolutionary
algorithms in most test instances and demonstrates stable
performance across test problems of different difficulty levels.

This article is organized as follows. The second section provides
a brief overview of existing sequence optimization algorithms. The
third section details the proposed optimization model and
algorithm. The fourth section reports the experimental results of
a set of test problems with different characteristics. Finally, the fifth
section summarizes the paper.

2 Related work

2.1 General form of sequence optimization

In general, a constrained multi-objective sequence optimization
problem involves at least two objectives (Xiang et al., 2020; Wu and
Shao, 2024; Shao et al., 2024b; Tian et al., 2024a) and one constraint,
which is mathematically formulated as

Minimize f x( ) � f1 x( ), f2 x( ), . . . , fm x( )( )
Subject to x � x1, x2, . . . , xd( ) ∈ Ω

gi x( )≤ 0, i � 1, . . . , q
, (1)

where x � (x1, x2, . . . , xd) represents a d-dimensional decision
variable, Ω represents the decision space (i.e., all permutations of
1, . . . , d),f(x) denotes its objective vector,m is the dimension of the
objective space, and gi(x) denotes q inequality constraints. If
feasible solutions x and y satisfy fi(x)≤fi(y) for every
i ∈ 1, . . . , m and fi(x)<fi(y) for at least one j ∈ 1, . . . , m, then

x is said to dominate y. The objective in solving Equation 1 is to
discover a diversified set of feasible Pareto optimal solutions (Xiong
et al., 2024) that are not dominated by any solutions in the decision
space Ω (Shao et al., 2023b; Zhang et al., 2024; Jia et al., 2023).

2.2 Existing evolutionary algorithms for
sequence optimization

To find multiple feasible and Pareto optimal solutions for
constrained multi-objective sequence optimization problems, a
number of evolutionary algorithms have been developed in the
last decades. In Zhang et al. (2005), the study investigates the
multi-job batch flow problem in a two-stage hybrid flow shop. To
tackle this NP-hard problem, the authors develop two heuristic
methods, both of which involve sorting the jobs first and then
applying a strategy of batch flow processing to each job. These two
heuristic methods differ in the way they sort the jobs. The first
heuristic treats each job as a whole entity. The second heuristic
method views the system as a pure flow shop with machine
aggregation at the first stage. It uses the summary files of each
job from the single job batch flow results as the time requirements
for the artificial pure flow shop. When solving the batch flow
problem for each job in the sequence, both heuristic methods
allocate a balanced number of sub-batches to the machines in the
first stage and determine the size of the sub-batches. The results
indicate that the aggregated machine heuristic algorithm performs
significantly better. The aggregated machine algorithm shows good
solution quality, with an average relative distance from the lower
bound of only 6.85%. Therefore, it produces high-quality solutions
and significantly improves upon the performance of traditional
algorithms in this domain.

FIGURE 1
Illustration of the proposed encoding scheme, which represents the sequence of operations of multiple components using a real vector.
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In qing Li et al. (2020), the authors introduce a heuristic Multi-
Objective Evolutionary Algorithm based on Decomposition
(MOEA/D) specifically tailored to tackle the complex hybrid flow
shop batch scheduling problem. The algorithm makes several
significant contributions to optimization in this domain. Firstly, a
novel crossover operator is introduced to effectively handle
scenarios where parent solutions exhibit varying sub-batch
vectors. Secondly, a right-shift heuristic algorithm is proposed,
taking into consideration both the problem structure and
objective features to enhance the overall performance of the
algorithm. Additionally, a population initialization heuristic
algorithm is developed, which efficiently allocates each solution
to the closest reference vector. Furthermore, a mutation heuristic
algorithm is presented, incorporating considerations for sub-block
arrangements to enhance the exploitation capabilities of the
algorithm. Through rigorous experimentation and testing, the
efficacy and efficiency of the proposed algorithm are empirically
validated, demonstrating its effectiveness in solving the hybrid flow
shop batch scheduling problem.

In Zhang et al. (2022), the study investigates a multi-objective
mixed-model assembly line scheduling problem, with the aim of
minimizing the maximum completion time and the total number of
batches considering setup and transportation operations. A multi-
objective mixed integer programming model was established, and a
solver was used to evaluate the trade-off between the two objectives.
To address this problem, an automatic algorithm design is introduced
in the proposed framework to conceptualize an automated multi-
objective evolutionary algorithm. This is the first study to use
automatic algorithm design to solve a multi-objective mixed-model
assembly line scheduling problem. Considering the characteristics of
the problem and the algorithm framework, the authors designed
configurable settings for numerical parameters and categorical
parameters, as well as operators. Subsequently, an automated
MOEA was constructed using an iterative racing procedure.
Experimental validation of the performance of the proposed
algorithm shows its efficiency and effectiveness.

In Duan et al. (2021), to capture the characteristics of real-world
vehicle routing applications, the author developed a robust mutlti-
objective vehicle routing problem with time windows (RMO-
VRPTW), which includes two conflicting objectives: minimizing
the number of vehicles and total distance. Additionally, a new form
of uncertainty is introduced to capture disruptive features from
practical applications. To address RMO-VRPTW, a robust

optimization approach was developed, incorporating advanced
encoding and decoding methods, robustness measures, and local
search strategies. Initially, the deterministic problem space features
were thoroughly explored to guide robust optimization.
Furthermore, to further explore the search space, two local
search strategies were proposed. One adjusts customer priorities
based on associated time windows, while the other directly
manipulates routes by removing customers from routes with
fewer customers and inserting them into routes with stronger
robustness.

To solve large-scale car sequence problems, a novel mutation-
based multi-objective evolutionary algorithm called MOEA-PGX is
proposed in Shao et al. (2023a). The core idea of the MOEA-PGX
algorithm lies in extracting heuristic information from the
population and constructing a probability matrix based on this
information. During the optimization process, this probability
matrix is utilized to heuristically repair infeasible solutions while
retaining the advantageous genes from the parent solutions. This
heuristic repair strategy enhances the quality and feasibility of
solutions. To represent solutions, the MOEA-PGX algorithm
converts them into permutation groups. By employing
permutation-based crossover and mutation operations, high-
quality characteristics are maintained when generating offspring
solutions. This representation method captures the structural
features of sequencing problems better, leading to the generation
of superior solutions. Compared to existing algorithms, MOEA-
PGX demonstrates faster convergence speed and a lower probability
of getting trapped in local optima, making it an effective approach
for solving large-scale car sequence problems.

2.3 Motivation of this work

Although the optimization algorithms mentioned above have
achieved remarkable performance in various sequential
optimization problems, the production scheduling sequence
optimization in electric rope shovel production often presents
unique challenges (Dong et al., 2024; Xie et al., 2024).
Specifically, these algorithms typically rely on designing
algorithms based on the characteristics of the problem’s dataset,
which are not directly applicable to the optimization scenarios in
electric rope shovel production. On the other hand, the sequence of
operations in electric rope shovel production is not simply a

TABLE 1 Mean of HV values obtained by TriP, EMCMO, CMOQLMT, CMOSMA, DP-PPS, C3M, and the proposed NCSEA on PSSOP1–PSSOP6.

Problem TriP EMCMO CMOQLMT CMOSMA DP-PPS C3M NCSEA

PSSOP1 6.8922e-1 − 6.7168e-1 − 6.8161e-1 − 7.1997e-1 − 6.8922e-1 − 6.7928e-1 − 7.2747e-1

PSSOP2 6.2848e-1 − 6.6100e-1 − 6.8606e-1 − 7.1368e-1 − 6.2848e-1 − 6.1211e-1 − 7.1764e-1

PSSOP3 6.7624e-1 − 6.4781e-1 − 7.0609e-1 − 7.2571e-1 − 6.7624e-1 − 6.0026e-1 − 7.3417e-1

PSSOP4 6.2971e-1 − 6.3784e-1 − 6.4955e-1 − 7.0697e-1 − 6.2971e-1 − 6.8565e-1 − 7.2538e-1

PSSOP5 6.4817e-1 − 7.0145e-1 − 6.7508e-1 − 6.9740e-1 − 6.4817e-1 − 6.4686e-1 − 7.1469e-1

PSSOP6 6.3457e-1 − 6.5110e-1 − 6.7314e-1 − 7.0301e-1 − 6.3457e-1 − 6.4525e-1 − 7.0401e-1

+/ − / ≈ 0/6/0 0/6/0 0/6/0 0/6/0 0/6/0 0/6/0

‘−’ indicates that the result is significantly worse than that obtained by NCSEA.
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permutation of 1, . . . , d, since multiple components have multiple
operations. Additionally, the processing of components in electric
rope shovel production often involves specific time requirements,
adding strict constraints to the optimization. To address these
issues, we propose a cooperative evolutionary algorithm to
efficiently solve PSSOPs, the details of which are elaborated in
the next section.

3 The proposed model and algorithm

3.1 The proposed optimization model

Let the set of components (e.g., boom assembly, bucket, etc.) to
process be denoted as J � {J1, J2, . . . , Jn}, where each component Ji
follows a predefined sequence of operations (e.g., cutting, welding,

FIGURE 2
Convergence profiles obtained by TriP, EMCMO, CMOQLMT, CMOSMA, DP-PPS, C3M, and the proposed NCSEA on PSSOP1–PSSOP6.
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drilling, painting, etc.) Oi1, Oi2, . . . , Oiui, and Oij denotes the j-th
operation of component Ji. Given multiple machines
W � {W1,W2, . . . ,WM}, the processing time of operation Oij on
machine Wk is given by Tijk if the operation can be conducted on
Wk. For a solution (i.e., the sequence of all operations of all
components), the idle waiting time between operations Oi(j−1)
and Oij for component Ji is ETijk, and thus the completion time
of component Ji, denoted by Ci, is the total sum of the processing
and waiting times of all its operations:

Ci � ∑
ui

j�1
Tijk + ETijk( ). (2)

As for the proposed production scheduling sequence
optimization problems (PSSOPs), the core goal is to minimize
the maximum completion time across all components, which
represents the overall production cycle. This can be formulated
as the first objective function:

f1 � max
i�1,...,n

Ci, (3)

which ensures that the completion time of the most time-
consuming component is minimized, reflecting an optimized
production cycle.

While each component should be completed within a specific
time window, the second objective function aims to reduce penalties
incurred from early or late deliveries. More specifically, if a
component is finished earlier than its due time di1, an early
completion penalty Ei is introduced. Similarly, if a component is
completed later than its late due time di2, a tardiness penalty Ti is
incurred. These penalties are defined as

Ei � max 0, di1 − Ci( )
Ti � max 0, Ci − di2( ) , (4)

and the second objective function can be expressed as

f2 � ∑
n

i�1
αEi + βTi( ). (5)

Here, α and β represent the respective weights for early and late
penalties, allowing flexibility in balancing the costs of deviation from
the scheduled due dates. The setting of these two parameters primarily
reflects the different preferences for early and late penalties.
Depending on changes in the production environment, these
parameters can be adjusted to different combinations. In addition,
due to strict timemanagement, the second objective has to be less than
a user-given constraint value for all solutions tomake sense, so this is a
typical constrained multi-objective optimization problem.

As a consequence, the complete definition of PSSOPs is as
follows, where SC represents a user-specified parameter for
defining the constraint:

min f1 � max
i∈S

Ci

min f2 � ∑
n

i�1
αEi + βTi( )

subject to f2 < SC

. (6)

In this optimizationmodel, each solution determines the value ofCi

for all components. Since a solution should contain the sequence of
multiple operations of multiple components, it has to be represented by

a complex vector like O11,O31,O32,O21, . . . . To facilitate the
optimization of PSSOPs using various algorithms, we suggest a simple
and flexible encoding scheme, representing each solution with a real
vector that can be optimized using most constrained multi-objective
evolutionary algorithms. As illustrated in Figure 1, we demonstrate a
processing task involving three components: Component 1 has three
operation, Component 2 has three operations, andComponent 3 has four
operations. The example solution is a real-coded vector
(0.10,0.42,0.58,0.15,0.29,0.81,0.23,0.36,0.77,0.93), where each dimension
corresponds to an ordered operation. To obtain the sequence of all
operations, the solution is decoded by sorting all its real elements
in an ascending order. Then, the resulting permutation
(1,4,7,5,8,2,3,9,6,10) is converted into a sequence of operations,
where elements 1,2,3 correspond to the three operations of
Component 1, elements 4,5,6 correspond to the three
operations of Component 2, and elements 7,8,9,10 correspond
to the four operations of Component 3. Note that the rank of all
operations of a component is predefined and cannot be modified,
hence the elements corresponding to a component do not need to
be associated with specific operations. Lastly, to calculate the
completion time Ci, the operations are conducted one by one
on specific machines, and they should be waited if other operations
are being conducted on the same machine.

With the above encoding scheme, the proposed PSSOPs turn
out to be continuous constrained multi-objective optimization
problems, which can be handled by many constrained multi-
objective evolutionary algorithms in theory. However, the
conflicting objectives and strict constraints challenge many
existing algorithms in finding feasible Pareto optimal
solutions, especially when the landscape is still highly
discretized due to the conversions from real vectors to discrete
sequences. Therefore, an effective evolutionary algorithm is
tailored for solving PSSOPs, the details of which are presented
in the next subsection.

3.2 The proposed neo-cooperation search
based evolutionary algorithm

The procedure of the proposed neo-cooperation search based
evolutionary algorithm (NCSEA) is illustrated in Algorithm 1,
which begins with the initialization of neural network and two
populations, Population1 and Population2, both of which are
created randomly (Lines 1, 3 and 4). The Neural networkNet are
used to learn the optimal variation granularity action. The
proposed algorithm also sets the initial count of consumed
evaluations, FE, equal to the size of the populations (Line 6).
Once the populations are established, the proposed algorithm
enters a loop that continues until the maximum number of
evaluations, FEmax, is reached. Within this loop, the proposed
algorithm randomly selects N parents from Population1 and
randomly selects N parents from Population2 (Lines 8 and 9).
This selection process is used for maintaining a good
performance gene pool, which enhances the algorithm’s ability
to explore various solutions. After selecting the parents, the
proposed algorithm generates N offspring solutions from each
set of parents (Lines 12 and 13). These offspring solutions
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represent new potential solutions that will be introduced to the
populations. Since the optimization model of the proposed
PSSOP introduces a novel encoding scheme representing
solutions with real vectors, the real variation operators used in
many evolutionary algorithms can be adopted, where the
simulated binary crossover and polynomial mutation are
adopted in the proposed NCSEA. Given two parent solutions
x1 and x2, two offspring solutions o1 and o2 are generated by
simulated binary crossover (Deb and Agrawal, 1995) and
polynomial mutation (Deb and Goyal, 1996). Following the
generation of offspring solutions, the proposed algorithm
updates both Population1 and Population2 by combining
each current population with all the newly created offspring
solutions (Lines 12 and 13). This combination is designed to
foster diversity and improve the quality of solutions.

FIGURE 3
Populationswith themedian HV obtained by TriP, EMCMO, CMOQLMT, CMOSMA, DP-PPS, C3M and the proposed NCSEA on PSSOP2 and PSSOP5.

TABLE 2 Mean of HV values obtained by NCSEA1, NCSEA2, and NCSEA on
PSSOP1–PSSOP6, where NCSEA1 only performs global search, and
NCSEA2 only performs local search, and NCSEA is the original algorithm.

Problem NCSEA1 NCSEA2 NCSEA

PSSOP1 7.2530e-1 − 6.7485e-1 − 7.2747e-1

PSSOP2 6.9488e-1 − 7.0738e-1 − 7.1764e-1

PSSOP3 6.7126e-1 − 6.2435e-1 − 7.3417e-1

PSSOP4 7.2500e-1 − 7.2406e-1 − 7.2538e-1

PSSOP5 7.1054e-1 − 7.0723e-1 − 7.1469e-1

PSSOP6 6.7078e-1 − 6.7625e-1 − 7.0401e-1

+/ − / ≈ 0/6/0 0/6/0

‘−’ indicates that the result is significantly worse than that obtained by NCSEA.
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Algorithm 1. Main procedure of NCSEA.
The next step, i.e., environmental selection, involves retaining

N solutions from Population1 and retaining N solutions from
Population2 (Lines 14 and 15), where the strategies are different
for retaining solutions from the two populations. Population1
undergoes a selection process known as environmental selection,
where N solutions are chosen based on their performance
according to non-dominated sorting and crowding distances,
on the basis of constrained Pareto dominance relations. More
specifically, the constraint violation of a solution x is
calculated by

CV x( ) � max 0, f2 x( ) − SC{ }, (7)

so that a smaller CV(x) indicates a smaller constraint violation,
and x is feasible if and only ifCV(x) � 0. Then, a solution x is said to
be better than (i.e., constrained dominate) another solution y if and
only if

CV x( )<CV y( ), (8)
or

CV x( ) � CV y( )
f1 x( )≤f1 y( ) andf2 x( )≤f2 y( )
f1 x( ) ≠ f1 y( ) orf2 x( ) ≠ f2 y( )

⎧⎪⎨
⎪⎩ , (9)

On the other hand, Population2 is truncated based on only the
second objective, the minimization of which is also beneficial for the
satisfaction of the constraint. More specifically, theN solutions with
smaller f2 values are retained in Population2. That is, a solution x is
said to be better than (i.e., constrained dominate) another solution y
if and only if

f2 x( )<f2 y( ). (10)

At the end of each loop, the proposed algorithm updates the
agent as illustrated in Algorithm 2 (Line 17). The optimal mutation
granularity action of the next iteration is predicted by Algorithm 3
(Line 18). The evaluation count, FE, is updated to reflect the number
of evaluations consumed during that iteration (Lnie 19). This
ensures that the algorithm stays within the specified limits of
function evaluations. Finally, once the loop completes and the
maximum evaluation count is reached, the proposed algorithm
returns the final population Population1 (Line 20), which contains
the most promising solutions discovered throughout the process. It is
worth noting that since the second objective involves constraints, the
main purpose of the second population is to handle the second objective
by ensuring that the constraints are satisfied. This structured approach
allows NCSEA to efficiently explore and exploit the solution space,
ultimately leading to high-quality outcomes.

Algorithm 2. TrainingDQN(Net,M).

Algorithm 3. AdaptiveMutation(Net,M).

3.3 Adaptive mutation

To further improve the algorithm’s exploration ability,
reinforcement learning is employed to determine the optimal
mutation granularity as illustrated in Algorithm 2 and Algorithm
3. Specifically, five mutation granularities—1

d,
1
2d,

3
2d,

4
2d and

1
5d (where

d represents the decision variable dimension)â€“are used as

TABLE 3 Mean runtime obtained by TriP, EMCMO, CMOQLMT, CMOSMA, DP-PPS, C3M, and the proposed NCSEA on PSSOP1–PSSOP6.

Problem TriP EMCMO CMOQLMT CMOSMA DP-PPS C3M NCSEA

PSSOP1 8.9021e+0 − 7.6875e+0 − 7.5492e+0 − 6.8961e+0 − 7.9669e+0 − 5.8962e+0 ≈ 5.9432e+0

PSSOP2 7.6378e+0 − 7.5339e+0 − 7.1697e+0 − 6.5461e+0 − 7.4643e+0 − 5.9643e+0 ≈ 5.9343e+0

PSSOP3 6.2150e+0 ≈ 7.9815e+0 − 6.9061e+0 ≈ 6.5050e+0 ≈ 6.8465e+0 ≈ 6.1327e+0 ≈ 6.6495e+0

PSSOP4 2.6894e+1 − 7.6909e+0 − 6.4307e+0 ≈ 6.2150e+0 ≈ 7.0193e+0 ≈ 6.1576e+0 ≈ 6.6121e+0

PSSOP5 1.8725e+1 − 7.2934e+0 − 6.4491e+0 ≈ 6.3549e+0 ≈ 6.8686e+0 ≈ 6.2705e+0 ≈ 6.8187e+0

PSSOP6 1.2938e+1 − 7.3728e+0 − 6.2959e+0 ≈ 6.0167e+0 ≈ 6.7042e+0 ≈ 6.3266e+0 ≈ 6.5109e+0

+/ − / ≈ 0/5/1 0/6/0 0/2/4 0/2/4 0/2/4 0/0/6

‘−’ indicates that the result is significantly worse than that obtained by NCSEA.
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candidate strategies to effectively balance exploration and
exploitation. The population state is defined by convergence,
diversity, and feasibility metrics. Convergence is evaluated by the
population’s average performance on each objective function,
indicating how close solutions are to the Pareto optimal front.
For each objective function fi(x), the convergence is calculated
as follows:

con � ∑
m

i�1
∑
x∈P

fi x( ), (11)

where fi(x) represents the value of the i-th objective function, and
m is the number of objective functions. Diversity captures the
population’s spread across each objective function, which is
calculated using:

div � ∑
m

i�1
∑
x∈P

fi x( ) − obji( )2, (12)

where obji is the average value of the i-th objective function. While
feasibility measures the degree to which the population satisfies
problem constraints; a value of 0 denotes complete feasibility, while
higher values suggest constraint violations. Feasibility is defined as:

fea � ∑
x∈P

CV x( ), (13)

where CV(x) denotes the constraint violation of solution x.
Together, these elements—convergence, diversity, and

feasibility—form the population state st, encapsulating key
attributes that allow the reinforcement learning agent to suggest
the ideal mutation granularity. The hypervolume (HV) metric serves
as the reward signal rt to assess resource allocation effectiveness,
measuring convergence and diversity by evaluating the solution set’s
enclosed volume. Each training entry comprises the current state,
action, obtained reward, and the new state. To be specific, the states
is a three-dimensional vector. The reward and action are a scalar,
respectively. These data are generated at each iteration and
sequentially inserted into the experience memory pool. This
experience pool continuously enhances the agent’s decision-
making capabilities. The agent is update rule according to:

Q s, a; θ( ) ← Q s, a; θ( ) + α y − Q s, a; θ( )( ) (14)
where α is the learning rate, θ are the network parameters, and the
target y is defined as:

y � r + γmax
a′

Q s′, a′; θ−( ) (15)

Here, r is the reward received after action a, s′ is the next state, and
θ− represents the parameters of the target network. The DQN
network architecture comprises an input layer with 4 nodes, two
hidden layers, and an output layer. The input layer receives a 4-
dimensional state vector as input. This is followed by the first hidden
layer, which contains 10 nodes with a nonlinear activation function
(i.e., ReLU) to enhance learning. The second hidden layer also
processes information in preparation for the output layer, which
has a single node that provides the Q-value for a particular action-
state pair. This configuration enables the network to learn an
effective mapping from states to action values in a compact,
efficient structure. Based on the established mapping relationship,

the reinforcement learning agent can recommend the optimal
mutation granularity for the current population during the
iteration process, i.e., determining the parameters for polynomial
mutation that are suitable for the current population, thereby
guiding the generation of offspring.

3.4 Discussions

From the above description, it can be seen that the proposed
algorithm considers all the optimization objectives and constraint
through the first population, while the second population focuses
solely on the second objective. For the second population, since it
only selects solutions that perform significantly on the second
objective to generate offspring solutions, it is more likely to excel
in the second objective. Moreover, if only the second population is
used, the entire population will struggle to address the first objective,
which is why the first population focuses on all the optimization
objectives and constraint. It is worth noting that the offspring
solutions generated by both populations are shared, allowing the
second population to adaptively adjust its search for the second
objective using the offspring solutions generated by the first
population.

The coevolution mechanism of the proposed NCSEA is different
from existing co-evolutionary algorithms for constrained multi-
objective optimization. To be specific, most existing algorithms
evolve a main population considering all objectives and
constraints of the problem, and evolve one or more auxiliary
populations eliminating part or all of the constraints. Such
coevolution mechanism can help the main population to jump
over local feasible regions, but is not effective enough for the
proposed PSSOPs with highly discretized landscapes that are
difficult to converge. On the contrary, the proposed NCSEA
suggests a problem-dependent coevolution mechanism
considering part of the objectives in an auxiliary population,
which exhibits significantly better performance than existing
algorithms as evidenced by the experimental results given in the
next section.

4 Empirical studies

4.1 Settings of problems and algorithms

Six datasets with different conditions for electric rope shovel
production are involved in the experiments, where there are a total
of 14 components, each of which requires 3 to 6 operations to
complete on one of eight machines within specific processing
durations. For instance, in the production of electric rope
shovels, the processing of the boom assembly requires five
operations, including cutting, welding, drilling, heat treatment,
and painting, to ensure strength and precision. The processing of
the bucket requires six operations, including steel plate cutting,
forming, welding, heat treatment, surface treatment, and wear-
resistant coating, to enhance durability and abrasion resistance.
The processing of the stick involves four operations, including
cutting, welding, drilling, and painting, to ensure a precise fit
with other components. As a result, the experiments involve six
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test instances denoted as PSSOP1–PSSOP6, each having
62 operations with different processing times and time windows.
Specifically, each operation in PSSOP1 and PSSOP2 has a longer
operation time, each operation in PSSOP3 and PSSOP4 involves
more machines, and the time windows in PSSOP5 and PSSOP6 are
more restricted. Due to these differing characteristics, these PSSOPs
pose challenges for CMOEAs. Besides, the parameters α and β for
early and late penalties are set to 0.8 and 0.2, respectively, which can
prefer handling of early penalties. The size of the experience pool is
set to 1 000 to ensure there is enough space to store the experiences.

The proposed algorithm in this study is compared with six state-
of-the-art constrained multi-objective evolutionary algorithms: TriP
(Ming et al., 2022), EMCMO (Qiao et al., 2022), CMOQLMT (Ming
et al., 2023), CMOSMA (He et al., 2022), DP-PPS (Ming et al., 2022),
and C3M (Sun et al., 2022). For fair comparisons, compared
algorithms follow the parameter settings in their original papers
and all of them use simulated binary crossover and polynomial
mutation to generate real-coded offspring solutions for PSSOPs,
where the parameter η is set to 20 and the mutation probability prob
is set to 1/d (d is the number of decision variables). Each algorithm
uses a population size of 100 and undergoes 10,000 function
evaluations, resulting in each optimization process lasting tens of
minutes for each test instance. At the same time, the function
evaluation setting is large enough to detect the performance of
each comparison algorithm and the proposed algorithm. As the
Pareto fronts of the optimization problem are unknown, the
hypervolume (HV) indicator is employed to evaluate the quality
of each solution set. To ensure result reliability, 30 independent runs
are conducted for each algorithm on every test instance, followed by
a Wilcoxon rank sum test. Detailed experimental evidence is
provided in the subsequent subsection to showcase the superior
performance of the proposed algorithm.

4.2 Comparative experiments

The optimization results of the proposed algorithm and four
comparative algorithms on PSSOP1–PSSOP6 are presented in
Table 1. It can be observed that the proposed algorithm
performs the best on all the six test instances, which means that
the proposed algorithm significantly outperforms TriP, EMCMO,
CMOQLMT, CMOSMA, DP-PPS, and C3M on PSSOPs.
Moreover, Figure 2 displays the convergence curves of their HV
values on PSSOP1–PSSOP6. The plots indicate that the proposed
algorithm converges faster than the compared algorithms TriP,
EMCMO, CMOQLMT, CMOSMA, DP-PPS, and C3M. It is worth
noting that even with only 6,000 function evaluations, the
population generated by the proposed algorithm can compete
with those generated byTriP, EMCMO, CMOQLMT,
CMOSMA, DP-PPS, and C3M, which have undergone
10,000 function evaluations on these test instances. To provide
a more intuitive demonstration of the optimization results,
Figure 3 shows the objective values of the final populations on
PSSOP2 and PSSOP5. It can be observed that the proposed
algorithm gains solutions dominating the solutions obtained by
TriP, EMCMO, CMOQLMT, CMOSMA, DP-PPS, and C3M,
further confirming the superiority of the proposed algorithm. It
is worth noting that the proposed algorithm significantly

outperforms the comparison algorithms in both optimization
objectives. This indicates that the sequence solution found by
the proposed algorithm can not only produce the
corresponding parts within the specified time period, but also
accelerate the entire production process, offering advantages in
improving production efficiency and reducing costs.

4.3 Ablation studies

To further validate the effectiveness of the proposed
collaborative search method, NCSEA was compared with its
variants that use a single search scheme, thereby completely
eliminating the impact of other strategy differences. Table 2 lists
the comparison results of NCSEA and its two variants, where
NCSEA1 uses only population1, i.e., it only performs global
search, and NCSEA2 uses only population2, i.e., it only performs
local search. Clearly, the proposed NCSEA still demonstrates the
best overall performance and is competitive with the different
variants of NCSEA.

4.4 Computational efficiency

Furthermore, a comprehensive assessment of the
computational efficiency of the seven compared algorithms is
presented. As depicted in Table 3, an in-depth breakdown of the
average runtime across TriP, EMCMO, CMOQLMT,
CMOSMA, DP-PPS, C3M, and the proposed NCSEA is
provided. Upon meticulous data analysis, it becomes evident
that the proposed algorithm demonstrates competitive
computational efficiency when compared with other
algorithms. This observation underscores the robust
computational efficiency of NCSEA, a purpose-built
algorithm tailored to efficiently address optimization
challenges brought by electric rope shovel production
scheduling. Consequently, the NCSEA presented in this study
emerges as a highly efficient algorithm for PSSOPs.

5 Conclusion

To effectively address the scheduling optimization problem in
electric rope shovel production, we have proposed an evolutionary
algorithm based on a neo-cooperation search mechanism. The
proposed algorithm allocates computational resources to two
collaboratively optimized populations for global and local
searches, effectively balancing exploration and exploitation.
Experimental results have demonstrated that the proposed
algorithm has significant advantages in practical applications. In
future research, our goal is to further incorporate various heuristic
information to better solve large-scale PSSOPs, thereby enhancing
the algorithm’s applicability in real-world scenarios. Additionally,
considering that reinforcement learning methods have been widely
applied to sequence optimization problems, we plan to explore
deep reinforcement learning to adaptively generate high-quality
solution sets without the requirement of iterative search
procedures.
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