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Hydro turbines are prone to failure and the detection of fault in turbine is essential
to ensure the reliability of power plant. This study investigates vibrational signals in
a fault-induced Francis turbine using an experimental test setup to identify the
trends that could be helpful in diagnosis of turbine faults. By analyzing the
vibrational signal, the study aims to correlate the turbine’s dynamic behavior.
Faults in the turbine have been introduced by adding masses to the blades, and
the experimental tests are conducted under two different conditions: dry andwet
testing conditions for both normal and faulty turbine blades. The turbine’s
operating condition is determined with the help of pressure, flow, and RPM
sensors. The turbine’s speed is varied using a variable frequency drive. For the
acquisition of vibration signals, the NI-LabVIEW system is employed along with a
uniaxial vibration sensor located at the turbine bearing. The obtained vibration
data are analyzed using the Fast Fourier Transform (FFT) algorithm and wavelet
transform algorithm to identify frequency-domain characteristics. While studying
and comparing the fundamental frequency of the turbine shaft, it is found that
turbine faults can either increase or decrease the amplitude of the resonant peak
frequency of the system, but the amplitude at other frequencies remains almost
unaffected.
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1 Introduction

Sediment has been identified as the major problem in the hydropower plants of the
Hindu Kush Himalayan region due to the young and fragile geological formations, which
contribute to the erosion of hydraulic turbines and their components within the region (Xu
et al., 2019; Thapa et al., 2015; Chitrakar et al., 2018; Sapkota et al., 2022). Due to sediment
erosion, most power plants experience forced failures, unnecessary downtime, reduced
turbine efficiency, and financial losses. In the case of the Francis turbine runner, erosion is
more prominent around the trailing edge of the runner, as shown in Figure 1, which belongs
to power plants in Nepal and India (Thapa et al., 2015; Sapkota et al., 2022; Sharma, 2010).
While the problem of sediment erosion is also observed in Pelton turbines, Francis runners
are found to offer higher operating efficiency and hence, preferred typically in medium head
and flow applications (Breeze, 2019).

Another type of fault found in the runner is breakage due to fatigue loading and high-
pressure fluctuations produced by rotor-stator interaction. Past studies suggest that cracks
initially grow at a slow rate but increase significantly only after the onset of severe cycle
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fatigue (Avellan, 2000; Gagnon et al., 2012). Therefore, detecting
cracks before the onset of high-cycle fatigue is both crucial and
challenging due to the nature of their growth.

The flow inside the turbine is incorporated with instabilities and
transients, which is more pronounced during deep part-load
conditions. Large vibrations are produced in the machines due to
these fluctuations (Zhao et al., 2020). Erosive cavitation in the
runner can be detected by utilizing high-frequency acceleration
signals from the turbine bearing (Valentín et al., 2018).
Vibrations caused by abnormal operation and early-stage damage
might remain undetected until they lead to significant damage in the
turbine (Gagnon et al., 2012). Several common damages in hydraulic
turbines are caused by vibration amplitudes at the rotational
frequency, such as runner obstruction and damaged components
(Egusquiza et al., 2011). The amplitude of the rotational frequency
increases as associated damage appears (Vashishtha and
Kumar, 2022).

Vibration monitoring is typically conducted on machinery such
as turbines, pumps, and fans, which consist of several rotating parts
like bearings and gearboxes (Tung and Yang, 2009). In one study,
measurements were made in the axial direction as well as 90° apart in
the vertical and horizontal directions (perpendicular to the shaft
axis) for horizontal shaft machines (Egusquiza et al., 2018). Peak
frequency shifts were less pronounced than peak amplitude shifts,
with the trend of increasing amplitude shifts noticeable as the crack
or fault progressed away from the hub (Gillich et al., 2015;
Awadallah and El-Sinawi, 2020). The physical, geometrical, and
boundary conditions also affect the vibration signature of the
structure (Awadallah and El-Sinawi, 2020). A higher amplitude
of vibration at harmonics of the fundamental frequency (1X)
indicates faulty conditions such as unbalance, misalignment, and
a bent shaft. However, misalignment issues and bent shafts typically
cause strong vibrations in the 2X order synchronous frequency as
well (Betta et al., 2002; Patel and Darpe, 2009; Adams, 2009).

In condition monitoring, signal processing techniques are
crucial as they examine and establish the relationship between
input data such as vibration, sound, and current signals and the
damage in tools and machines (Mohanraj et al., 2020). Frequency
spectrum analysis is advantageous because it shows how much of a
signal exists within a given frequency band, whereas time-domain
analysis only reveals changes in a signal over time. This makes
frequency spectrum analysis ideal for signals with more non-
stationary characteristics (Srinivasan and Eswaran, 2005).

Vibration signature analysis is an effective technique for
identifying and tracking machine faults, with levels of damage in
tools and machines clearly indicated by shifts in the acceleration
spectrum and changes inmagnitude (Rmili et al., 2006). Sensors play
critical role in condition monitoring, providing real-time data for
predictive maintenance. However, sensor faults such as bias errors,
gain faults and drift faults can lead to inaccurate diagnostics. Recent
advancements in sensor-based fault diagnosis integrate AI-driven
models that enhance accuracy of fault detection and isolation
(Chauhan et al., 2024). Despite the advancements in ML and
Senosr-based fault detection, challenges remain in data
availability, model interpretability and adaptability to real-world
environments. High-dimensional sensor data require efficient
feature selection techniques, and deep learning models often lack
transparency, making them difficult to interpret for industrial
applications (Vashishtha et al., 2025).

This study aims to predict faults in a locally manufactured
Francis runner by analyzing the frequency spectrum of the
runner in both healthy and faulty conditions. A uniaxial
accelerometer is placed at the turbine bearing to capture the
shaft amplitude and its harmonics. Fast Fourier Transform
(FFT) and Wavelet Transform along with EMD algorithm are
applied to analyze the frequency components of the
vibrational signal.

2 Experimental setup

The experimental setup consists of a Francis Test Rig, as shown
in Figure 2. The rig features amainmotor that pumps hydraulic fluid
into the turbine and has a power capacity of 11 kW. It can produce
up to a 36-m head with a discharge of 23.33 L/s. The pump is
controlled using a Variable Frequency Drive (VFD) to achieve the
required head and flow rate.

Similarly, the rig includes a sump tank to store the hydraulic
fluid, which circulates from the main pump through a pipe into the
turbine and exits from the draft tube back into the sump tank. The
major components of the test rig include the Francis turbine, spiral
casing, draft tube, turbine shaft, and induction generator. The speed
of the induction generator is also controlled using another VFD, and
it has a power capacity of 3 kW. Tomaintain the position of the draft
tube, the turbine components and generator are located above
the sump tank.

FIGURE 1
Sediment erosion in trailing edge of Francis turbines: (a) Trishuli Hydropower plant, Nepal (b) Kalidandaki Hydropower Plant, Nepal (c)Nathpa Jhakri
Plant, India (Thapa et al., 2015; Sapkota et al., 2022; Sharma, 2010).
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For measuring the pressure, two absolute pressure sensors are
used: one at the inlet of the turbine and the other at the outlet of the
runner. The flow through the pipe is measured using an ultrasonic

flowmeter, and the rotational speed of the turbine shaft is
determined using an optical sensor. A uniaxial accelerometer is
installed at the top of the turbine bearing to capture the radial

FIGURE 2
Experimental Francis turbine test rig.

TABLE 1 Specifications of sensors and devices.

S.N. Item Remarks

1 Voltage input module [NI-9205] Measures voltage output from optical sensor

2 Current input module [NI-9203] Measures current output from pressure sensors

3 Compact DAQ chassis [cDAQ-9174] For data acquisition from all NI modules

4 Sound and vibration input module [NI-9234] Measures vibrational signal from uniaxial vibration sensor

5 Digital module [NI 9401] Measures the rotational speed of shaft

6 Absolute pressure sensor (10 bar for inlet and 1 bar for outlet) (ACP-2000 ALW) Pressure measurement with 4–20 ma current output

7 Uniaxial vibration sensor (PCB 603C01) Measures acceleration with sensitivity of 101 mV/g

8 Ultrasonic flowmeter (IFX-P200) Transit time flow measurement

FIGURE 3
3D model of locally manufactured Francis turbine.

TABLE 2 Design specification of Francis turbine.

S.N. Parameters Value

1 Design Head (H) 12 m

2 Design Discharge (Q) 32 L/s

3 Speed of the runner (N) 2250 RPM

4 Inlet Diameter (D1) 0.104 m

5 Outlet Diameter (D2) 0.104 m

6 Inlet Height (H1) 0.0285 m

7 Number of Blades (Nb) 10

8 Qed 0.2259

9 Ned 0.2490

10 Mass of turbine (M) 855.28 g

Frontiers in Mechanical Engineering frontiersin.org03

Sapkota et al. 10.3389/fmech.2025.1536603

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1536603


vibrational signal. The data acquisition devices are from National
Instruments, and the data acquisition program is developed in
LabVIEW. The data acquisition rate is 12,000 samples per second
for the vibration sensor and 2,000 samples per second for the
pressure and rotational speed sensors. The data were acquired for
each operating point for a duration of 12 s. Repeatability tests were
conducted to ensure the repeating nature of the result. The
specifications of the sensors and devices used during the
experiments are listed in Table 1.

A locally manufactured Francis turbine (Figure 3, with a design
head of 12m and a design flow of 32 L per second, was selected as the
test specimen for the experiment. The detailed design specifications
of the Francis turbine are listed in Table 2. The turbine has ten blades
and is optimally designed to operate at 2250 RPM.

2.1 Experimental test cases

In this experiment, there are three main test cases referred to
as Case One, Case Two, and Case Three. When the turbine
operates in the absence of hydraulic flowing fluid, the cases
are abbreviated as Case One Dry, Case Two Dry, and Case
Three Dry. When the turbine operates in the presence of
hydraulic flowing fluid, the cases are abbreviated as Case One
Wet, Case Two Wet, and Case Three Wet. In the wet condition, a
constant head of 4 m was maintained for all operating speeds. In
all of the dry cases, the sump tank was kept empty, while in the
wet cases, it was filled with water as the hydraulic fluid.

In a real scenario, when there is erosion in the turbine
components, the overall mass of the turbine is reduced,
which affects its balance. The trailing edge of the turbine
blade is the most affected part due to erosion, as shown in
Figure 1. To replicate this scenario, the blades at the
trailing edge would need to be removed. However,
removing the blade could damage the original turbine and
make it difficult to repeat the experiment. To address this
issue, faults in the turbine are induced by adding masses on
the top of the turbine blades. Cyanoacrylate adhesive is used to
glue the added masses to the turbine blades, and the masses are
removable if necessary.

2.1.1 Case one
This case represents the normal condition of the turbine, with no

induced faults. It is considered the reference signature case for
comparison of the vibrational signals with the other cases.

2.1.2 Case two
In this case, a fault is induced by adding a mass to the top of the

turbine blade, as shown in Figure 4a. The weight of the single mass
added is 35 g.

2.1.3 Case three
Similar to Case Two, another mass is added to the top of the

turbine blade, as shown in Figure 4b. The added mass has the same
weight of 35 g and is placed on the opposite blade of the
previously added mass.

2.2 Signal de-noising and wavelet
transform process

Signal de-nosing is an important process in various vibrational
applications including turbine signal analysis. In this study, the
Empirical Mode Decomposition (EMD) de-noising algorithm was
adapted to de-noise the vibrational signal acquired from the
accelerometer. The EMD de-noising method was first introduced
by Huang in 1998 for analyzing non-linear and non-stationary
signals. The EMD algorithm decomposes the signal into intrinsic
mode functions (IMFs), removes the noise from the signal by
analyzing each of the IMFs components using the threshold
technique, and reconstruction of signal after noise removal
(Huang et al., 1998). The algorithm was improvised and applied
by Dao et al. (2023) to de-noise the acoustic vibration signal of the
hydro turbine to determine the frequency spectrum of water flowing
with and without sediment load.

Fourier analysis is an effective tool to visualize the vibrational
signal, decomposing the signal to identify frequency components.
However, it is unable to provide the time when a particular
frequency has occurred due to poor time localization (Alan et al.,
1999). Due to this limitation, wavelet transform was adapted to
better visualize the frequency components of a signal in the time

FIGURE 4
(a) Fault induced on single blade of a turbine and (b) Fault induced on two blades of a turbine.
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frequency domain. Wavelet transform is accompanied by signal de-
noising process.

The wavelet transform has been defined as a powerful
computational tool that is popular for analyzing the
characteristics of a signal and decomposes the signal into
different scales which has better visualization in the both time
and frequency domains (Daubechies, 1990). The overall concept
of wavelet transform is the use of wavelet functions simply called
wavelets which grow and decay in a limited time within a localized
time-frequency domain to analyze the transient and non-stationary
signals with a wide range of applications like signal processing,
image processing, data compression, pattern recognition, etc.
(Graps, 1995; E W and Chui, 1993).

ri IMF, x t( )( ) � Cov IMF, x t( )( )
������������������
Var IMFi[ ]Var x t( )[ ]√ (1)

In this study, after applying the EMD algorithm and generating
IMFs, the correlation coefficient (Equation 1) of IMFs suggested by
Dao et al. (2023) has been calculated to remove the noisy IMFs and
signals were reconstructed to perform the Morlet wavelet transform.
The outstanding value of the correlation coefficient acts as a critical
point and IMFs before the critical correlation coefficient are
considered to be noisy IMFs which are excluded from the signal.
Morlet wavelet (Equation 2) is considered to be the best among the
other wavelets for performing fault diagnosis and vibrational
analysis of a signal. The wavelet was named in the name of Jean
Morlet which combines the complex sine function with the Gaussian
window and is very effective for analyzing the oscillatory behavior in
signals (Grinsted et al., 2004; Goupillaud et al., 1984).

ψ t( ) � eiω0t e−t
2/ 2σ2( ) (2)

Where, ψ(t) is the Morlet wavelet, ω0 is the central frequency of
the wavelet and σ is the standard deviation of the Gaussian window.

The EMD de-nosing process decomposes original signal into
IMFs (see Figure 5) and correlation coefficient (Equation 1) was
calculated for each of the IMFs. The IMFs before the outstanding
correlation coefficient are considered to be noise and ignored to
reconstruct the de-noised signal to perform wavelet transform
process. A complex Morlet wavelet named ‘cmor1.5-1.5’ which is

considered to be useful for sinusoidal signals was used to analyze
signal’s time frequency characteristics, where the algorithm
computes continuous wavelet transform coefficients. The results
were compared in the form of scalogram plots.

3 Result and discussions

The Fast Fourier Transform (FFT) algorithm was used to
analyze the vibrational signal around the turbine bearing. FFT is
one of the most efficient algorithms used to obtain the frequency
components of a time-domain signal. (Cooley et al., 1969). Figure 6
shows the frequency spectrum of the vibrational data acquired at a
rotational speed of 600 RPM under the Case One Wet condition.
The amplitudes of the fundamental frequency (10 Hz) of the shaft
and its harmonics (20, 30, 40, 50, 60) are the frequencies of interest
for this specific speed and can be visualized in the graph. It also
includes the vibrational frequency around 24 Hz, which corresponds
to the frequency of main pump in operation. While comparing this
plot with the FFT plot at dry condition, the presence of sub
harmonic components can be seen in wet condition while it is
not visible at the dry condition. This might be the vibrations due to
the flowing fluid, resulting in various fluctuations.

Similarly, for other test cases and operating speeds, the
amplitude of the fundamental frequency and its harmonics were
determined using FFT, referenced to the speed of the shaft. The
speed of the shaft ranges from 7 to 16 Hz (420–960 RPM) for both
dry and wet conditions. After determining the amplitudes of the
shaft frequency, graphs were plotted for both dry and wet conditions
with all test cases, as seen in Figures 7, 9.

While analyzing the result for dry condition (Figure 7),
overlapping amplitudes can be observed between 7 and 12 Hz,
followed by a peak in amplitude around the 12–14 Hz frequency,
and a sharp decrease in amplitude after 14 Hz for all test cases. The
peak amplitudes of 1.484, 1.449, and 1.371 m/s2 can be seen in
decreasing order as the faults increase, at frequencies of 13.36, 13.45,
and 13.72 Hz for Case One Dry, Case Two Dry, and Case Three Dry,
respectively. These frequencies can be referred to as the resonant
frequencies, as they experience peaks due to the application of
external forces. According to the literature, resonance occurs in a

FIGURE 5
IMF decomposition of the vibrational signal using the EMD algorithm.
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system when the excitation frequency matches its natural frequency,
which depends on the system’s mass, stiffness, and geometry
(Kraige, 2015; Singiresu, 2010).

Figure 8 shows the comparative plot of vibrational
amplitude for the fundamental frequency in the dry
condition. The dry condition is defined as the state when no
hydraulic fluid is flowing through the turbine components,
with experiments conducted under normal turbine conditions
(emptying and filling the sump tank), abbreviated as Case
Empty and Case Filled, respectively. The result of Case
Filled shows almost a 1000% reduction in the vibrational
resonant amplitude peak compared to Case Empty. This
indicates that vibration is absorbed when the sump tank is
filled with hydraulic fluid.

Similarly, while performing experiments in the wet condition
(Figure 9), the results are comparable to the dry condition. The
resonating peak has shifted to 10 Hz, while it was about 13.5 Hz in
the dry condition. The peak amplitudes for Case OneWet, Case Two
Wet, and Case Three Wet at the resonating frequency of 10 Hz were
obtained as 0.429149, 0.362469, and 0.521942m/s2, respectively. The
amplitude of vibration is lower in the wet condition (0.429149 for
Case One Wet) compared to the dry condition (1.484 for Case One
Dry) for all the cases. When comparing Case OneWet (normal) and
Case Two Wet (faulty), the resonating peak amplitude decreases in
Case Two Wet. In contrast, in Case Three Wet (faulty), the
resonating peak amplitude is the highest.

The scalogram plot is useful to visualize the amplitude variations
of a signal in the both time and frequency domain. Figures 10, 11

FIGURE 6
Frequency spectrum of vibration data at 600 RPM (Case One Wet).

FIGURE 7
Vibrational amplitudes for fundamental frequency in dry condition.
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represent the scalogramplot for wavelet transform result of faulty cases,
i.e., dry and wet. Referring to Figure 7, wavelet transform algorithm for
dry condition has been applied to visualize the transient behavior of
signal. Figure 10 is the scalogram plot for the Case Three Dry (faulty) in
which the turbine is operated at 13 Hz, and it shows the dominant
frequency components which is concentrated at 13 Hz and aligns with
the FFT result. The plot shows clear and consistent energy distributions
at the operating frequency over time.

Similarly, with reference to Figure 9, scalogram plots for wet
condition has been generated to visualize the signal in time

frequency domain. Figure 11 is the plot for Case Three
Wet (faulty) in which turbine’s operational frequency is
10 Hz and is the dominating frequency component in the
scalogram plot as well. Overall concentration of the energy is
at 10 Hz and is consistent along the time domain.
Comparing the plot with dry case, the amplitudes of the
dominating frequency in wet case is low and it aligns with
the FFT result in Figure 9. In both of the plots, there is a
presence of weaker but visible components at the multiple of
turbine’s frequency.

FIGURE 8
Vibrational amplitudes for fundamental frequency in dry condition.

FIGURE 9
Vibrational amplitudes for fundamental frequency in wet condition.
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4 Conclusion

The study aims to predict turbine faults by applying the
frequency transform algorithm and signal de-noising followed by
wavelet transform algorithm to visualize vibrational time series data.
The turbine faults are self-induced by adding masses to the top of the

turbine blades. The experiment revealed that the turbine fault
(adding masses) primarily affects the amplitude of the peak
resonating frequency, with minimal effect on the amplitudes of
other frequencies. The induced fault in the turbine can either
increase or decrease the amplitude of the peak resonating
frequency. In the dry condition, as the severity of the fault

FIGURE 10
Scalogram plot for case three dry.

FIGURE 11
Scalogram plot for case three wet.
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increased, the amplitude of the peak resonating frequency decreased
from 1.484 to 1.371 m/s2. In the wet condition, as the severity of the
fault increased, the peak resonating frequency initially decreased
from 0.429 to 0.3762 m/s2, and then increased to 0.521 m/s2 as the
severity further increased. It can be concluded that turbine faults
can be predicted by studying the amplitude of the
resonating frequency.

While analyzing the results with the wavelet transform
algorithm in scalogram plot, it aligns with the result of Fast
Fourier Transform algorithm. In both dry and wet condition,
there is clear and consistent energy distributions at the turbines
operating frequency in Figures 10, 11. Also, the stronger amplitudes
of turbine’s frequency can be seen in scalogram plot in dry condition
compared to wet condition and it is the same with FFT result.

As suggested by the literature (Kraige, 2015; Singiresu, 2010),
any changes in themass of the system can alter the natural frequency
of the system. In this experiment, when transitioning from dry to
wet conditions, hydraulic fluid was added to the sump tank, causing
the natural frequency of the system to shift from about 13.5 to 10 Hz,
along with a decrease in the amplitude of the vibrational signal.
Thus, any changes in the mass of the system can shift the
resonating frequency.
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