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This paper proposes an enhanced-search form of the newly designed artificial
hummingbird algorithm (AHA), named oppositional chaotic artificial
hummingbird algorithm. The proposed OCAHA methodology incorporates the
oppositional learning (OBL) in the population-initialization and at the ending
event of each iteration for a faster convergence, and the chaos-embedded
sequences of Gauss/mouse map to replace the random sequences of the
three population-updating iterative stages of AHA, viz. guided, territorial and
migration foraging to employ more diverse population for more solutional
accuracy. The effectiveness of the method has been evaluated in two phases.
OCAHA, the four state of the art algorithms, namely, PSO, DE, GWO and WOA,
their recently developed effective variants, namely, SLPSO, MTDE, SOGWO and
EWOA, and the inspiring optimizer AHA have been implemented on the
29 unconstrained CEC 2017 benchmark functions in the first phase. In the
second phase, OCAHA has been verified on 10 challenging engineering cases,
and compared with the concerned leading performances. Comprehensive
analysis of the simulated outcomes using various statistical metrics and of the
convergence profiles demonstrates that, the optimization ability of OCAHA on
CEC 2017 is superior to all the comparing algorithms except MTDE. For
engineering cases, OCAHA provides better searching performance, solution
precision, robustness and convergence rate than all competing designs, and,
on average, it has lowered the computational cost by 57.5% and 22.63% in term of
function evaluations and the fitness objective by 2.4% and 0.23% in comparison to
AHA and the chaotic version CAHA, respectively.
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GRAPHICAL ABSTRACT

Highlights

• An oppositional-chaotic metaheuristic approach (OCAHA) applied on CEC 2017 test suite.
• Ten number challenging cases of engineering design optimization have been solved.
• OCAHA performance on CEC 2017 found satisfactory among its 9 competitors.
• Optimized engineering designs by OCAHA are better than previous studies.

1 Introduction

As the losses are inevitable during any energy transferring process of a real working system, it has always been an important concern for
researchers to recover these associated losses to obtain more efficient system output, and in today’s world scenario of energy crisis, this is not
limited to recovery and proper reutilization of these lost forms of energy, but extends to the optimum utilization of a number of different
forms of non-conventional energy to meet the continuously increasing demand. Research and development always finds the new
technological means to fulfill the existing needs at the affordable acceptance as well as to advance the existing modes of needs or
requirements. The efficiency of any operational system is the integrated effect of all the individual functional unit efficiencies of the system
and each component of each of these functional units or machines transfers the required motions individually or in integrated manner to
develop and deliver the total output of the unit or machine. Among the several designing aspects to make an efficient, cost-effective and
reliable working system to meet the high-speed and high-precision demands of modern times, design optimization of the geometry of some
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intricate-shaped machine components to ensure more smoothness and reliability in its functioning and of the various operational factors of
some complex operational units to achieve the desired objectives has become a highly challenging area of research. In continuing the research
work in this direction of research withmore effective optimized designs, ten number of challenging cases of engineering design problems have
been chosen in the present study for constrained design optimization.

Galileo’s (1,564–1,642) shape optimizing theory (Cajori, 1999) is the first literature in this context to formulate the structural inter-
relation between the shape and the strength of a bent beam mathematically, and the theory identified the bent beam shape for its uniform
strength. Subsequently, several great scientists came up with a variety of classical implementing methods in various working directions.
Pareto’s (Kasprzak and Lewis, 2001) multi-objective optimization principle, Gerard’s analysis for weight minimizing of structures
(compression) by linear programming (George, 1956), Schmit and Miura approximation for structural synthesis (Schmit et al., 1976),

TABLE 1 Chaotic maps.

Sl. No. Chaotic map Equation Range

1 Chebyshev γu+1 � cos(u cos−1(γu)) (−1, 1)

2 Circle γu+1 � mod (γu + k2 − (k12π)sin(2πγu), 1), k1 � 0.5 and k2 � 0.2 (0, 1)

3 Gauss/mouse

γu+1 �
0, γu � 0

mod
1
γu
, 1( ), otherwise

⎧⎪⎪⎨⎪⎪⎩
(0, 1)

4 Iterative γu+1 � sin(k1πγu ), k1 � 0.7 (−1, 1)

5 Logistic γu+1 � k1γu(1 − γu), k1 � 4 (0, 1)

6 Piecewise

γu+1 �

γu
k3
, 0≤ γu < k3

γu − k3
0.5 − k3

, k3 ≤ γu < 0.5

1 − k3 − γu
0.5 − k3

, 0.5≤ γu < 1 − k3

1 − γu
k3

, 1 − k3 ≤ γu < 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
, k3 � 0.4

(0, 1)

7 Sine γu+1 � sin(πγu) (0, 1)

8 Singer γu+1 � k4(7.86γu − 23.31γu
2 + 28.75γu

3 − 13.302875γu
4), k4 � 1.07 (0, 1)

9 Sinusoidal γu+1 � 2.3γu
2 sin(πγu) (0, 1)

10 Tent

γu+1 �
γu
0.7

, γu ≤ 0.7

10
3
(1 − γu), γu ≥ 0.7

⎧⎪⎪⎪⎨⎪⎪⎪⎩ ,

(0, 1)

Performance test of chaotic maps

Chaotic map Algorithm Best Ψ(x→)min Mean Ψ(x→)min Worst Ψ(x→)min SD

1 Chebyshev Ch-AHA 6059.71506307 6080.22161518 6112.51453126 21.33581363

2 Circle Ci-AHA 6059.71540653 6064.16574142 6079.23641528 12.43053514

3 Gauss/mouse Ga-AHA 6059.71428898 6061.42834218 6078.82450722 9.03241345

4 Iterative It-AHA 6059.72401503 6099.20811139 6397.33492236 76.64510829

5 Logistic Lo-AHA 6060.71461924 6082.02661744 6089.42311838 20.20278316

6 Piecewise Pi-AHA 6059.73024132 6185.66340962 6359.18940855 104.55784628

7 Sine Si-AHA 6059.72904247 6179.99675456 6379.46643322 109.33466803

8 Singer Sn-AHA 6059.71439182 6075.22167824 6094.04851940 22.55321643

9 Sinusoidal Ss-AHA 6059.71440836 6086.44339162 6099.55034942 29.38940635

10 Tent Te-AHA 6059.71914474 6177.28756974 6316.20063428 70.81784206

11 - AHA 6059.71436139 6177.47132208 6319.63914249 73.01346180
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application of linear programming and branch and bound method (Wolsey, 1998) in production and transportation planning in industries,
reliability-redundancy allocation problem (RRAP) problems solving by dynamic programming and implicit enumeration to optimize system
reliability (Rajendra Prasad and Kuo, 2000), Lagrangian programming (relaxation and quadratic) techniques (Petcharaks and Ongsakul,
2007), and numerous other classical optimization methods had been formulated and effectively implemented in various optimization
requirements. The major issues associated with these classical optimization methods are; these methods are mostly deterministic in nature,
dependent on gradient-based information, and usually suffer from unbalanced exploratory-exploitative search motion and locally
entrapment problem (Cheng and Prayogo, 2017; Gu et al., 2018).

In overcoming these issues of the traditional mathematics-based optimizers and to succeed with the continuously evolving technological
challenges, optimizing experimentation in the recent past decades have been inclined to a new direction of optimization techniques, called
metaheuristics. Operational simplicity, randomized initial solutions, easy parallel search processing, strong robustness ability in optimized
results, etc., are the effective metaheuristic algorithmic qualities in optimizing a large variety of practical-world oriented problems. Using the
randomly initialized set of population or solutions, all these metaheuristics proceed through their distinct algorithmic methodologies to reach
the global or an approximation of the global solution for an optimization problem. Numerous metaheuristic techniques have been effectively
implemented in solving the complicated cases of various working areas like, economy and trade (Rafi and Dhal, 2020), finance (El-Abbasy
et al., 2020), process control (Wang Hongyang et al., 2021), management (Wang Xiuwang et al., 2021), image processing (Agrawal et al.,
2022), industry processing (Om Prakash et al., 2022), structural and elementary machine designing (Awad, 2021), machine learning and
neural network optimization (Aasim et al., 2022), and several other engineering and applied science requirements. Some recently approached
metaheuristic techniques are feature selection (Taradeh et al., 2019), spam detection (Faris et al., 2019), parameter identification (Abbassi
et al., 2019), image segmentation (Rodríguez-Esparza et al., 2020) and prediction (Qiao et al., 2020). Based on the different inspiring sources

FIGURE 1
Flowchart of the OCAHA algorithm.
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TABLE 2 CEC 2017 unconstrained functions (Awad et al., 2017).

Nature No. Name of the functions Search
range

Optima

Unimodal functions 1 Shifted and Rotated Bent Cigar Function [−100 100] 100

3 Shifted and Rotated Zakharov Function [−100 100] 300

Simple multimodal
functions

4 Shifted and Rotated Rosenbrock’s Function [−100 100] 400

5 Shifted and Rotated Rastrigin’s Function [−100 100] 500

6 Shifted and Rotated Expanded Scaffer’s F6 Function [−100 100] 600

7 Shifted and Rotated Lunacek Bi-Rastrigin Function [−100 100] 700

8 Shifted and Rotated Non-Continuous Rastrigin’s Function [−100 100] 800

9 Shifted and Rotated Levy Function [−100 100] 900

10 Shifted and Rotated Schwefel’s Function [−100 100] 1000

Hybrid functions 11 Zakharov Function, Rosenbrock’s Function, Rastrigin’s Function [−100 100] 1100

12 High Conditioned Elliptic Function, Modified Schwefel’s Function, Bent Cigar Function [−100 100] 1200

13 Bent Cigar Function, Rosenbrock’s Function; Lunacek Bi-Rastrigin’s Function [−100 100] 1300

14 High Conditioned Elliptic Function, Ackley’s Function, Schaffer’s F7 Function, Rastrigin’s Function [−100 100] 1400

15 Bent Cigar Function, HGBat Function, Rastrigin’s Function, Rosenbrock’s Function [−100 100] 1500

16 Expanded Schaffer’s F6 Function, HGBat Function, Rosenbrock’s Function, Modified Schwefel’s
Function

[−100 100] 1600

17 Katsuura Function, Ackley’s Function, Expanded Griewank’s plus Rosenbrock’s Function, Modified [−100 100] 1700

Schwefel’s Function, Rastrigin’s Function

18 High Conditioned Elliptic Function, Ackley’s Function, Rastrigin’s Function, HGBat Function,
Discus Function

[−100 100] 1800

19 Bent Cigar Function, Rastrigin’s Function, Expanded Griewank’s plus Rosenbrock’s Function,
Weierstrass

[−100 100] 1900

Function, Expanded Schaffer’s F6 Function

20 HappyCat Function, Katsuura Function, Ackley’s Function, Rastrigin’s Function, Modified Schwefel’s [−100 100] 2000

Function, Schaffer’s F7 Function

Composition functions 21 Rosenbrock’s Function, High Conditioned Elliptic Function, Rastrigin’s Function [−100 100] 2,100

22 Rastrigin’s Function, Griewank’s Function, Modified Schwefel’s Function [−100 100] 2,200

23 Rosenbrock’s Function, Ackley’s Function, Modified Schwefel’s Function, Rastrigin’s Function [−100 100] 2,300

24 Ackley’s Function, High Conditioned Elliptic Function, Griewank’s Function, Rastrigin’s Function [−100 100] 2,400

25 Rastrigin’s Function, HappyCat Function, Ackley’s Function, Discus Function, Rosenbrock’s
Function

[−100 100] 2,500

26 Expanded Schaffer’s F6 Function, Modified Schwefel’s Function, Griewank’s Function, Rosenbrock’s
Function

[−100 100] 2,600

Rastrigin’s Function

27 HGBat Function, Rastrigin’s Function, Modified Schwefel’s Function, Bent Cigar Function, High
Conditioned

[−100 100] 2,700

Elliptic Function, Expanded Schaffer’s F6 Function

28 Ackley’s Function, Griewank’s Function, Discus Function, Rosenbrock’s Function, HappyCat
Function

[−100 100] 2,800

Expanded Schaffer’s F6 Function

29 Hybrid Fn. 5 (No. 15), Hybrid Fn. 6 (No. 16), Hybrid Fn. 7 (No. 17) [−100 100] 2,900

30 Hybrid Fn. 5 (No. 15), Hybrid Fn. 8 (No. 18), Hybrid Fn. 9 (No. 19) [−100 100] 3,000
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of natural phenomena, metaheuristic optimizing methods have been roughly categorized into four sections as follows: evolutionary
algorithms (Jordán et al., 2022); swarm intelligent algorithms (Rajesh et al., 2021); algorithms inspired from the different events of science
(physical and chemical) (Sun et al., 2021; Deng et al., 2021); and human behavioural activity-based optimizers (Yan et al., 2022).

The evolutionary-based optimization algorithms have been developed from the Darwin theory of evolution. These algorithms
conceptualize some natural and biological evolutionary events of some distinct creatures, like selection, reproduction, combination, and
mutation into the methodologies, where the global solutions are obtained through creating a new descendent inhering its parents properties

TABLE 3 Welding types, material properties and cost term values of WBD problem.

Welding type Material properties Cost terms

X1 (Two-sided welding) X1 (Four-sided welding) Material X2 σ (kpsi) E (Mpsi) G (Mpsi) R1 R2

0 1 Steel 0 30 30 12 0.1047 0.0481

0 1 Cast iron 1 8 14 6 0.0489 0.0224

0 1 Aluminium 2 5 10 4 0.5235 0.2405

0 1 Brass 3 8 16 6 0.5584 0.2566

FIGURE 2
Schematic diagram for BPDD, HTBD, PFHED, STHED and MDCBD problems.
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TABLE 4 Statistical results for the 29 unconstrained functions of CEC 2017 (50D, 30 runs).

Statistical AlgorithmsFn

measures PSO DE GWO SLPSO WOA SOGWO MTDE EWOA AHA OCAHA

Mean 2.09E+09 5.09E+10 2.17E+09 5.89E+04 2.39E+09 2.30E+09 3.69E+03 8.19E+08 3.71E+08 9.42E+06

F 1 SD 1.13E+9 1.93E+10 1.09E+09 4.79E+04 2.14E+09 2.12E+09 3.12E+03 7.79E+08 4.28E+08 8.92E+07

Mean 6.71E+04 1.56E+14 9.28E+04 4.71E+03 2.40E+05 1.03E+05 1.07E+02 5.87E+04 4.41E+04 2.59E+04

F 3 SD 3.73E+04 1.13E+13 1.10E+04 1.27E+03 8.04E+04 2.01E+04 1.31E+00 4.29E+04 3.21E+04 8.73E+03

Mean 1.18E+03 1.69E+05 1.06E+03 7.83E+02 1.52E+03 1.01E+03 4.31E+02 1.18E+03 8.14E+02 7.91E+02

F 4 SD 3.78E+02 2.30E+04 2.87E+02 2.17E+01 1.68E+02 1.78E+02 2.20E+01 1.54E+02 8.68E+01 6.39E+01

Mean 1.01E+03 2.29E+03 1.11E+03 8.64E+02 1.13E+03 1.11E+03 6.87E+02 1.06E+03 1.10E+03 8.83E+02

F 5 SD 5.83E+01 6.67E+01 1.21E+02 4.49E+01 6.97E+01 1.31E+02 3.39E+01 6.03E+01 5.89E+01 4.77E+01

Mean 6.17E+02 6.89E+02 6.27E+02 6.13E+02 6.95E+02 6.26E+02 6.10E+02 6.83E+02 6.77E+02 6.56E+02

F 6 SD 5.59E+00 5.77E+00 5.83E+00 4.66E+00 1.20E+01 5.66E+00 1.81E+00 1.11E+01 1.23E+01 8.49E+00

Mean 1.57E+03 1.33E+04 1.73E+03 1.46E+03 1.68E+03 1.59E+03 1.44E+03 1.63E+03 1.70E+03 1.41E+03

F 7 SD 2.78E+02 4.89E+02 2.07E+02 1.64E+02 1.23E+02 1.92E+02 8.92E+01 1.15E+02 1.97E+02 1.01E+02

Mean 1.19E+03 3.32E+03 1.30E+03 1.15E+03 1.27E+03 1.31E+03 1.12E+03 1.23E+03 1.24E+03 1.14E+03

F 8 SD 5.69E+01 1.07E+02 6.62E+01 4.39E+01 7.11E+01 5.17E+01 2.38E+01 5.11E+01 4.96E+01 3.77E+01

Mean 2.47E+04 8.87E+04 2.42E+04 1.71E+04 2.77E+04 2.51E+04 6.68E+03 2.49E+04 2.61E+04 1.53E+04

F 9 SD 6.97E+03 1.17E+04 4.36E+03 4.25E+03 8.87E+03 5.11E+03 1.14E+03 7.07E+03 8.39E+03 4.11E+03

Mean 1.10E+04 2.58E+04 1.11E+04 8.97E+03 1.21E+04 1.12E+04 8.88E+03 1.09E+04 1.32E+04 7.88E+03

F 10 SD 1.31E+03 1.26E+03 1.11E+03 1.20E+03 1.37E+03 1.17E+03 7.51E+02 1.22E+03 1.29E+03 1.03E+03

Mean 4.61E+03 6.54E+05 5.14E+03 3.02E+03 2.91E+03 5.07E+03 1.43E+03 2.79E+03 2.83E+03 1.59E+03

F 11 SD 3.39E+03 4.34E+05 3.38E+03 5.10E+02 4.52E+02 3.57E+03 5.84E+01 3.39E+02 3.76E+02 9.41E+01

Mean 2.83E+09 1.41E+10 7.59E+08 7.87E+08 7.98E+08 7.63E+08 2.01E+06 5.81E+08 4.71E+08 7.51E+07

F 12 SD 2.17E+09 3.71E+09 5.15E+08 3.40E+08 4.13E+08 4.97E+08 2.65E+05 8.89E+07 2.66E+08 2.39E+07

Mean 1.27E+09 5.34E+10 8.27E+08 7.62E+07 2.29E+07 8.41E+08 1.21E+04 7.61E+06 7.83E+07 3.17E+06

F 13 SD 1.67E+09 2.28E+09 8.79E+08 4.49E+08 1.93E+07 8.96E+08 4.87E+03 5.33E+06 5.08E+07 7.72E+05

Mean 1.91E+06 1.71E+09 3.14E+06 6.53E+05 2.76E+06 2.95E+06 5.02E+04 7.04E+05 1.69E+06 3.14E+05

F 14 SD 2.31E+06 8.62E+09 2.81E+06 2.13E+05 1.81E+06 1.89E+06 2.59E+04 4.34E+05 1.24E+06 1.87E+05

Mean 9.13E+07 7.23E+09 2.33E+07 6.46E+05 1.17E+06 1.04E+07 4.79E+03 6.72E+05 2.28E+06 1.13E+06

F 15 SD 2.39E+08 4.34E+09 4.31E+07 3.31E+05 1.95E+06 2.20E+07 1.57E+03 2.27E+05 1.04E+06 3.43E+05

Mean 5.46E+03 4.18E+04 5.38E+03 4.33E+03 4.89E+03 4.84E+03 3.87E+03 4.45E+03 4.35E+03 4.04E+03

F 16 SD 6.66E+02 6.43E+03 5.54E+02 3.65E+02 5.11E+02 4.73E+02 3.33E+02 4.16E+02 4.71E+02 3.70E+02

Mean 5.79E+03 6.16E+08 4.21E+03 3.93E+03 4.31E+03 4.19E+03 3.63E+03 4.30E+03 4.22E+03 3.81E+03

F 17 SD 1.14E+03 1.27E+08 5.33E+02 4.30E+02 4.78E+02 4.59E+02 4.17E+02 4.31E+02 5.08E+02 4.01E+02

Mean 1.93E+06 4.42E+08 2.28E+06 1.79E+06 3.01E+07 2.78E+06 6.18E+04 4.29E+06 6.33E+06 2.74E+06

F 18 SD 1.49E+06 4.40E+07 1.63E+06 8.74E+05 1.88E+07 2.20E+06 2.39E+04 1.56E+06 1.05E+07 1.13E+06

Mean 2.39E+07 3.04E+08 1.05E+07 1.12E+06 6.33E+06 7.42E+06 4.24E+03 1.02E+06 1.27E+06 1.91E+05

F 19 SD 5.57E+07 1.54E+08 7.56E+06 6.39E+05 4.88E+06 2.86E+06 1.97E+03 7.71E+05 9.66E+05 2.05E+05

(Continued on following page)
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for every next-generation involving the randomly selected current individuals as parents. Genetic algorithm (Holland, 1975) (Goldberg,
2006) is the pioneer and among the widely applied metaheuristic techniques in this category. Differential evolution method (DE) (Storn and
Price, 1997), bio-geography-based optimization (BBO) (Simon, 2008) and several other effective processes come in this section. Migration
and mutation are the two main operators of the BBO algorithm to perform search locally and globally respectively. This algorithm is simple
and unique in its algorithmic design and possesses a faster pace towards convergence. Issues associated with the BBO algorithm are its poor
search capability, local optima stagnation and mainly, the computational complexity (Zhang Xinming et al., 2020). In the swarm-structured
metaheuristics, the different social activities within the swarms of various living creatures, and between the swarms members and their
surroundings have been theorized to develop the optimizing methodologies. Self-organization, durability, information sharing ability among
the multiple agents, easy parallel search processing, learning ability through the generation steps and design simplicity basically result in the
efficient optimization search with this categorized algorithms. A large number of effective algorithms of this category have been formulated
and utilized in a consistent mode, and still in the exploring phases of optimization research for new additions. Particle swarm optimization
algorithm (PSO) is the benchmark and the most common technique of the group, proposed by Kennedy and Eberhart (Kennedy and
Eberhart, 1995; Kennedy and Eberhart, 1997). PSO model was inspired by the foraging movements of birds swarms. This algorithm is
characterized by its good convergence rate, but, for some high dimensional search spaces, it suffers from the issue of easy entrapment into the
local optima, and to some extent, sensitive to its control parameters (Zhang et al., 2015). In the third category of metaheuristics, different
invented theories of physics and chemistry have been conceptualised to develop the optimizing methodologies. Gravitational search
algorithm (GSA) (Rashedi et al., 2009) is one of the widely used algorithms in this class, developed from the Newton’s Law of Gravitation. The
algorithm big bang-big brunch (BBBC) (Osman and Eksin, 2006) from the universe evolution theory, chemical reaction algorithm (Khac
Truong et al., 2013) from the observation on chemical reactions, and several other effective optimization techniques fall in this category. In
human behavioural activity-based optimizers, various activities of our society and its immediate environment have been capitalized to
develop the optimization methodologies. Harmony search (Lee and Geem) algorithm (HS) (Lee and Geem, 2005) is an algorithmic

TABLE 4 (Continued) Statistical results for the 29 unconstrained functions of CEC 2017 (50D, 30 runs).

Statistical AlgorithmsFn

measures PSO DE GWO SLPSO WOA SOGWO MTDE EWOA AHA OCAHA

Mean 3.91E+03 1.13E+04 3.69E+03 3.61E+03 3.81E+03 3.77E+03 3.49E+03 3.59E+03 4.05E+03 3.68E+03

F 20 SD 4.17E+02 4.28E+02 3.82E+02 2.14E+02 3.73E+02 4.56E+02 2.87E+02 2.94E+02 3.79E+02 3.02E+02

Mean 2.82E+03 4.37E+03 2.71E+03 2.70E+03 2.88E+03 2.74E+03 2.68E+03 2.79E+03 2.89E+03 2.65E+03

F 21 SD 1.17E+02 1.68E+02 8.26E+01 7.04E+01 1.23E+02 7.47E+01 5.03E+01 6.93E+01 1.18E+02 4.76E+01

Mean 1.21E+04 2.07E+04 1.33E+04 1.10E+04 1.27E+04 1.20E+04 9.47E+03 1.20E+04 1.36E+04 1.05E+04

F 22 SD 1.27E+03 8.40E+02 2.16E+03 1.18E+03 1.39E+03 1.27E+03 8.17E+02 1.24E+03 1.16E+03 4.93E+02

Mean 4.41E+03 8.29E+03 3.48E+03 3.61E+03 3.84E+03 3.41E+03 3.17E+03 3.66E+03 3.61E+03 3.43E+03

F 23 SD 2.33E+02 4.39E+02 9.67E+01 5.67E+01 1.38E+02 6.41E+01 3.25E+01 7.79E+01 7.22E+01 4.13E+01

Mean 5.57E+03 1.48E+04 3.65E+03 3.62E+03 3.68E+03 3.64E+03 3.51E+03 3.46E+03 3.71E+03 3.35E+03

F 24 SD 3.63E+02 8.65E+02 1.55E+02 5.84E+01 1.51E+02 1.48E+02 5.59E+01 1.01E+02 7.88E+01 5.67E+01

Mean 4.54E+03 7.43E+04 5.01E+03 3.17E+03 3.54E+03 5.04E+03 3.21E+03 3.37E+03 4.13E+03 3.30E+03

F 25 SD 1.17E+03 1.39E+04 8.83E+02 4.32E+01 1.85E+02 8.79E+02 5.39E+01 8.09E+01 3.51E+02 5.46E+01

Mean 1.21E+04 4.88E+04 1.13E+04 8.92E+03 1.31E+04 1.19E+04 8.77E+03 1.10E+04 1.26E+04 8.83E+03

F 26 SD 2.38E+03 1.07E+04 1.49E+03 7.32E+02 1.81E+03 1.52E+03 7.56E+02 8.76E+02 2.05E+03 7.70E+02

Mean 4.11E+03 1.19E+04 4.06E+03 3.91E+03 4.58E+03 4.08 E+03 3.51E+03 4.23E+03 4.29E+03 3.79E+03

F 27 SD 3.83E+02 7.57E+02 2.35E+02 1.91E+02 4.43E+02 2.10E+02 5.62E+01 1.94E+02 3.17E+02 1.78E+02

Mean 7.31E+03 1.03E+05 5.17E+03 4.12E+03 4.16E+03 5.05E+03 3.40E+03 3.93E+03 4.10E+03 3.36E+03

F 28 SD 2.07E+03 6.36E+03 1.39E+03 2.96E+02 4.02E+02 1.23E+03 2.89E+01 1.15E+02 6.78E+01 3.11E+01

Mean 6.59E+03 6.67E+06 7.06E+03 5.80E+03 8.33E+03 7.14E+03 5.57E+03 6.05E+03 7.54E+03 5.13E+03

F 29 SD 5.73E+02 2.45E+06 5.51E+02 3.91E+02 1.42E+03 7.09E+02 4.79E+02 5.38E+02 1.44E+03 3.48E+02

Mean 9.14E+08 4.23E+09 5.86E+08 6.26E+07 2.05E+08 8.81E+08 1.13E+04 9.66E+07 6.97E+07 7.84E+06

F 30 SD 8.37E+08 9.36E+08 6.69E+08 2.29E+07 8.01E+08 8.07E+08 3.69E+03 1.33E+08 1.72E+07 3.01E+06
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TABLE 5 Statistical results for the 29 unconstrained functions of CEC 2017 (100D, 30 runs).

Statistical AlgorithmsFn

Measures PSO DE GWO SLPSO WOA SOGWO MTDE EWOA AHA OCAHA

Mean 3.97E+10 4.39E+11 4.36E+10 1.17E+08 2.57E+10 4.29E+10 5.19E+03 1.15E+09 1.91E+08 4.31E+07

F 1 SD 1.79E+10 3.07E+10 8.57E+09 6.53E+07 5.01E+09 8.05E+09 4.44E+03 2.66E+08 1.04E+08 1.44E+07

Mean 2.82E+05 3.08E+17 4.04E+05 4.47E+04 6.61E+05 4.19E+05 4.19E+04 1.81E+05 5.08E+05 3.02E+05

F 3 SD 4.77E+04 1.43E+17 2.17E+04 1.29E+04 2.16E+05 2.41E+04 1.23E+04 3.86E+04 7.26E+04 3.77E+04

Mean 5.59E+03 4.04E+05 4.67E+03 8.81E+02 5.81E+03 4.48E+03 6.41E+02 1.32E+03 4.39E+03 8.66E+02

F 4 SD 3.20E+03 3.73E+04 1.61E+03 7.14E+01 1.31E+03 1.34E+03 5.77E+01 3.18E+02 7.22E+02 6.69E+01

Mean 1.58E+03 4.27E+03 2.14E+03 1.42E+03 2.02E+03 1.93E+03 1.38E+03 1.59E+03 2.10E+03 1.24E+03

F 5 SD 1.06E+02 9.37E+01 1.36E+02 8.49E+01 8.87E+01 1.48E+02 5.66E+01 4.16E+01 1.37E+02 7.55E+01

Mean 6.73E+02 7.31E+02 6.88E+02 6.69E+02 7.11E+02 6.92E+02 6.15E+02 6.85E+02 7.04E+02 6.58E+02

F 6 SD 6.09E+00 5.86E+00 5.85E+00 4.67E+00 8.46E+00 5.62E+00 3.89E+00 4.93E+00 6.88E+00 3.51E+00

Mean 2.02E+03 2.13E+04 2.22E+03 1.66E+03 3.39E+03 2.08E+03 1.74E+03 2.41E+03 3.11E+03 2.53E+03

F 7 SD 2.46E+02 4.45E+02 1.71E+02 7.43E+01 1.83E+02 1.66E+02 1.28E+02 1.60E+02 1.69E+02 9.36E+01

Mean 1.42E+03 5.49E+03 2.06E+03 1.18E+03 2.43E+03 2.13E+03 1.33E+03 1.95E+03 2.23E+03 1.67E+03

F 8 SD 8.88E+01 1.07E+02 1.12E+02 3.61E+01 1.05E+02 8.37E+01 4.59E+01 7.38E+01 1.08E+02 6.48E+01

Mean 3.37E+04 1.83E+05 3.17E+04 3.12E+04 5.30E+04 3.32E+04 6.44E+03 4.03E+04 4.74E+04 3.05E+04

F 9 SD 9.87E+03 2.13E+04 1.10E+04 3.91E+03 1.82E+04 1.22E+04 2.32E+03 6.43E+03 8.27E+03 4.88E+03

Mean 1.87E+04 3.49E+04 2.03E+04 1.77E+04 2.69E+04 2.06E+04 1.95E+04 2.17E+04 2.14E+04 1.69E+04

F 10 SD 1.37E+03 1.78E+03 2.37E+03 8.22E+02 1.98E+03 2.47E+03 6.97E+02 1.64E+03 2.69E+03 9.57E+02

Mean 2.12E+04 8.68E+07 5.07E+04 3.47E+03 1.50E+05 5.22E+04 3.84E+03 2.18E+04 2.48E+04 3.27E+03

F 11 SD 1.73E+04 4.66E+07 1.29E+04 1.68E+03 4.39E+04 1.47E+04 1.97E+02 4.55E+03 5.01E+03 5.19E+02

Mean 9.79E+09 7.33E+10 9.14E+09 2.54E+08 4.69E+09 9.31E+09 5.41E+05 5.07E+08 6.23E+08 2.41E+08

F 12 SD 8.16E+09 3.49E+10 7.73E+09 9.71E+07 2.17E+09 7.21E+09 2.47E+05 1.79E+08 3.10E+08 8.87E+07

Mean 9.48E+08 9.27E+10 8.13E+08 2.37E+06 9.11E+07 8.93E+08 1.18E+04 2.51E+05 6.55E+07 4.87E+05

F 13 SD 9.69E+08 8.19E+09 9.07E+08 8.64E+05 3.83E+07 9.31E+08 3.85E+03 3.19E+05 2.13E+07 8.16E+05

Mean 4.27E+06 1.64E+09 5.29E+06 1.68E+06 9.62E+06 4.72E+06 4.53E+04 2.33E+06 9.92E+06 8.02E+05

F 14 SD 2.07E+06 1.10E+09 3.67E+06 2.79E+05 4.66E+06 1.87E+06 3.19E+04 8.12E+05 3.57E+06 7.22E+05

Mean 4.06E+08 6.79E+10 1.43E+08 2.22E+06 2.03E+07 9.17E+07 5.43E+03 3.54E+05 3.59E+06 5.23E+04

F 15 SD 7.14E+08 9.03E+09 4.66E+08 5.36E+06 1.15E+07 2.71E+08 2.18E+03 7.56E+05 8.24E+05 2.81E+04

Mean 6.53E+03 6.23E+04 6.29E+03 5.97E+03 9.23E+03 6.04E+03 5.86E+03 6.24E+03 6.59E+03 5.71E+03

F 16 SD 7.72E+02 6.63E+03 6.73E+02 5.88E+02 2.14E+03 6.37E+02 4.06E+02 7.32E+02 1.18E+03 5.74E+02

Mean 6.19E+03 2.13E+09 5.17E+03 5.78E+03 9.16E+03 4.96E+03 4.64E+03 6.25E+03 6.88E+03 5.47E+03

F 17 SD 1.58E+03 5.56E+08 8.33E+02 5.17E+02 1.49E+03 5.90E+02 3.79E+02 7.76E+02 8.23E+02 6.19E+02

Mean 4.32E+06 1.53E+09 5.19E+06 1.43E+06 9.58E+06 5.86E+06 2.13E+05 4.67E+06 4.11E+06 9.34E+05

F 18 SD 3.84E+06 2.83E+08 3.68E+06 5.33E+05 5.14E+06 4.81E+06 1.67E+05 9.13E+05 2.12E+06 5.14E+05

Mean 2.39E+08 6.44E+10 8.43E+07 3.92E+06 4.74E+07 7.19E+07 4.74E+03 5.83E+06 2.51E+07 6.03E+05

F 19 SD 6.33E+08 8.17E+09 2.81E+08 1.82E+06 8.47E+06 1.73E+08 4.14E+03 8.23E+05 6.64E+06 7.31E+05

(Continued on following page)
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formulation of a musical procedure for determining the level of harmony. Teaching learning-based optimization algorithm (TLBO) (Venkata
Rao et al., 2011) is an another effective optimization methods of the same kind, based on the two phases of a teacher-students classroom
interactions. In the teacher’s phase, the students or the learners learn directly from their teachers, and during the students’ or learners’ phase,
they exchange their knowledge and get benefited further. The above discussed algorithms are to introduce the each category of metaheuristics.
Besides, an ample number of optimization techniques of each of the four categories have been effectively employed in solving the problems of
a large variety of optimization areas.

The designing object of an efficient optimizing framework is to obtain the optimal optimization at an acceptable computing cost while
ensuring simplicity in its implementation. But, in reality, most of these metaheuristic optimization techniques suffer from the issues of local
optima entrapment, low and imbalanced convergence mobility, low quality solution precision, long and uncertain computational run and
high computational complexity, especially for the high dimensional search spaces. As a transitional evolution of this research (optimization),
a new practice of hybridizing two or more number of different optimization algorithm features had been developed to enhance the solving
ability, and this technique is still in effective application in several challenging cases of optimization. A GWO variant, EEGWO (Wen et al.,
2018) with exploratory enhancing mechanism to solve the high-dimensional search spaces of global optimization problems, a modified self-
organizing hierarchical PSO variant, HPSO-TVAC (Ghasemi et al., 2019), a combined form of PSO and DE (Okulewicz andMańdziuk, 2019)
in solving the dynamic vehicle routing problem with continuous space are to mention some examples of recent hybridization approach of
metaheuristics.

Application of chaos in the optimization methodologies is an another useful technique to enhance the search quality of an optimization
process. Utilizing the randomness and sensitivity properties of chaos to the initial condition of an optimization process, a highly diverse
population can be generated at the output and thereby reducing the locally entrapment issue and excite the search mobility of the process
towards global convergence. Chaotic sine cosine operator in CSCWOA to improve the global search and to mobilize the local searching

TABLE 5 (Continued) Statistical results for the 29 unconstrained functions of CEC 2017 (100D, 30 runs).

Statistical AlgorithmsFn

Measures PSO DE GWO SLPSO WOA SOGWO MTDE EWOA AHA OCAHA

Mean 5.16E+03 2.71E+04 4.89E+03 4.63E+03 7.03E+03 5.07E+03 4.79E+03 5.67E+03 5.24E+03 4.52E+03

F 20 SD 4.34E+02 5.06E+02 4.02E+02 3.80E+02 6.31E+02 6.57E+02 3.82E+02 5.44E+02 6.14E+02 4.21E+02

Mean 4.16E+03 4.63E+03 4.10E+03 3.61E+03 3.88E+03 3.97E+03 3.23E+03 3.38E+03 4.04E+03 3.11E+03

F 21 SD 1.79E+02 2.08E+02 1.32E+02 8.66E+01 1.86E+02 9.24E+01 4.27E+01 8.92E+01 2.17E+02 1.17E+02

Mean 2.15E+04 4.34E+04 2.33E+04 1.98E+04 3.07E+04 2.21E+04 2.06E+04 2.39E+04 2.64E+04 1.85E+04

F 22 SD 1.47E+03 1.25E+03 3.48E+03 8.68E+02 1.67E+03 1.38E+03 8.04E+02 7.59E+02 3.24E+03 1.01E+03

Mean 4.77E+03 8.78E+03 3.71E+03 3.77E+03 4.77E+03 3.76E+03 3.16E+03 3.94E+03 4.91E+03 4.09E+03

F 23 SD 1.68E+02 5.53E+02 1.03E+02 1.24E+02 3.08E+02 9.77E+01 4.07E+01 1.39E+02 3.68E+02 2.13E+02

Mean 6.27E+03 8.66E+03 4.89E+03 4.92E+03 6.18E+03 4.75E+03 4.09E+03 5.11E+03 5.58E+03 4.69E+03

F 24 SD 4.51E+02 9.49E+02 2.10E+02 1.87E+02 3.47E+02 2.21E+02 6.23E+01 1.28E+02 4.22E+02 2.02E+02

Mean 4.89E+03 2.11E+05 6.16E+03 3.73E+03 7.01E+03 6.07E+03 3.63E+03 4.87E+03 5.08E+03 3.51E+03

F 25 SD 1.31E+03 1.44E+04 1.12E+03 1.11E+02 3.39E+02 9.79E+02 5.21E+01 8.02E+01 1.22E+02 7.77E+01

Mean 2.27E+04 1.24E+05 1.75E+04 1.78E+04 2.83E+04 1.92E+04 1.31E+04 2.13E+04 3.12E+04 2.15E+04

F 26 SD 4.05E+03 9.66E+03 1.97E+03 2.38E+03 3.69E+03 2.06E+03 8.51E+02 1.64E+03 5.07E+03 3.04E+03

Mean 4.72E+03 3.57E+04 4.40E+03 4.16E+03 5.03E+03 4.24E+03 3.81E+03 4.42E+03 4.53E+03 3.73E+03

F 27 SD 4.37E+02 2.03E+03 2.75E+02 1.88E+02 7.24E+02 2.55E+02 5.24E+01 5.11E+02 4.46E+02 1.59E+02

Mean 8.27E+03 1.31E+05 7.93E+03 4.31E+03 7.46E+03 7.91E+03 3.53E+03 3.74E+03 8.11E+03 4.08E+03

F 28 SD 1.77E+03 5.79E+03 9.65E+02 3.87E+02 9.26E+02 9.38E+02 3.34E+01 1.67E+02 1.22E+03 2.16E+02

Mean 8.41E+03 3.74E+07 8.78E+03 7.88E+03 2.06E+04 8.87E+03 6.54E+03 8.28E+03 1.16E+04 8.56E+03

F 29 SD 7.64E+02 3.10E+07 7.52E+02 6.53E+02 1.69E+03 8.04E+02 5.47E+02 8.39E+02 1.28E+03 7.68E+02

Mean 9.24E+08 8.33E+10 8.16E+08 2.03E+07 7.26E+08 1.04E+09 1.14E+04 1.93E+07 5.38E+08 1.07E+07

F 30 SD 8.06E+08 2.05E+10 7.54E+08 6.39E+06 2.54E+08 9.56E+08 4.27E+03 6.14E+06 9.03E+07 5.09E+06
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TABLE 6 Wilcoxon rank-sum test results for the 29 unconstrained functions of CEC 2017 (100D, 30 runs).

Fn OCAHA
vs. PSO

OCAHA
vs. DE

OCAHA
vs. GWO

OCAHA vs.
SLPSO

OCAHA
vs. WOA

OCAHA vs.
SOGWO

OCAHA
vs. MTDE

OCAHA
vs. EWOA

OCAHA
vs. AHA

F 1 4.2E−12 (+) 3.8E−12 (+) 4.1E−12 (+) 6.5E−09 (+) 4.2E−12 (+) 4.2E−12 (+) 3.3E−12 (+) 5.0E−12 (+) 1.2E−10 (+)

F 3 5.8E−02 (−) 2.4E−14 (+) 2.2E−11 (+) 2.2E−16 (+) 3.8E−08 (+) 4.0E−07 (+) 2.2E−16 (+) 4.4E−14 (+) 4.2E−12 (+)

+/− 1/1 2/0 2/0 2/0 2/0 2/0 2/0 2/0 2/0

F 4 5.0E−07 (+) 4.0E−12 (+) 6.0E−10 (+) 6.4E−02 (−) 4.1E−12 (+) 3.7E−11 (+) 4.1E−16 (+) 2.1E−05 (+) 4.1E−12 (+)

F 5 4.1E−12 (+) 4.16E−12 (+) 4.0E−12 (+) 6.0E−08 (+) 4.04E−11 (+) 4.1E−12 (+) 5.3E−07 (+) 4.04E−12 (+) 4.04E−11 (+)

F 6 2.3E−11 (+) 4.16E−12 (+) 4.06E−12 (+) 2.0E−10 (+) 4.0E−12 (+) 4.1E−12 (+) 2.0E−16 (+) 4.14E−12 (+) 4.07E−11 (+)

F 7 3.0E−08 (+) 3.9E−12 (+) 3.9E−08 (+) 4.0E−18 (+) 4.04E−11 (+) 5.5E−13 (+) 4.1E−15 (+) 5.24E−01 (−) 4.03E−10 (+)

F 8 2.4E−13 (+) 3.85E−12 (+) 4.07E−12 (+) 2.88E−16 (+) 4.05E−12 (+) 3.9E−11 (+) 2.6E−17 (+) 4.1E−12 (+) 4.0E−12 (+)

F 9 6.1E−02 (−) 3.86E−12 (+) 5.53E−01 (−) 5.84E−01 (−) 2.07E−03 (+) 6.7E−02 (−) 2.9E−18 (+) 2.1E−04 (+) 3.4E−07 (+)

F 10 3.0E−05 (+) 4.17E−12 (+) 2.6E−04 (+) 4.18E−01 (−) 4.05E−10 (+) 1.7E−04 (+) 4.2E−12 (+) 4.1E−12 (+) 3.96E−07 (+)

+/− 6/1 7/0 6/1 4/3 7/0 6/1 7/0 6/1 7/0

F 11 3.4E−02 (+) 4.06E−12 (+) 4.1E−12 (+) 5.5E−01 (−) 4.0E−12 (+) 4.1E−12 (+) 2.0E−02 (+) 3.87E−12 (+) 4.1E−12 (+)

F 12 4.8E−03 (+) 3.04E−08 (+) 5.1E−03 (+) 4.5E−01 (−) 3.8E−08 (+) 4.7E−03 (+) 4.07E−12 (+) 5.8E−05 (+) 2.1E−06 (+)

F 13 3.24E−06 (+) 4.16E−12 (+) 3.1E−06 (+) 3.16E−08 (+) 2.14E−09 (+) 4.5E−07 (+) 2.54E−03 (+) 5.7E−02 (−) 2.0E−11 (+)

F 14 3.4E−06 (+) 1.5E−08 (+) 3.0E−04 (+) 2.1E−03 (+) 1.86E−07 (+) 6.9E−09 (+) 2.33E−02 (+) 2.3E−06 (+) 6.9E−11 (+)

F 15 3.0E−04 (+) 3.74E−12 (+) 5.5E−02 (−) 3.08E−02 (+) 2.0E−07 (+) 3.84E−09 (+) 4.2E−08 (+) 2.8E−05 (+) 4.2E−12 (+)

F 16 1.7E−05 (+) 3.78E−10 (+) 1.8E−05 (+) 6.0E−02 (−) 2.5E−06 (+) 3.6E−02 (+) 4.4E−01 (−) 2.85E−03 (+) 4.54E−04 (+)

F 17 1.8E−03 (+) 4.3E−12 (+) 5.35E−02 (−) 4.0E−02 (+) 2.04E−10 (+) 3.1E−04 (+) 7.4E−04 (+) 4.9E−05 (+) 3.45E−07 (+)

F 18 3.6E−05 (+) 3.85E−12 (+) 6.84E−07 (+) 2.56E−02 (+) 2.65E−08 (+) 3.04E−07 (+) 1.9E−04 (+) 3.9E−12 (+) 4.2E−08 (+)

F 19 2.5E−03 (+) 3.84E−12 (+) 1.54E−04 (+) 1.8E−07 (+) 4.1E−12 (+) 7.14E−04 (+) 1.7E−07 (+) 3.85E−12 (+) 4.05E−12 (+)

F 20 3.2E−04 (+) 4.2E−12 (+) 8.3E−03 (+) 3.46E−01 (−) 3.9E−12 (+) 5.9E−03 (+) 2.3E−02 (+) 6.7E−10 (+) 1.74E−07 (+)

+/− 10/0 10/0 8/2 6/4 10/0 10/0 9/1 9/1 10/0

F 21 4.2E−12 (+) 3.04E−11 (+) 3.7E−10 (+) 2.2E−07 (+) 4.1E−12 (+) 3.9E−12 (+) 2.0E−03 (+) 5.6E−09 (+) 4.0E−12 (+)

F 22 4.1E−08 (+) 3.78E−12 (+) 3.7E−06 (+) 1.75E−03 (+) 3.87E−11 (+) 2.3E−11 (+) 2.9E−08 (+) 4.0E−12 (+) 2.7E−10 (+)

F 23 4.2E−12 (+) 3.86E−12 (+) 4.1E−07 (+) 3.1E−05 (+) 3.4E−09 (+) 2.2E−05 (+) 4.04E−12 (+) 3.1E−03 (+) 5.55E−11 (+)

F 24 4.2E−12 (+) 4.15E−10 (+) 2.9E−02 (+) 1.87E−03 (+) 3.87E−12 (+) 3.05E−01 (−) 2.8E−13 (+) 4.1E−08 (+) 3.7E−09 (+)

F 25 3.0E−03 (+) 3.8E−12 (+) 5.1E−11 (+) 3.55E−07 (+) 3.85E−12 (+) 6.6E−11 (+) 4.66E−05 (+) 4.1E−12 (+) 4.14E−12 (+)

F 26 4.2E−01 (−) 4.0E−12 (+) 6.08E−03 (+) 3.44E−02 (+) 2.45E−07 (+) 4.4E−02 (+) 6.7E−11 (+) 6.4E−02 (−) 3.6E−08 (+)

F 27 6.5E−10 (+) 3.86E−12 (+) 3.06E−09 (+) 6.15E−09 (+) 3.7E−07 (+) 3.24E−08 (+) 2.86E−02 (+) 2.7E−04 (+) 3.5E−07 (+)

F 28 2.3E−09 (+) 3.9E−12 (+) 4.06E−12 (+) 5.0E−01 (−) 3.9E−12 (+) 4.1E−12 (+) 1.7E−10 (+) 5.8E−07 (+) 4.04E−12 (+)

F 29 6.4E−02 (−) 3.75E−08 (+) 5.38E−01 (−) 3.7E−03 (+) 3.8E−12 (+) 4.7E−01 (−) 3.3E−12 (+) 4.3E−01 (−) 2.1E−06 (+)

F 30 8.0E−05 (+) 4.2E−12 (+) 1.7E−03 (+) 3.1E−04 (+) 2.14E−11 (+) 4.1E−12 (+) 1.8E−09 (+) 3.3E−03 (+) 3.9E−12 (+)

+/− 8/2 10/0 9/1 9/1 10/0 8/2 10/0 8/2 10/0

25/4 29/0 25/4 21/8 29/0 26/3 28/1 25/4 29/0
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processes of original WOA (Liu and Li, 2018), chaotic dolphin swarm algorithm (CDSA) in optimizing high-dimensional spaces (Qiao and
Yang, 2019), implementation of Gaussian mutation operator (GM) for population diversification at first and then utilizing chaos-enhanced
localized search (CLS) combined with GM in the flame updating process for population diversification in the second stage to improve the
local exploitation in CLSGMFO (Xu et al., 2019), and introducing chaos in the switching possibility between local (abiotic pollination) and
global (biotic pollination) searches and applying incremental search strategy to intensify the motion in some modifications of FPA, i.e flower
pollination algorithm (Burcin Ozsoydan and Baykasoglu, 2021) are to mention some of the effective works in the recent past on chaotic
optimization. Stochasticity, ergodicity and the non-periodic complex characteristics have found a vast applicability of the different chaotic
maps for a huge variety of optimization requirements.

The opposition-based learning rule (OBL) is an another widely employed search-enhancing technique to develop a greater variety in the
population to achieve more effectiveness and thoroughness in the search process for a faster convergence for an optimization process.
Tizhoosh (Hamid, 2005) introduced the OBL rule in the field of machine intelligence. The concept of involving a randomized population and

TABLE 7 Friedman test ranks for the 29 unconstrained functions of CEC 2017 (100D, 30 runs).

Fn PSO DE GWO SLPSO WOA SOGWO MTDE EWOA AHA OCAHA

F 1 7 10 9 3 6 8 1 5 4 2

F 3 4 10 6 2 9 7 1 3 8 5

F 4 8 10 7 3 9 6 1 4 5 2

F 5 4 10 9 3 7 6 2 5 8 1

F 6 4 10 6.5 3 9 6.5 1 5 8 2

F 7 3 10 5 1 9 4 2 6 8 7

F 8 3 10 6 1 9 7 2 5 8 4

F 9 6 10 4 3 9 5 1 7 8 2

F 10 3 10 5 2 9 6 4 8 7 1

F 11 4 10 7 2 9 8 3 5 6 1

F 12 9 10 7 3 6 8 1 4 5 2

F 13 9 10 7 4 6 8 1 2 5 3

F 14 5 10 7 3 8 6 1 4 9 2

F 15 9 10 8 4 6 7 1 3 5 2

F 16 7 10 6 3 9 4 2 5 8 1

F 17 6 10 3 5 9 2 1 7 8 4

F 18 5 10 7 3 9 8 1 6 4 2

F 19 9 10 8 3 6 7 1 4 5 2

F 20 6 10 4 2 9 5 3 8 7 1

F 21 9 10 7 4 5 6 2 3 8 1

F 22 4 10 6 2 9 5 3 7 8 1

F 23 8 10 2 3.5 7 3.5 1 5 9 6

F 24 9 10 4 5 8 3 1 6 7 2

F 25 5 10 8 3 9 7 2 4 6 1

F 26 7 10 2 3 8 4 1 5 9 6

F 27 8 10 5 3 9 4 2 6 7 1

F 28 9 10 7 4 5 6 1 2 8 3

F 29 4 10 6 2 9 7 1 3 8 5

F 30 8 10 7 4 6 9 1 3 5 2
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its opposite population instead of two randomized (independent) population sets basically ensures more convenience in the search process to
converge into the desired optimum solution in an unknown space (Rahnamayan et al., 2008) of optimization. Generally, during the earlier
stages, when the current population (randomized) may probably at far away from the desired optimum solution, applying the OBL (opposite
population) rule can move the search closer to the target and can save the search effort, and when the current population (randomized)
already reaches in the close vicinity of the target in the later iterations, this rule may generate unnecessary exploratory search in the
optimization. However, optimum utilization of this rule to accelerate the convergence mobility of an optimizing process is a matter of
extensive research (Hamid, 2005). In an opposition-based optimization process, during initialization, both randomly initialized set and the
opposite set of population or solutions are simultaneously processed to sort out the better population as the current set of solutions. These
current population or solutions are updated in the 1st iteration stages of an optimization algorithmic process, and after obtaining the updated
set, an opposite (set) of the updated set is determined and then both (sets) are combined, and then again the better population or better
solutions are sorted out from this combined set as the current population or the current solutions for the next (2nd iteration) update, and
continues to update in the same way up to the stopping criteria of maximum iterations. Application of OBL on the chosen weakest (ω)wolves

FIGURE 3
Friedman mean rank comparison plots for 50D and 100D CEC 2017 bencmark functions.

FIGURE 4
Convergence profiles for CEC2017 (X-iterations, Y-means of best fitness values of each iteration).
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using Spearman’s correlation coefficient to prevent excessive exploration and to enhance the rate of convergence of grey wolf optimizer
(GWO) (Dhargupta et al., 2020), utilizing OBL rule together with a novel updating approach and other search enhancers in mobilizing the
convergence and in improving the solutional precision of original equilibrium optimizer (Fan et al., 2021), using multi-leader wandering
around search strategy (MLWAS) to enhance the global exploratory search, random high-speed jumping strategy (RHSJ) to better the local
exploitation, and an adaptive lens opposition-based learning strategy to escape from local entrapment in an improved arithmetic
optimization algorithm variant, called LMRAOA (Zhang et al., 2022) in solving numerical as well as engineering problems, etc., are
some recently reported works utilized the OBL rule.

Design optimization of the machine components of different engineering systems has become a highly competitive area of optimization
research. Minimizing the system mass or volume, maximizing the system work output and efficiency, minimizing the different cost aspects,
minimizing the energy or power loss and many more developing areas of engineering design optimization are in practice. We highlight a few
of the most current engineering design optimization works. Zhang Yiying et al. (2020). merged the TLBO feature of fast convergence with the
global optimization strategy of neural network algorithm to developed TLBO-NNA, a hybrid method, and obtained effective solutions for
four benchmark engineering components, viz., WBD, tension/compression spring, PV and the SR problem. Venkata Rao and Pawar (2020).
implemented three number Rao algorithms for constrained optimization of ten number mechanical engineering system components and
obtained better designs for all the cases. Jena et al. (2022). utilized material generation (MGA) and sunflower optimization (SOA) algorithms
and the Taguchi technique to optimize a multi-objective problem for maximizing output power and system efficiency for a speed reducer
(industrial) by controlling its three system variables, viz, the electric motor speed, lubricant viscosity and the current intensity. In (Pavanu Sai
and Rao, 2022), the powerful exploratory characteristic of NSGA II together with the strong exploitative ability of PSO has been utilized for a
shell-tube heat exchanger (STHE) cost minimization. An automatic optimization method (Guan et al., 2022) integrating fluid-structure
interaction (FSI), the NSGA-II algorithm, and design of experiment (DoE) to upgrade the design quality and the efficiency of a propeller, and
obtained better results. A recently reported bio-inspired optimization algorithm, starling murmuration optimizer (SMO) (Zamani et al.,
2022) proposing a dynamic construction (multi-flock) and three new searching approaches, viz, separating, diving, and whirling search has
been implemented on various benchmark test functions and some classical optimization cases of mechanical engineering system like, design
of tension/compression spring, PVD, design of three-bar truss, WBD, gas transmission compressor design (GTCD), HTBD, design
optimization of industrial refrigeration system andMDCBD problem, and the optimized designs have established the algorithm performance
superiority. In reviewing the application of machine learning (ML) to additive manufacturing, a recently reported work (Vashishtha et al.,
2024) has emphasized how ML may help with issues including design, material selection, and process flaws. Design optimization, process

TABLE 8 Optimized designs and statistical comparison (WBD).

Optimized designs (WBD) Algorithms

Parameters aGeneAS
(Deb and
Mayank,
1996)

PSO (Kennedy
and Eberhart,
1997)

PSO-RIDC
(Datta and
Figueira,
2011)

aRao-2
(Venkata Rao
and Pawar,
2020)

aRao-3
(Venkata Rao
and Pawar,
2020)

AHA CAHA OCAHA

X1 1 1 1 1 1 1 1 1

X2 0 0 0 0 0 0 0 0

TW 0.1875 0.125 0.1875 0.125 0.125 0.1875 0.1875 0.1875

W 8.25 8.3125 8.25 8.25 8.25 8.25 8.25 8.25

TB 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

l 1.6849 4.115994 1.782103 1 1 1.80295909 1.78210241 1.78210226

Ψ( x→)min 1.9422 2.025363 1.955301 1.647757 1.647757 1.958180 1.955301 1.955301

FEs NA NA NA 370 300 4,600 2,900 2,100

Statistical comparison (WBD) Algorithms

Parameters aRao-2 (Venkata Rao and Pawar, 2020) aRao-3 (Venkata Rao and Pawar, 2020) AHA CAHA OCAHA

Best Ψ( x→)min 1.647757 1.647757 1.958180 1.955301 1.955301

Mean Ψ( x→)min 1.832341 1.853049 2.187287 2.113973 2.003373

Worst Ψ( x→)min 2.296429 2.220598 2.473181 2.210338 2.010657

SD 0.183766 0.212436 0.201105 0.108934 0.057033

FEmax 5,000 5,000 5,000 5,000 5,000

aInfeasible solution.
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monitoring, and product quality are all enhanced by machine learning (ML), which also highlights the significance of data protection and a
cooperative approach with human operators for successful deployment. In a recent study (Chauhan et al., 2024), a denoising filter that uses
mountain gazelle optimization (MGO) to improve machinery signals’ slight non-stationarities was introduced. Through the improvement of
kurtosis, signal-to-noise ratio (SNR), and impulsiveness extraction, the filter successfully lowers interference from the environment and other
items of machinery. Acoustic and vibration indications from amalfunctioning belt conveyor system have been used to verify its functionality.
A denoising filter that optimizes spectral kurtosis using the flow direction algorithm (FDA) has been developed by another study (Vashishtha
et al., 2025) in the same direction. This filter boosts modest non-stationarities. To efficiently recover impulsive components from signals with
complicated time-frequency structures, the filter has been designed using the optimal spectral kurtosis, free from thresholding circumstances.

No Free Lunch theorem (Wolpert and Macready, 1997) says that, a single optimization algorithm cannot solve all the optimization
problems. In other words, if a particular optimizer is capable to solve a particular optimization problem successfully, there is a high
probability of unsatisfactory performance by this algorithm in dealing with other problems. The theory consistently inspires the researchers
to invent new methodologies as continuous algorithmic reforms and development in this domain of research. Besides, achieving more
balanced exploratory-exploitative search motion, reducing the control parameters usage, and the other existing issues experienced with the
performance of all the metaheuristic techniques are the probable reasons to explore this field in a continuous mode. Artificial hummingbird
algorithm (Zhao et al., 2022; Sultan Yildiz et al., 2022; Wang et al., 2022) is a newly established swarm intelligent optimizer. The three flower-
nectar eating activities of natural hummingbirds via a superior quality memory updating practice by themselves, named, visit table, and with
the sufficient utilization of their three distinct flying skills have been conceptualized in the three population-updating policies of AHA
methodology. The concept of utilizing these three hummingbird flying patterns in their three foraging events via visit table ensures an
effective exploration-exploitation in the search characteristic of the AHA optimization process. In the proposed OCAHA methodology, the
OBL rule with elitism has been implemented in the initialization stage, after that, the random sequences have been replaced by the chaotically
generated sequences by the one-dimensional chaotic map, Gauss/mouse during the population-updating stages of every iteration, and then,
at the ending of each iteration, again the OBL rule has been implemented to achieve more optimization accuracy at a faster convergence. This
study evaluates OCAHA in two phases of simulation. In the first phase, OCAHA and its chosen competitors have been implemented on
50 and 100 dimensional sets of the CEC 2017 unconstrained functions, and in the second phase, ten challenging engineering cases have been
solved using the proposed technique.

The work’s foremost contributions are:

a. An oppositional-chaotic based metaheuristic optimization approach is made by incorporating the OBL rule and the chaotic sequence of
the Gauss/mouse map into the AHA algorithmic structure to apply on the unconstrained benchmark functions of CEC 2017 test suite
and ten number of challenging cases of engineering design optimization.

FIGURE 5
Convergence profiles of AHA, CAHA and OCAHA for WBD, BPDD, HCSD and STHED problems.

Frontiers in Mechanical Engineering frontiersin.org15

Bhattacharjee et al. 10.3389/fmech.2025.1547819

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1547819


b. More solutional accuracy and a faster rate of convergence on the majority of the test cases have been identified as the effects of the
incorporated chaos-influenced sequence and the oppositional rule respectively.

c. A thorough analysis of the simulated outcomes on CEC 2017 has been conducted using various statistical measures, tests and
convergence profiles to assess OCAHA’s overall performance in comparison to the 9 competing algorithms including AHA. Overall,
OCAHA has been found to be superior to all the comparing methods except MTDE.

d. The OCAHA optimized results on engineering cases have been statistically assessed with those of the considered competing algorithms
to validate the performance superiority of the proposed algorithm. OCAHA, on average, achieved 57.5% and 22.63% improvement in
the computational cost (FE) and 2.4% and 0.23% in the fitness objective (BestΨ(x→)min) in comparison to CAHA and AHA, respectively.

The rest of the study is arranged as follows: Section 2 reviews the AHAmethodology, the OBL rule and the chaotic maps, and proposes the
oppositional chaotic artificial hummingbird algorithm (OCAHA), section 3 describes the CEC 2017 unconstrained benchmark functions and
the engineering problems, section 4 contains simulation results analysis for both CEC 2017 functions and engineering cases, and finally,
section 5 concludes the study.

2 Algorithmic methodologies

2.1 Artificial hummingbird algorithm (AHA)

This algorithm (Zhao et al., 2022; Sultan Yildiz et al., 2022; Wang et al., 2022) is a newly proposed swarm-based optimizing method, that
develops the different foraging (flower nectar) intelligence of hummingbirds from the different sources of flowers as their target foraging
sources. The individual flowers (i.e the individual qualities and contents of flower nectar) of a source, rate of feeding, and the time since the
last foraging a source are the basic foraging requirements, that a hummingbird follows to identify its target source from a set of different
sources. In AHA, each source is assumed to have same number and same kind of flowers for simplifying the method. A food source has been
considered as an individual population or a solution vector, and the feeding rate from the source represents the corresponding objective
fitness value. When there is a population of hummingbirds and a number (set) of food sources, each bird can recall its most recent foraging
visit to each source. After foraging at their target source, each one of them informs the other members of the population of their last foraging

TABLE 9 Optimized designs and statistical comparison (BPDD).

Optimized designs (BPDD) Algorithms

Parameters Conv. design
(Thamaraikannan and
Thirunavukkarasu, 2014)

GA (Thamaraikannan
and Thirunavukkarasu,
2014)

bRao-1
(Venkata Rao
and Pawar,
2020)

bRao-2
(Venkata Rao
and Pawar,
2020)

AHA CAHA OCAHA

dDR 21.12 20.957056 20.998852 21.009089 21.001599 20.999488 21.002488

dDN 73.25 72.906562 72.760100 72.724478 72.750688 72.757979 72.747572

B 5.21 5.239177 5.249720 5.252303 5.250398 5.249871 5.250622

dDR′ 42.25 42.370429 41.997704 42.018177 42.003198 41.998976 42.004976

dDN′ 36.60 36.453281 36.380050 36.362239 36.375344 36.3789895 36.373786

Ψ( x→)min 105.12 104.533508(a104.762898) 104.761153 104.761290 104.761207 104.761175 104.761163

FEs NA 300000 51300 35280 42160 28120 12870

Statistical comparison (BPDD) Algorithms

Parameters bRao-1 (Venkata Rao and Pawar, 2020) bRao-2 (Venkata Rao and Pawar, 2020) AHA CAHA OCAHA

BestΨ( x→)min 104.761153 104.761290 104.761207 104.761175 104.761163

MeanΨ( x→)min 104.764493 104.798754 104.878914 104.848453 104.763474

WorstΨ( x→)min 104.770168 105.000837 105.009134 104.913977 104.767966

SD 0.00218 0.08080 0.10410 0.011481 0.00139

FEmax 100 000 100 000 100 000 100 000 100 000

aActual value of Ψ( x→)min.
bInfeasible solution (C2x violated).
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TABLE 10 Optimized designs and statistical comparison (HCSD).

Optimized designs (HCSD) Algorithms

Parameters B&B
(Sandgren,
1990)

GeneAS
(Deb and
Goyal,
1997)

HSIA
(Guo
et al.,
2004)

MGA
(Guo
et al.,
2004;
Wu and
Chow,
1995)

PSO
(He
et al.,
2004)

DE (He et al.,
2004;
Lampinen
and Zelinka,
1999)

FA
(Hossein
Gandomi
et al., 2011)

PSO
(RIDC)
(Datta and
Figueira,
2011)

Rao-1
(Venkata
Rao and
Pawar,
2020)

Rao-2
(Venkata
Rao and
Pawar,
2020)

AHA CAHA OCAHA

DO 1.1807 1.226 1.223 1.227411 1.223 1.22304 1.223049 1.223041 1.2230 1.2230 1.223041 1.223041 1.223041

dW 0.283 0.283 0.283 0.283 0.283 0.283 0.283 0.283 0.283 0.283 0.283 0.283 0.283

N 10 9 9 9 9 9 9 9 9 9 9 9 9

Ψ( x→)min 2.7995 2.665 2.659 2.6681 2.65856 2.65856 2.6586 2.658559 2.658559 2.658559 2.658559 2.658559 2.658559

FEs NA NA NA NA 15,000 26,000 50,000 NA 45,400 25,000 4,300 3,650 2,850

Statistical comparison (HCSD) Algorithms

Parameters FA (Hossein Gandomi et al., 2011) Rao-1 (Venkata Rao and Pawar, 2020) Rao-2 (Venkata Rao and Pawar, 2020) AHA CAHA OCAHA

BestΨ( x→)min 2.658575665 2.658559 2.658559 2.658559 2.658559 2.658559

MeanΨ( x→)min 4.3835958 2.658675 2.666750 2.976789 2.746409 2.658591

WorstΨ( x→)min 7.8162919 2.659211 2.699494 3.168205 2.695847 2.658912

SD 4.6076313 0.000141 0.0167 0.347474 0.014348 0.000119

FEmax 75,000 75,000 75,000 75,000 75,000 75,000

Fro
n
tie

rs
in

M
e
c
h
an

ical
E
n
g
in
e
e
rin

g
fro

n
tie

rsin
.o
rg

17

B
h
attach

arje
e
e
t
al.

10
.3
3
8
9
/fm

e
ch

.2
0
2
5
.15

4
78

19

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1547819


TABLE 11 Optimized designs and statistical comparison (HTBD).

Optimized designs (HTBD) Algorithms

Parameters GeneAS (He et al.,
2004; Deb, 1997) (He
et al., 2004; Deb, 1997;
He et al., 2004; Deb,
1997) (He et al., 2004;
Deb, 1997)

GASO (He
et al.,
2004)

PSO (He
et al., 2004)

TLBO (Venkata
Rao et al., 2011)

Jaya (Venkata
Rao and
Waghmare,
2017)

Rao-2 (Venkata
Rao and
Pawar, 2020)

AHA (Zhao
et al., 2022)

CAHA OCAHA

RS 6.778 6.271 5.956868 5.955780 NA 5.955296 5.955782 5.952933 5.952931

RR 6.234 12.901 5.389175 5.389013 NA 5.388559 5.389014 5.386983 5.386978

QO 3.809 2.938 2.301546 2.269655 NA 2.270419 2.269694 2.270321 2.270317

μO × 10−6 6.096 5.605 5.402133 5.358697 NA 5.360411 5.358745 5.369101 5.369098

Ψ( x→)min 2161.4215 1950.2860 1632.2149 1625.442764 1625.44271 1625.184754 1625.4498 1624.516195 1624.512578

FEs NA NA 90,000 25,000 25,000 24,080 50,000 24,180 22,910

Statistical comparison (HTBD) Algorithms

Parameters TLBO (Venkata
Rao et al., 2011)

Jaya (Venkata
Rao and Waghmare,
2017)

Rao-1 (Venkata
Rao and Pawar,
2020)

Rao-2 (Venkata
Rao and Pawar,
2020)

AHA (Zhao
et al., 2022)

CAHA OCAHA

BestΨ( x→)min 1625.442764 1625.44271 1625.207058 1625.184754 1625.4498 1624.516195 1624.512578

MeanΨ( x→)min 1797.70798 1796.89367 1648.267728 1679.441400 1680.7812 1663.826451 1639.117139

WorstΨ( x→)min 2096.80127 2104.3776 1824.801380 2209.916751 1850.3812 1839.430785 1807.319247

SD NA NA 42.530510 107.410308 57 49.754622 34.096789

FEmax 25,000 25,000 25,000 25,000 50,000 25,000 25,000

Fro
n
tie

rs
in

M
e
c
h
an

ical
E
n
g
in
e
e
rin

g
fro

n
tie

rsin
.o
rg

18

B
h
attach

arje
e
e
t
al.

10
.3
3
8
9
/fm

e
ch

.2
0
2
5
.15

4
78

19

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1547819


visit, i.e the position and the rate of feeding of the target source. Visit table represents a unique memory-updating exercise by natural
hummingbirds during their food foraging movements. Visit table provides the updated or current position value, i.e the current visit level
value to each food source of a set for each hummingbird of a population, that directs the hummingbirds to select and move towards their
target food source among the available sources of the set. The visit level value of a food source for a hummingbird indicates the length of time
from the last eating (visiting) at the source by the bird. Therefore, if a source shows the longest unvisited time or the highest visit level value for
a particular hummingbird in a population, it actually represents the best foraging source, i.e., the target source for the hummingbird to forage.
If the visit table indicates a number of food sources with same highest visit level for a particular hummingbird, then the hummingbird targets
the source that has the best rate of feeding. When a hummingbird visits its target food source, its visit level value becomes zero, and
simultaneously the visit levels of all the other sources get updated with an increment of one for this particular hummingbird. In the visit table,
visit level values of the relevant food sources must be updated following each updating event during each generation or iteration of the
algorithm process. In this way, the target source selection and then performing the three intelligent food foraging events by sufficiently
utilizing the three unique flying skills of natural hummingbirds have been mathematically structured in the AHA methodology to induce an
effective search behaviour throughout a problem space of optimization. This section reviews the AHA algorithm framework by randomized
initialization of population and the equational descriptions of the three hummingbirds’ flower-nectar foraging strategies, namely, guided,
territorial and the migrating strategy as the updating events during each iteration, the opposition-based learning rule OBL, the chaos
property, and then provides the steps to implement OCAHA.

2.1.1 Initialization
For a set of w food sources and a population of w hummingbirds, initialized population is;

xu � low + r. up − low( ) u � 1, . . . . . . , w (1)
where, r is the random number, r ∈ [0, 1], up is the upper and low is the lower limits for a f-dimensional optimization space, and xu is the
expression for the uth source’s initialized (randomized) position.

The initialized visit table positions are;

FIGURE 6
Statistical comparison plots for HTBD, SRD, GTD and MDCBD problems.
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He and Wang; 2007)
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IPSO (He et al:; 2004)

EA (Mezura�Montes

and Coello; 2005)

CPSO (He and

Wang; 2007)
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VTu, v � 0 if u ≠ v
null u � v

{ u, v � 1, . . . , w (2)

where, u � vmeans the same position of vth source and uth hummingbird, i.e the uth hummingbird is currently visiting at the vth source for
nectar eating, and u ≠ v orVTu, v � 0 is the vth food source position, which has just been searched by the uth member (bird) in the ongoing i.e
current generation, and following this food foraging occurrence, the other sources’ positions (visit levels) for this uth hummingbird get
updated with an increment of 1.

2.1.2 Guided foraging
In this strategy, a hummingbird identifies its target that has the maximum or top positional value in the visit table, and if there exist a

number of food sources with same highest positional value, the hummingbird targets the source with the best rate of feeding, i.e with the
lowest rate (for objective minimization) or with the highest rate (for objective maximization) from these sources. After finalizing the target
source, the hummingbirds utilize their three natural flying movements, i.e axial, diagonal and omnidirectional fly sufficiently to reach the
target for the necessary feeding. A direction switch vector I has been included here to regulate these three flying movements to ensure the
optimum movement during each of the three food foraging events.

For a f-spaced (dimension) optimization, the direction vector I for the axial flying motion is;

TABLE 13 Optimized designs and statistical comparison (PFHED).

Optimized designs (PFHED) Algorithms

Parameters Org.
design
(Ramesh
and
Sekulic,
2003)

GA
(Zarea
et al.,
2014)

BA
(Zarea
et al.,
2014)

FOA
(Mariani
et al.,
2019)

Jaya
(Venkata
Rao and
Pawar,
2020)

Rao-1
(Venkata
Rao and
Pawar,
2020)

Rao-2
(Venkata
Rao and
Pawar,
2020)

AHA CAHA OCAHA

HL 0.3 0.95 0.997 0.9 1.0 1.0 1.0 1.0 1.0 1.0

CL 0.3 0.44 0.94 1.0 0.64 0.68 0.65 0.52 0.66 0.68

FH 0.00249 0.0072 0.00833 0.0086 0.00982 0.00982 0.00982 0.0077 0.00977 0.0099

nF 782 417 257.02 265.2 551.52 548.02 544.54 537 513 521.4

FT 0.0001 0.0001 0.000166 0.0001 0.00011 0.00012 0.00012 0.0001 0.00012 0.0001

FLL 0.00318 0.0072 0.00951 0.0072 0.00955 0.01 0.01 0.0072 0.0071 0.0070

NFH 167 57 56 53 48 48 48 59 51 50

Δp(H) 9.34 4.2 0.741 0.656 3.11 3.02 2.95 4.44 2.78 2.66

Δp(C) 6.90 0.52 0.46 0.589 0.80 0.80 0.80 0.72 0.769 0.786

LNO FLOW 1 0.87 0.997 0.976 1.000 1.000 1.000 1.0 1.0 1.0

εHE - 0.821 0.826 0.827 0.874 0.874 0.874 0.863 0.874 0.875

Ψ( x→)min 0.1576 0.1416 0.1341 0.1333 0.116665 0.116597 0.116546 0.129352 0.116693 0.115402

FEs - NA NA 3500 13870 13720 13000 13930 11910 9730

Statistical comparison (PFHED) Algorithms

Parameters Jaya (Venkata Rao and
Pawar, 2020)

Rao-1 (Venkata Rao and
Pawar, 2020)

Rao-2 (Venkata Rao and
Pawar, 2020)

AHA CAHA OCAHA

BestΨ( x→)min 0.116665 0.116597 0.116546 0.129352 0.116693 0.115402

MeanΨ( x→)min 0.117064 0.116922 0.226149 0.123197 0.120072 0.116373

WorstΨ( x→)min 0.120385 0.120385 2.484056 0.466671 0.187417 0.119789

SD 9.19e-04 6.75e-04 4.43e-01 8.01e-02 2.16e-03 5.59e-04

FEmax 14,000 14,000 14,000 14,000 14,000 14,000
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TABLE 14 Optimized designs and statistical comparison (SRD).

Optimized
designs (SRD)

Algorithms
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2
0
14

)

A
H
A
( Z
h
ao

e
t
al
:;
2
0
2
2
)

C
A
H
A

O
C
A
H
A

B 3.6 3.03 3.499999 3.499999 3.5 3.256893 3.5 3.5 3.5

mM 0.7 0.61 0.699999 0.7 0.7 0.726486 0.7 0.7 0.7

ZP 18 24.63 17 17 17 17.836781 17 17 17

LP 6.6 6.93 7.3 7.3 7.300033 7.817846 7.300001 7.3 7.3

LG 8.2 7.72 7.8 7.8 7.715772 7.824974 7.7153201 7.715460 7.715322

DP 2.8 3.35 3.350215 3.350215 3.350218 3.149753 3.350212 3.350215 3.350216

DG 5.2 5.29 5.286683 5.287800 5.286654 5.316783 5.286655 5.286655 5.286655

Ψ( x→)min 2247.79 2102.18 2996.348094 2997.058412 2994.482453 2,996.348 2994.471158 2994.344816 2994.342041

FEs NA NA 30,000 30,000 6,300 9,988 30,000 7,200 6,900

Statistical
comparison (SRD)

Algorithms
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BestΨ( x→)min 2996.348094 2997.058412 2996.348 2994.482453 2996.348 2996.348 2994.471158 2994.344816 2,994.342041

MeanΨ( x→)min 2996.348094 2997.058412 2996.348 2996.769019 2996.348 2996.348 2994.471652 2994.350415 2994.342403

WorstΨ( x→)min 2996.348094 NA 2996.348 2999.652444 2996.348 2996.348 2994.473229 2994.410172 2994.343127

SD 0 0 5.2 × 10−5 1.56 4.5 × 10−5 0 4.2512 × 10−4 5.37 × 10−5 2.69 × 10−4

FEmax 30000 30000 10000 25000 NA 10000 30000 10000 10000
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Iu
i( ) � 1 if i � randi 1, f[ ]( )

0 else
{ i � 1, . . . , f (3)

Direction switch vector for the diagonal flight skill is;

TABLE 15 Optimized designs and statistical comparison (STHED).

Optimized designs (STHED) Algorithms

Parameters Org.
design
(Kern
and
Kern,
1950)

GA
(Caputo
et al.,
2008)

PSO
(Patel
and
Rao,
2010)

BBO
(Amin
and Ali,
2013)

FOA
(Mariani
et al.,
2019)

Rao-1
(Venkata
Rao and
Pawar,
2020)

Rao-3
(Venkata
Rao and
Pawar,
2020)

AHA CAHA OCAHA

DOt 0.013 0.016 0.0145 0.01 0.012 0.012 0.012 0.0110 0.0113 0.0113

DIs 0.387 0.62 0.59 0.55798 0.52 0.4637 0.4637 0.4553 0.4698 0.4721

Sb 0.305 0.44 0.423 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Lt 4.88 1.548 1.45 1.133 1.2316 1.3912 1.3912 1.3660 1.4178 1.4163

N(t) 160 803 894 1565 1017 870 870 919 931 943

VCt 1.76 0.68 0.74 0.898 0.958 1.2261 1.2261 1.2659 1.1877 1.1748

Re(Ct) 36400 9487 9424 7804 10000 12205.2 12205.2 12067 11612 11475

Pr(Ct) 6.2 6.2 6.2 6.2 6.2 6.2026 6.2026 6.2026 6.2026 6.2026

h(t) 6558 6043 5618 9180 9317.3 6687 6687 6920.5 6542.7 6486.7

ΔpCt 62812 3673 4474 4176 4591 5412 5412 4487 4848 4836

D(h) 0.013 0.011 0.0103 0.0071 0.0086 0.01 0.01 0.0079 0.0081 0.0081

VHs 0.94 0.41 0.375 0.398 0.4265 0.4783 0.4783 0.4872 0.4721 0.4698

Re(Hs) 16200 8039 4814 3515 4568 4904 4904 4783 4754 4727

Pr(Hs) 5.4 5.4 5.4 5.4 5.4 5.3935 5.3935 5.3935 5.3935 5.3935

h(s) 5735 3476 4088.3 4911 4682.6 5613 5613 5781.6 5617.99 5605.16

ΔpHs 67684 4,365 4,721 5,917 5,523 7,171 7,171 7,519.4 7,378.8 7,347.9

UST 1471 1121 1177 1384 1369.5 1591 1591 1443 1581 1589

A 46.6 62.5 59.15 55.73 47.65 44 44 48.25 44.04 43.82

CCI (€) 16549 19163 18614 18059 16723 16070.69 16070.69 16823.03 16119.37 16082.16

CTDO (€) 27440 1671 1696 1251.5 1837.3 2,265.29 2,265.30 2,103.41 2,165.94 2,158.77

Ψ( x→)min € 43989 20834 20310 19310 18560.3 18335.99 18335.99 18926.45 18285.31 18240.94

FEs - NA 350 NA 5,400 4,660 3,160 5,170 4,050 2,700

Statistical comparison (STHED) Algorithms

Parameters Rao-1 (Venkata Rao and Pawar, 2020) Rao-3 (Venkata Rao and Pawar, 2020) AHA CAHA OCAHA

BestΨ( x→)min 18335.99 18335.99 18926.45 18285.31 18240.94

MeanΨ( x→)min 18336.06 18342.69 18997.61 18301.18 18242.31

WorstΨ( x→)min 18336.29 18435.56 19171.33 18363.77 18259.96

SD 5.77e-02 2.52e+01 9.71e+01 1.43e+01 0.313e+01

FEmax 6000 6000 6000 6000 6000
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TABLE 16 Optimized designs and statistical comparison (GTD).

Optimized
designs (GTD)

Algorithms
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GD 18 16 16 16 19 19 16 16 16 16

GB 22 19 19 19 16 16 19 19 19 19

GA 45 43 43 43 49 43 49 43 43 43

GF 60 49 49 49 43 49 43 49 49 49

Gear ratio 0.146666 0.144281 0.144281 0.144281 NA NA NA 0.144281 0.144281 0.144281

Ψ( x→)min 5.7 × 10−6 2.7 × 10−12 2.7 × 10−12 2.7 × 10−12 2.700857 × 10−12 2.700857 × 10−12 2.7008571489 × 10−12 2.7008571489 × 10−12 2.7008571489 × 10−12 2.7008571489 × 10−12

FEs NA NA NA 2,600 60 1120 NA 1350 450 350

Statistical
comparison (GTD)

Algorithms

P
ar
am

e
te
rs

U
P
SO
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BestΨ( x→)min 2.70085 × 10−12 2.700857 × 10−12 2.700857 × 10−12 2.7008571489 × 10−12 2.7008571489 × 10−12 2.7008571489 × 10−12 2.7008571489 × 10−12

MeanΨ( x→)min 3.80562 × 10−8 3.641339 × 10−10 2.471635 × 10−9 2.0593270182 × 10−9 2.197335 × 10−9 3.131739 × 10−10 3.061981 × 10−10

WorstΨ( x→)min NA NA 2.06290 × 10−8 3.1847379289 × 10−8 2.18443 × 10−8 0.561290 × 10−8 0.493107 × 10−8

SD 1.09631 × 10−7 5.525811 × 10−10 3.94 × 10−9 5.059779 × 10−9 4.013 × 10−9 2.737112 × 10−10 2.179182 × 10−10

FEmax 100000 30000 10000 10000 10000 10000 10000
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TABLE 17 Optimized designs and statistical comparison (MDCBD).

Optimized designs (MDCBD) Algorithms

Parameters NSGA-II (Deb and
Srinivasan, 2006)

TLBO (Venkata Rao
et al., 2011)

PVS (Savsani and
Savsani, 2016)

Rao-2 (Venkata Rao
and Pawar, 2020)

Rao-3 (Venkata Rao
and Pawar, 2020)

AHA (Zhao
et al., 2022)

CAHA OCAHA

RI 70 70 70 70 70 70 70 70

RO 90 90 90 90 90 90 90 90

tF 1.5 1 1 1 1 1 1 1

PA 1000 810 980 870 840 840 800 800

NF 3 3 3 3 3 3 3 3

Ψ( x→)min 0.4704 0.313656611 0.31366 0.3136566 0.3136566 0.3136566 0.3136566 0.3136566

FEs NA 600 600 180 140 600 125 105

Statistical comparison (MDCBD) Algorithms

Parameters NSGA-II (Deb
and Srinivasan,
2006)

TLBO
(Venkata Rao
et al., 2011)

ABC (Venkata
Rao et al.,
2011)

PVS (Savsani
and Savsani,
2016)

Jaya (Venkata
Rao and
Waghmare, 2017)

Rao-2
(Venkata Rao
and Pawar,
2020)

Rao-3
(Venkata Rao
and Pawar,
2020)

AHA
(Zhao
et al.,
2022)

CAHA OCAHA

BestΨ( x→)min 0.4704 0.313657 0.313657 0.313657 0.313657 0.313657 0.313657 0.3136566 0.3136566 0.3136566

MeanΨ( x→)min NA 0.327166 0.324751 0.333652 0.324425 0.315413 0.319783 0.3216842 0.315342 0.314988

WorstΨ( x→)min NA 0.392071 0.352864 0.352864 0.3867384 0.339999 0.392071 0.3332601 0.3320996 0.3291973

SD NA NA NA NA NA 0.00668 0.016399 0.0076 0.00639 0.00093

FEmax NA 600 600 600 600 600 600 600 600 600
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Iu
i( ) �

1 if i � R j( ), j ∈ 1, k[ ], R � randperm k( )
and k ∈ 2, r1. f − 2( ){ } + 1[ ]
0 else

⎧⎪⎨⎪⎩ i � 1, . . . , f (4)

Direction vector for the omnidirectional flight is;

Iu
i( ) � 1 i � 1, . . . , f; u � 1, . . . , w (5)

where, randi([1, f]) stands for generating a random integer from 1 to f, randperm (k) is to create a randomized permutation of
integers from 1 to k, and r1 is the random number producer in [0, 1].

When a hummingbird resides at its target position, the other food sources are updated with their new visit level values, which results in
developing a candidate food source in the process.

A candidate position (source) during the guided search foraging is developed as;

yu t + 1( ) � xu, TAR t( ) + s1.I. xu t( ) − xu, TAR t( )( ) (6)
s1 ~ N 0, 1( ) (7)

here, xu(t) is the uth source’s position at time t, i.e the current position, xu, TAR(t) represents the uth hummingbird’s target (source) position
(at t), where the uth hummingbird is intending to visit, and the guided factor denoted by s1 is defined by the normal distribution N(0, 1),
where the mean and standard deviation are, respectively, 0 and 1.

The position of the uth source is updated as;

xu t + 1( ) � xu t( ) Ψ xu t( )( )≤Ψ yu t + 1( )( )
yu t + 1( ) Ψ xu t( )( )>Ψ yu t + 1( )( ){ (8)

where, Ψ(.) represents the corresponding fitness function values. Equation 8 implies that, if a candidate flower-nectar foraging source
provides better food rate, i.e ifΨ(yu(t + 1)) (solution) is less (for objective minimization and vice versa) than that of the current food source,
i.e. Ψ(xu(t)), a hummingbird will move from its current position towards the said obtained candidate food source for better foraging.
Otherwise, after proceeding through the guided foraging strategy, a hummingbird will not move from its current food source position. On
visiting the candidate source, its position value (visit level) for the visiting hummingbird will be 0, and the position values (visit levels) of this
source for the other hummingbirds will be changed by their respective maximum levels (positional values) for the other sources of the set with
an increment of 1. At the same time, the position value of the other sources will be incremented by 1 for this visiting hummingbird during the
current generation.

2.1.3 Territorial foraging
After the target visit during the guided strategy, a hummingbird usually looks for a better source (candidate source) in the local

neighbouring region rather than visiting the remaining sources of the current foraging region.
A candidate food foraging source during the localized search movements of territorial foraging strategy is given as;

yu t + 1( ) � xu t( ) + s2.I.xu t( ) (9)
s2 ~ N 0, 1( ) (10)

where, s2 stands as a territorial factor, subjected to the normal distribution N(0, 1) with mean and standard deviation of 0 and
1 respectively.

2.1.4 Migration foraging
When the repeatedly visited current sources become lack of the necessary food, hummingbirds migrate to a far distant region for

foraging. The occurrences of this food foraging event have been defined by introducing a migration coefficient, GM. If the iteration
number attains the predefined value of this migrating coefficient, a hummingbird leaves the current source’s position with worst food
rate (worst source) and migrate to a far distant better source (solution), produced through randomly searching of the entire space.
After proceeding through the migration foraging event, the corresponding update in the visit table is to be done during each migrating
iteration of the process.

Migrating strategy update is given as;

xW t + 1( ) � low + r. up − low( ) (11)
where, xW stands as the worst source i.e the worst solution in the population.

During the earlier iterations of guided foraging, the hummingbirds tend to explore the whole space to find their target sources,
which ensures a higher exploration and avoidance of local convergence of the process, and when a hummingbird resides at its target
position in later iterations, the other members of the team will tend to shift from their respective current sources towards this newly
found source as a better food foraging option, which ensures a higher exploitation of the process. During the territorial foraging event,
exploiting search is emphasized by the hummingbirds in their local neighbouring region. Due to the scarcity of the required flower
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nectar or food at the frequently visited sources of the current region, a hummingbird migrates to a far distant source for better
foraging, and thereby hummingbirds perform exploratory search through the entire space, which improves the stagnation issue of
the process.

The most critical (worst) situation arises in the guided and the territorial strategies, when no replacement is found for all the
present sources, and a hummingbird visits each source in turn as its target feeding position (source) as per the updating mechanism of
the visit table in each generation or iteration. AHA methodology assumes a 50% (Zhao et al., 2022) occurrence probability between
either of the two strategies (guided or territorial) in each iteration, and the same probability of searching every other position (source)
during the guided search movement. Therefore, in the most extreme or worst situation, there is a possibility of targeting the same
source by a hummingbird after every 2w iterations or generations. Hence, the migration coefficient GM for a given population size w is
given by;

GM � 2w (12)

The AHA computational complexity is based on the population size (w), the dimension, i.e the optimizing variables (f), the
initialization process (wf), the maximum generations or iterations (tmax), the guided foraging update ((wpfptmax)/2), the territorial
foraging update ((wpfptmax)/2), the migration foraging update (wpf)ptmax/(2pw)) and the fitness function evaluations (wptmaxpE).

2.1.5 AHA pseudocode
AHA process starts with a randomly initialized population set and correspondingly initialized visit table information with a 50%

(Zhao et al., 2022) occurrence probability between either of the two strategies (guided or territorial) in each generation or iteration.
During the guided search, a hummingbird identifies its target according to the indicated visit levels and the food rates of the sources in
the visit table. Territorial foraging of a hummingbird usually involves searching the nearby neighbouring region for a better source. The
hummingbirds perform migrating search after every 2w number of generations. The concerned equations of direction vector Iu, ensure
the optimum usage of the three unique hummingbirds flying skills, i.e axial, diagonal and the omnidirectional flying skills in these three
AHA population-updating policies. The process is carried out up to the maximum generations to reach the closest to the global
convergence.

2.2 Opposition-based learning rule (OBL)

Randomized population-initialization is typically the first step in an optimization process, producing a set of random solutions, and after
that, by updating them (solutions) through its distinct algorithmical population-updating events in each iteration through a predefined
maximum generations or iterations, it tries to reach the desired solution for an optimization problem. It is quite normal for an initial solution
to be far from the desired convergence (solution) in a vast complex optimizing-search space without knowing the original or optimal
optimization point of the space. This can lead to high computational cost, and in the most critical scenario, they (the initialized population)
might be too far to converge into the solution. Tizhoosh (Hamid, 2005) introduced a new machine intelligence solving policy, called
opposition-based learning rule (OBL). In an oppositional optimizing-search process, both current and its opposite population are processed
simultaneously during initialization and iterative updating events of each iteration. This enables the process to search from both population
directions to reach the optimum solution at a faster convergence (Rahnamayan et al., 2008). However, the effect of the OBL rule on the search
performances of an opposition-based optimization algorithm, like search thoroughness and convergence mobility may vary from case to case,
and still the OBL effectiveness is an extensive research matter to determine the specific problem types and circumstances to apply the rule
(Hamid, 2005).

2.2.1 Opposite population
An Oppositional (OBL) optimization process (Hamid, 2005) involves both the populations (current and its opposite) simultaneously to

reach the optimum solution at a faster rate.
If p be a real number in the interval [Low, Up] represents a current population or solution in a one-dimensional problem’s space, its

opposite population, i.e the opposite number, po can be defined by;

po � Low + Up − p (13)
Similarly, for a f−dimensional problem’s search space, if pa = (pa1, pa2, pa3, pa4, . . . , paf) be a current population or current solution with
pa1, pa2, pa3, pa4, . . . , paf ∈ R and its all elements, pai ∈ [Lowai, Upai], then each element (variable) of its opposite population or opposite
solution, pa o can be described as;

pai o � Lowai + Upai − pai i � 1, . . . , f (14)
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Algorithm 1. Presents the AHA pseudocode.

2.3 Chaos property

Chaos theory studies the nonlinear system dynamics. In chaos-excited systems, a small variation in the initial conditions can generate a
highly diverse effect on the system output. Ergodicity, regularity and inherent stochasticity are the chaos properties (Wu and Chen, 1996)
which excite a chaotic system to search the entire space in a chaotic way with a high probability of global convergence. Generally, in the
population-initialization stage, an optimization algorithm involves the random number sequence generators to initialize the search space. A
chaotic optimization process utilizes the non-periodic chaotic sequences in place of the randomly generated sequences (Hossein Gandomi
et al., 2013) for a deeper and faster exploitation and a thorough exploration of the space, hence minimizing the local convergence problem.

2.3.1 Chaotic maps
The nonlinear dynamics of chaos energizes the searching behaviour of an optimization algorithm with a more thorough and faster search

characteristic, and this is why the various chaotic maps have been effectively applied in solving different real world optimization problems.
The performance of these chaotic maps, when integrated with a certain algorithm framework, differs from one another, and each map has a
unique initialization functioning range. Choosing the starting point inside the limiting range is a crucial factor for a chaotic map’s
performance because it has a significant impact on the final outcome. Table 1 contains a listing of various chaotic maps (Wang et al., 2001;
Ahmad Rather and Shanthi Bala, 2020), and for all these maps, we choose a starting point value of 0.7 within the limiting range for
initialization from 0 to 1. On the basis of the most robust optimization in a statistical result analysis (Table 1) of 30 individual runs of a
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performance test of AHA algorithm and each of its 10 chaotic variants, i.e. each combination of AHA framework and each of the listed
chaotic maps for the considered PVD optimization problem, the Gauss/mouse (Peitgen et al., 1992; Jothiprakash and Arunkumar, 2013) map
has been considered for all the required simulation studies of the present work.

2.4 Oppositional chaotic artificial hummingbird algorithm (OCAHA)

During initialization of the proposed method, an opposite population set is generated using the OBL rule Equation 14, and then it is
combined with the randomly initialized set to create a single set of solutions or population. Afterward, the element population of this
combined set are sorted in ascending (minimizing objective) or in descending (maximizing objective) orders, and then the first (best) 50%
solutions are selected as the current population to process (update) in the 1st iteration’s events, i.e either through guided (r(u)CH ≤ 0.5) or
through territorial (r(u)CH > 0.5) strategies and then through migration strategy (at every 2w generations or iterations as defined in Equation
12). Here, the chaotic sequence r(u)CH is generated using the Gauss/mouse map (Table 1) in (0, 1) for replacing the randomly generated
sequences of the direction-controlling vectors of Equations 3–5 as defined in the Equation 15 to control the three hummingbird flying skills in
a more effective manner to ensure a thorough search of the entire space. These chaotically updated direction switch vectors update the search
processes of guided Equation 6 and territorial Equation 9 foraging chaotically. The occurrence of these two events is controlled by the
specified r(u)CH values of Equation 16 to achieve a more balanced search towards global convergence. After updating through either guided or
territorial and the migrating (at every 2w generations or iterations as defined in Equation 12) events during each iteration, again the
opposition-based learning rule is implemented on the basis of a considered jumping probability (Jump_rate � 0.3) to bring the current
solutions or the current population in close vicinity of the desired solution. If the rand is greater than the Jump_rate, the opposite variable of
the corresponding current design variable is determined by Equation 14, otherwise, a current variable and its opposite variable will be same.
In this way, each current variable is to be processed to generate the opposite population set, and then both the sets are combined. Afterward,
this combined set are sorted according to the objective of optimization problem to select the best (first 50%) solutions of the set as the current
population for processing (updating) in the 2nd iteration, and the same updating continues up to the maximum generations to reach the
closest to the global solution.

Iu
i( )
CH( ) �

Iu
i( ) of 3( ), 1/3 ≤ r u( )

CH ≤ 2/3, Axial flight( )
Iu

i( ) of 4( ), r u( )
CH < 1/3, Diagonal flight( )

Iu
i( ) of 5( ), r u( )

CH > 2/3, Omnidirectional flight( ),
⎧⎪⎪⎨⎪⎪⎩ (15)

i � 1, . . . , f; u � 1, . . . , w

r u( )
CH � ≤ 0.5 → Guided foraging strategy

otherwise → Territorial foraging strategy,
{ (16)

u � 1, . . . , w
Figure 1 presents the algorithmic flowchart of OCAHA.

2.5 OCAHA implementation

The section describes the algorithmic steps for implementing the OCAHA method to optimize all the cases of the study.

Population-initialization:
◦ Set population size w, stopping criterion (maximum generations) tmax, optimizing variables and their limits ( f, x→, low, up),

optimization objective (Ψ, Ψ (x→)) function, and the required constant and constraint criteria for the implementing test case,
◦ Generate the randomly-initialized population set by Equation 1 and its opposite set by Equation 14; combine them as a single set; limit

the problem variables to their functional range; measure the fitness values using the concerned objective (Ψ(x)); ensure the constraints
fulfilling criteria for all the population and make them feasible; sort the population in ascending order (for objective minimization and
vice versa); select the first (best) 50% population; preserve some elite population or elite solutions; find the best (current best)
population; and then ready to update these non-elite population (current population) in the 1st iteration of the optimization process,

◦ Initialize the visit table by Equation 2,
• 1st (t � 1) iteration, (either through guided (when rCH ≤ 0.5) or through territorial (when rCH > 0.5) foraging strategy).

◦ Obtain the chaotic rCH (sequence) values from the Gauss/mouse map (Table 1),
◦ Evaluate the chaotic direction switch vectors (Iu(CH) of Equation 15) using Equations 3–5,

• Guided foraging strategy (rCH ≤ 0.5):
◦Update the current population through this event (Equations 6–8) using the chaotic direction vectors (Iu(CH) of Equation 15), check the
feasibility of the updated population, and then arrange them as the current population set to update in the next event,

◦ Find the current best population, i.e the best of current population set, and then update the visit table’s positions (levels) according to the
Algorithm 1 pseudocode,
• End (guided foraging strategy)
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• Territorial foraging strategy (rCH > 0.5):
◦ Update the current population through this event (Equations 8–10) using the chaotic direction vectors (Iu(CH) of Equation 15), check
the feasibility of the updated population, and then arrange them as the current population set to update in the next event,

◦ Find the current best population, and then update the visit table according to the pseudocode (Algorithm 1),
End (territorial foraging strategy)
• Migration foraging strategy:

◦Update the current population through the migration foraging event (Equation 11) at every 2w generations or iterations (GM of Equation 12),
check the feasibility of the updated population, and then arrange them as the current population set to update in the next event,

◦ Find the current best population, and then update the visit table according to the pseudocode (Algorithm 1),
• End (migration foraging strategy)
• Opposition-based learning rule, OBL:

◦ Based on the considered jumping (Jump_rate � 0.3) probability, get the opposite set of the current population set using Equation 14 (if
the rand, i.e. the randomly generated number is greater than 0.3, the corresponding opposite variable is generated by Equation 14,
otherwise, a current variable and its opposite variable will be of same value),

◦ Combine both the sets into a single population set, and then check the constraints fulfilling criteria for all these population and make
them feasible,

◦ sort the population in ascending order (for objective minimization and vice versa), and then select the first (best) 50% solutions to use as
current population for 2nd iteration,

◦Find the current best solution,
• Next iterations(t � t + 1),
• Visualize and get the global solution.

3 Descriptions and formulations of optimization problems

The section describes the 29 functions of CEC 2017 unconstrained test suite (Awad et al., 2017), and thorough mathematical
representations of the ten engineering problems.

3.1 CEC 2017 unconstrained functions

The CEC 2017 test functions (Awad et al., 2017) have been solved to check the local exploitation, avoidance of local optimality, global
exploration, solutional accuracy and the other performance measures of OCAHA. These functions are the standard single-objective
minimization problems for real-parameter numerical optimization. Table 2 lists the information for these 29 unconstrained standard
functions, and their detailed clarification are available in (Awad et al., 2017). Unimodal (F 1-F 3) functions assess the convergence accuracy of
a process, the global optimizing potential of a method is tested by simple multimodal (F 4-F 10) and hybrid (F 11-F 20) functions, and the
composition (F 21-F 30) functions evaluate the avoidance of the local optima entrapment issue of an optimization algorithm. The Hybrid and
the composition functions are more complicated than the unimodal and the simple multimodal functions, and are appropriate for evaluating
the optimizing ability of an algorithm in the real-world cases.

3.2 Engineering design problems

The detailed descriptions of the ten number considered problems of mechanical engineering design optimization have been presented in
this section.

3.2.1 Welded beam design (WBD)
A beam of rectangular cross-section of width W and thickness TB is to be welded to a rigid frame on either along its four joining sides

(defined byX1 � 1) or on its two longitudinal parallel joining sides (defined byX1 � 0) to support a constant perpendicular load F at its free
end of length L. The beam materials (defined by X2) and the types of weld (defined by X1) have been given in Table 3. The weld thickness is
TW and the length of the weld along its longitudinal parallel joining sides is l. The overall fabricating cost of this welded cantilever is to be
minimized as the single objective (Kennedy and Eberhart, 1997; Datta and Figueira, 2011) of the problem.

Designing variables to optimize( ):
x
→ � X1 X2 TW W TB l[ ]
Objective function (tominimize):
Ψ(x→) � 1 + R1( ) X1W + l( )TW

2 + R2WTB L + l( )( )
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭ (17)
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The problemdesign inequality constraints to satisfy :
C1x � Induced bending stress condition in the beam−

� sx − smax � sx − σ ≤ 0
C2x � Condition for critical buckling load in lateral direction

� F − Fcx ≤ 0
C3x � Maximumdeflection of the beam � εx − εmax ≤ 0
C4x � Maximum limit of generated shear stress in the welding

� τx − τmax � τx − 0.577σ ≤ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(18)

Designing variables′intervals : X1 ∈ 0, 1{ }, X2 ∈ 0, 1, 2, 3{ } and
TW � Variable discrete( ) in themultiples of 0.0625 � 0.0625, 2.0[ ] inch.
W � Variable discrete( ) in themultiples of 0.0625 � 2.0, 20.0[ ] inch.
TB � Variable discrete( ) in themultiples of 0.0625 � 0.0625, 2.0[ ] inch.
l � Variable continuous( ) � 1.0, 10.0[ ] inch.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭ (19)

Constant inputs for the problem:
smax � Maximum limit of bending stress � σ � 30, 000 psi
τmax � Maximum limit of shear stress � 0.577σ
εmax � Maximum limit of deflection � 0.25 inch.
E � Modulus of elasticity of beammaterial � 30 × 106 psi
G � Modulus of rigidity of beammaterial � 12 × 106 psi
L � Hanging length of the beam from its rigid support end � 14 inch.
F � Constant perpendicular load concentrated at the free end of the beam

� 6000 lb

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(20)

Input relations for the problem:

σx � Induced bending stress in the beam � 6FL

TBW
2

τp � primary shear stress developed in the weld � F�
2

√
TWl

for X1 � 0,

� F�
2

√
TW l +W( ) for X1 � 1

MB � Bendingmoment developed at the support end � F L + 0.5l( )
ρW � Torsional radius of the weld �

����������������
l

2
( )2

+ W + TW

2
( )2√

for X1 � 0,

� max

�����������������
l

2
( )2

+ W + TW

2
( )2√

,

����������������
W

2
( )2 + l + TW

2
( )2

√⎧⎨⎩ ⎫⎬⎭ for X1 � 1

JW � Polarmoment of inertia of the weld � �
2

√
TWl

l2

12
+ TW +W( )2

4
{ } for X1 � 0,

� �
2

√
TWl

l2

12
+ TW +W( )2

4
{ } + �

2
√

TWW
W2

12
+ TW + l( )2

4
{ }[ ] for X1 � 1

Cosγ �
l

2
ρW

for X1 � 0,

�
l

2
ρW

if l<W, for X1 � 1,

�
W

2
ρW

otherwise, for X1 � 1

τs � Secondary shear stress developed in the weld � MBρW
JW

τR or τx � Resultant shear stress in the weld �
����������������
τ2p + τ2s + 2τpτsCosγ
√

εx � Axial deflection of the beam � 4FL3

ETBW
3

Fcx � Beam′s critical load for lateral buckling with respect to an axis parallel−
to it′s width,W � 4.013WTB

3

6L2

���
EG

√
1 − W

4L

��
E

G

√( )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(21)
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3.2.2 Belt-pulley drive design (BPDD)
The objective of the belt-pulley drive problem (Venkata Rao and Pawar, 2020; Thamaraikannan and Thirunavukkarasu, 2014) is to

minimize the pulleys’ total weight in a flat belt-pulley drive system (Figure 2 for BPDD). From the driver pulley of diameter dDR, the required
power of 10 hp is to be transmitted to the common shaft mounting the 3rd and the 4th pulley of diameters dDR′ and dDN′ respectively, and
then through this 4th pulley to the output shaft mounting the driven pulley (dDN). The driver pulley diameter dDR, driven pulley diameter
dDN and the width of the pulleys B are the three continuous designing variables along with a tensile stress constraint for flat belt and a
dimensional constraint on the pulleys’ width have been considered to minimize the pulleys’ total weight to avoid any shaft and
bearing failures.

Designing variables to optimize( ):
x
→ � dDR dDN B[ ]
Objective function (tominimize):
Ψ(x→) � πρPB dDRTDR + dDNTDN + dDR′TDR′ + dDN′TDN′( )( ) kg

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭ (22)

The problemdesign inequality constraints to satisfy:
C1x � Induced tensile stress condition in the flat − belt

� SB − FT

BTB
� BdDN − 381.97≥ 0

C2x � Condition on thewidth of the pulleys
� 0.25dDR − B � dDR − 4B≥ 0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭ (23)

Specified intervals of designing variables:
dDR � Continuous variable � 15, 25[ ] cm
dDN � Continuous variable � 70, 80[ ] cm

B � Continuous variable � 4, 10[ ] cm

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (24)

Constant inputs for the problem:
RDR � RPMof the 1st i.e. the driver pulley � 1000 rpm
RDN � RPMof the 2nd i.e. the driven pulley � 250 rpm
RDR′ � RPMof the 3rd pulley � 500 rpm
RDN′ � RPMof the 4th pulley � 500 rpm
TB � Flat belt′s thickness � 1 cm
SB � Maximum tensile stress limit in the flat − belt � 30 kgcm−2

ρP � Mass density of thematerial of the pulleys � 7.2 × 10−3 kgcm−3

FT � Flat − belt′s tension in the tight − side � in kgf
FS � Flat − belt′s tension in the slack − side � in kgf
PBP � Power to be transmitted � 10 hp � 10 × 75 kgms−1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(25)

Input relations for the problem:
TDR � Thickness of the 1st or driver pulley � 0.1 × dDR cm
TDN � Thickness of the 2nd or driver pulley � 0.1 × dDN cm
TDR′ � Thickness of the 3rd pulley � 0.1 × dDR′ cm
TDN′ � Thickness of the 4th pulley � 0.1 × dDN′ cm
VDR � Tangential velocity of the 1stor driver pulley � πdDRRDR cmmin−1

VDR′ � Tangential velocity of the 3rd pulley � πdDR′RDR′ cmmin−1

πdDRRDR � πdDR′RDR′ 0 dDR′ � 2dDR

VDN � Tangential velocity of the 2ndor driver pulley � πdDNRDN cmmin−1

VDN′ � Tangential velocity of the 4th pulley � πdDN′RDN′ cmmin−1

πdDNRDN � πdDN′RDN′ 0 dDN′ � 0.5dDN
FS

FT
� Tension slack side to tight side( ) ratio of the flat − belt � 0.5

PBP � Power to be transmitted by the belt − pulley drive system � FT − FS( ) πdDNRDN( )
6000

FT − FS( ) πdDNRDN( )
6000

� 10 × 75 kgms−1 0FT � 2864789
dDNRDN

kgf

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(26)
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3.2.3 Helical compression spring design (HCSD)
This problem (Datta and Figueira, 2011; Sandgren, 1990) deals with the minimization of the wire volume, i.e the weight of a coil spring

(helical compression) of its winding coil’s outside diameterDO, wire diameter dW and the spring coils numberN. The spring must sustain a
steady axial compressive load Fmax without failing.

Designingvariables to optimize( ):
x → � DO dWN[ ]
Objective function tominimize( ):
Ψ(x→) � π2

4
dW

2DO N + 2( )( ) inch3

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭ (27)

The problemdesign inequality constraints to satisfy:

C1x � condition of Maximum shear stress induced in the spring � τmax − 8SFFmaxDO

πdW
3 ≥ 0

C2x � Maximum free length of the spring � LF( )max − LF

� LF( )max − ε − 1.05 N + 2( )dW ≥ 0
C3x � Minimumwire diameter condition � dW − dWmin≥ 0
C4x � Condition of maximummean diameter of winding coil � DOmax −DO − dW ≥ 0

C5x � Coil′smeanwinding diameter to wire diameter ratio � DO − dW

dW
− 3≥ 0

C6x � The spring′smaximumpermitted preload deflection � εPmax − εP ≥ 0
C7x � Spring free length criterion in the preloaded condition

� LF − εP − Fmax − FP

S
( ) − 1.05 N + 2( )dW ≥ 0

C8x � Condition on the deflection between preloaded and−
−maximumworking load postions � Fmax − FP

S
( ) − εM ≥ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(28)

Specified intervals of designing variables:
DO � Variable continuous( ) � 0.6, 3.0[ ] inch.
dW � Variable discrete( ) � 0.2, 1.0[ ] � 0.207, 0.225, 0.244, 0.263−[

0.283, 0.307, 0.331, 0.362, 0.394, 0.4375, 0.500] inch.
N � Integer variable � 1, 70[ ]

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭ (29)

Constant inputs for the problem:
Fmax � Working load maximum( ) � 1000 lb
FP � Compressive preload force � 300 lb

τmax � Allowablemaximum shear stress � 189 × 103 psi
E � Springmaterial′s Young′smodulus � 30 × 106 psi
G � Springmaterial′s shearmodulus � 11.5 × 106 psi

LF( )max � Maximum free length of the spring � 14 inch.
dWmin � Minimumwire diameter of the spring � 0.2 inch.
DOmax � Spring′s winding coilmaximumoutside diameter � 3 inch.
εPmax � Allowablemaximumpreloaded deflection of the spring � 6 inch.
εM � Deflectionmeasured between preloaded andmaximumworking

-load positions � 1.25 inch.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(30)

Input relations for the problem:

ε � Deflection atmaximumworking load position � 8FmaxDO
3N

GdW
4

S � Spring rate of deflection � GdW
4

8NDO
3

εP � Deflection at preloaded position � FP

S

I � Spring index � DO

dW

SF � Wahl stress factor � 4I − 1
4I − 4

+ 0.615
I

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(31)
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3.2.4 Hydrostatic thrust bearing design (HTBD)
The HTBD (Venkata Rao and Pawar, 2020; Zhao et al., 2022; Siddall, 1982; He et al., 2004; Deb, 1997) case deals with the power loss

minimization during the operation of a hydrostatic thrust bearing (Figure 2 for HTBD) requiring a load bearing capacity of F, i.e the bearing
has to support an axial thrust load F. Bearing step radius RS, its recess radius RR, rate of fluid (oil) flow QO and the fluid viscosity μO are the
four designing variables along with seven (constraints) nonlinear inequalities have to be considered for optimizing this problem.

Designingvariables to optimize( ):
x → � RS RR QOμO[ ]
Objective function tominimize( ):

Ψ(x →) �
QOpO

0.7
+ PF

12
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ftlbs−1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(32)

The problem design inequality constraints to satisfy:
C1x � Bearing load carrying capacity is to be at least equal to the generator′s weight � F −WG ≥ 0
C2x � Oil supply pressure at the inlet should, atmost, equal themaximumpressure � pM − pO ≥ 0
C3x � Maximumpermissible limit of Oil temperature rise � ΔTOM − ΔTO ≥ 0
C4x � Condition forminimum fluid or oil film thickness � hO − hMIN ≥ 0
C5x � Maximumpermissible limit of recess diameter � RS − RR ≥ 0
C6x � Flow of fluid or oil is should be laminar and the exit & entrance loss of pressuremust bewithin−

the 0.1%of the total pressure drop or pressure loss � 0.001 − γO
gpO

QO

2πRShO
( )2

≥ 0

C7x � Assumed average pressure limit to avoid surface damage[75] � 5000 − F

π RS
2 − RR

2( )≥ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(33)

Specified intervals of designing variables all are continuous variables( ):
RS � 1, 16[ ] inch, RR � 1, 16[ ] inch,
QO � 1, 16[ ] inch3s−1, μO 10−6( ) � 1, 16[ ] lb s inch−2

⎫⎪⎬⎪⎭ (34)

Constant inputs for the problem:
γO � Specific weight of the oil) � 0.0307 lb inch−3

SO � Specific heat of the oil � 0.5 BTU lb−1 ◦F−1

C1O � Constant for fluid or oil of SAE 20 grade � 10.04
nO � Constant for fluid or oil of SAE 20 grade � −3.55
WG � The generatorWeight � 101000 lb
pM � Maximumallowable pressure � 1000 lb inch−2

ΔTOM � Permissible limit for temperature rise of the oil � 50 ◦F
hMIN � Specifiedminimumoil or fluid film thickness � 0.001 inch

g � Acceleration due to gravity � 386.4 inch s−2

N � Shaft′s RPM � 750 rpm
ηO � Efficiency of oil or fluid pump � 0.7
J � Joulean heat equivalent � 778 × 12 � 9336 inch lbf BTU−1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(35)

Input relations for the problem:

pO � Inlet supply pressure of oil � 6μOQO

πhO
3 loge

RS

RR
( ) psi or lbinch−2

F � Load carrying capacity of the oil film � πpO

2
RS

2 − RR
2( )

loge
RS

RR
( ) lb

PF � Power loss due to friction � Heat gained by the oil � 9336γOQOSOΔTO inch lb s−1

ΔTO � Temperature rise of the oil � 2 10E − 560( ) ◦F

E � The exponent � log10log10 8.112 × 106 × μO + 0.8( ) − C1O

nO
( )

hO � The oil or fluid film thickness � 2πN
60

( )2 2π μO × 10−6( )
PF

( ) RS
4 − RR

4

4
( ) inch

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(36)
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3.2.5 Pressure vessel design (PVD)
The two-halves of the cylindrical shell of the pressure vessel under consideration in this problem (Sandgren, 1990; Sandgren, 1988)

are joined by two longitudinal-butt (single-welded) joints with the necessary backing (supporting) strips. The vessel’s cylindrical shell
has two hemispherical shaped heads that are forged and then similarly welded at both ends. ASME SA 203 grade B carbon steel is the
material used to make the vessel. The purpose of this vessel is to use as a compressed air reservoir with 3000 psi working pressure and
750 × 123 inch3 minimum while its axis is to be vertically oriented. The pressure vessel is to be designed as per the ASME boiler and
pressure vessel code. Under specified design conditions, the vessel’s total manufacturing cost including welding cost, cost of forming
and the material cost is to be minimized as the single objective of this design optimization problem. Cylindrical shell thickness (TS),
thickness of hemispherical heads (TH), cylindrical shell inner radius (RI) and the cylindrical shell length (LS) are the considered
variables to minimize the objective.

Designing variables (to optimize):
�x � TS TH RI LS[ ]
Objective function (tominimize):
Ψ( �x) � 3.1661T2

SLS + 19.84T2
SRI + 0.6224TSRILS + 1.7781THRI

2( ) US$
⎫⎪⎪⎪⎬⎪⎪⎪⎭ (37)

The problem design inequality constraints to satisfy:
C1x � Condition for stress allowable in cylindrical shell � TS − 0.0193RI ≥ 0
C2x � Condition for stress allowable in hemispherical heads � TH − 0.00954RI ≥ 0

C3x � Vessel′sminimum condition � πRI
2LS + 4

3
πRI

3 − 1296000≥ 0
C4x � Limitation of length of rolledmaterial plates � 240 − LS ≥ 0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭ (38)

Des igning variables′intervals:
TS � Variable (discrete) in themultiples of 0.0625 � 1 × 0.0625, 99 × 0.0625[ ] inch.
TH � Variable (discrete) in themultiples of 0.0625 � 1 × 0.0625, 99 × 0.0625[ ] inch.
RI � Variable (continuous) � 10, 200[ ] inch.
LS � Variable (continuous) � 10, 200[ ] inch.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭ (39)

Problem′s constant inputs:
Minimum of the vessel � 750 × 1728 inch3

Maximum allowable stress for vessel material � 157532 psi
Joint efficiency for vessel � 1

Working pressure of vessel � 3000 psi

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭ (40)

3.2.6 Plate fin heat exchanger design (PFHED)
This problem (Venkata Rao and Pawar, 2020; Zarea et al., 2014; Mariani et al., 2019; Ramesh and Sekulic, 2003) requires

minimization of the number of entropy generation units,N(s) of a typical cross-flow (gas-to-air and single-pass) heat exchanger model
(Ramesh and Sekulic, 2003) with offset strip fins of rectangular cross section and with a required heat duty of 1069.8 kW. The fluids
outlet temperature are not specified for the considered model of heat exchanger and hence, the ε −NTUmethod has been considered to
develop its modelling process. Seven designing variables are to be optimized while satisfying the twenty two design inequality
constraints to minimize the objective of this constrained engineering design problem. Figure 2 for PFHED presents a typical PFHE
arrangement with its element geometries.

Designing variables (to optimize):
x
→� HL CL FH nF FT FLL N

FH[ ]
Objective function (tominimize):
Ψ( x→ ) � N s( ) � 1 − ε( ) Cti −Hti( )2

CtiHti
[ ] + Rcte H( )

SpH
( ) Δp H( )

Hpi
( )

+ Rcte C( )
SpC

( ) Δp C( )
Cpi

( ) valid for 1 − ε( )≪ 1 &
Δp
p

( )≪ 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(41)
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The problem design inequality constraints to satisfy :

C1x � Δp H( )
Hpi

− 1< 0, C2x � Δp C( )
Cpi

− 1< 0, C3x � 1 − ε( ) − 1< 0,

C4x � Re H( ) − 120> 0, C5x � Re H( ) − 104 < 0, C6x � Re C( ) − 120> 0,

C7x � Re C( ) − 104 < 0, C8x, 9x � α H( ) � α C( ) � α �
1
nF

− FT( )
FH − FT( ) − 0.134> 0,

C10x, 11x � α H( ) � α C( ) � α �
1
nF

− FT( )
FH − FT( ) − 0.997< 0,

C12x, 13x � δ H( ) � δ C( ) � δ � FT

FLL
− 0.012> 0,

C14x, 15x � δ H( ) � δ C( ) � δ � FT

FLL
− 0.048< 0,

C16x, 17x � γ H( ) � γ C( ) � γ � FT

1
nF

− FT( ) − 0.041> 0,

C18x, 19x � γ H( ) � γ C( ) � γ � FT

1
nF

− FT( ) − 0.121< 0,

C20x � Δp H( ) − 9500≤ 0, C21x � Δp C( ) − 800≤ 0,
C22x � LNO FLOW − 1 � FH − 2t +NFH 2FH + 2t( ){ } − 1≤ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(42)

Specified intervals of designing variables:
HL � Length for hot fluid � Variable (continuous) � 0.1, 1[ ] m
CL � Length for cold fluid � Variable (continuous) � 0.1, 1[ ] m
FH � Fin height � Variable (continuous) � 0.002, 0.01[ ] m
nF � Frequency of fin � Continuous variable � 100, 1000[ ] m−1

FT � Thickness of the fins � Continuous variable � 0.0001, 0.0002[ ] m
FLL � Fin lance length � Continuous variable � 0.001, 0.01[ ] m
NFH � Number of hot fluid fin layers � Integer variable � 1, 200[ ]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(43)

Constant inputs for the problem:
_Hm & _Cm � Hot& cold fluids′mass flow rates � 1.66 & 2 kgs−1 respectively
Hti & Cti � Hot& cold fluids′inlet temperatures � 900 & 200 ◦C � 1173.15 & 473.15 ◦K respectively
Hpi & Cpi � Hot& cold fluids′inlet pressures � 160 & 200 kPa respectively
SpH & SpC � Specific heat of hot & cold fluid at constant pressure � 1122 & 1073 Jkg−1K−1 respectively
Hρ & Cρ � Hot& cold fluids′mass densities � 0.6296 & 0.9638 kgm−3 respectively
Hμ & Cμ � Hot& cold fluids′dynamic viscosities � 0.0000401 & 0.0000336 Nsm−2 respectively
Pr H( ) & Pr C( ) � Hot& cold fluids′Prandtle numbers � 0.731 & 0.694 respectively
Rcte H( ) � Rcte C( ) � R � Hot& cold fluid specific gas constant � 287.04 Jkg−1K−1

Δp H( )max & Δp C( )max � Maximumpressure drop for the hot& cold fluid � 9500 & 800 Pa respectively
t � Plate thickness) � 0.005 m, QHE � Heat duty) � 1069.8 kW

lHE × bHE × hHE � Dimensional limits of the heat exchanger � 1 m × 1 m × 1 m

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(44)
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Input relations for the problem:
SH & SC � Hot& cold fluid heat capacity rate � _HmSpH & _CmSpC WK−1 respectively

Smax & Smin �Maximum&minimumheat capacity rate) � max SH, SC( ) & min SH, SC( ) WK−1 respectively

Sr � Ratio of theminimum tomaximumheat capacity rate � Smin

Smax

HAFF & CAFF � Free flow area for the hot& cold fluid � FH − FT( ) 1 − nFFT( )CLN
FH &

FH − FT( ) 1 − nFFT( )HL 1 +NFH( ) m2 respectively
HA & CA �Heat transfer area for hot & cold fluid) � HLCLN

FH 1 + 2nF FH − FT( )( )( ) &
HLCL NFH + 1( ) 1 + 2nF FH − FT( )( )( ) m2 respectively

A � Total heat transferring area � HA + CA( ) m2

Re H( ) & Re C( ) � Reynolds number for the hot& cold fluid � _Hmd h( )
HAFFHμ

&
_Cmd h( )
CAFFCμ

respectively

d h( ) � Both fluids′hydraulic diameter for fin spacingsF � 1
nF

− FT( )
� 4sF FH − FT( )FLL

2 sFFLL + FH − FT( )FLL + FH − FT( )FT( ) + FTsF
m

j H( )/j C( ) � Colburn coefficient(hot/cold fluid), forα � sF
FH − FT( )( ),(

δ � FT

FLL
( ), γ � FT

sF
( )) � 0.6522 Re H( )/Re C( )( )−0.5403α−0.1541δ0.1499γ−0.0677

1 + 5.3 × 10−5 Re H( )/Re C( )( )1.34α0.504δ0.456γ−1.055[ ]0.1
f H( )/f C( ) � Fanning friction factor hot/coldfluid( ) � 9.6243 Re H( )/Re C( )( )−0.7422α−0.1856δ0.3053γ−0.2659

1 + 7.7 × 10−7 Re H( )/Re C( )( )4.429α0.920δ3.767γ0.236[ ]0.1
Δp H( ) & Δp C( ) � Frictional pressure drop of the hot& cold fluid flow �

2f H( )HL

_Hm

HAFF
( )2

Hρd h( ) &

2f C( )CL

_Cm

CAFF
( )2

Cρd h( ) Pa

respectively

h H( ) & h C( ) � Convective heat transfer coefficient(hot & cold fluid) � j H( )SpH Pr H( )( )−23 _Hm

HAFF
&

j C( )SpC Pr C( )( )−23
_Cm

CAFF
Wm−2K−1 respectively

Hpo & Cpo � Hot& cold fluid outlet pressures � Hpi − Δp H( )( ) & Cpi − Δp C( )( ) Pa respectively

NTU � Number of transfer units � 1

Smin
HAFF

j H( )SpH Pr H( )( )−0.667 _HmHA

+ CAFF

j C( )SpC Pr C( )( )−0.667 _CmCA

( )
εHE � Effectiveness of the heat exchanger � 1 − e

1
Sr
( )NTU0.22 e

−SrNTU0.78( )−1{ }[ ]
QHE � Heat transfer rate considering both the fluids are unmixed � εHESmin Hti − Cti( ) W

Hto & Cto � Hot& cold fluid outlet temperature � Hti − εHE
Smin

Smax
Hti − Cti( )( ) &

Cti + εHE
Smin

Smax
Hti − Cti( )( ) ◦K respectively

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(45)

3.2.7 Speed reducer design (SRD)
This problem (Jan, 1970; Golinski, 1973) deals with the weight (i.e the volume) minimization of a speed reducer. Face width (B), teeth

module (mM), number of the pinion teeth (ZP), pinion shaft’s length between bearings (LP), gear shaft’s length between bearings (LG),
pinion shaft’s diameter (DP) and the gear shaft diameter (DG) are the seven designing variables are to be optimized while satisfying the
eleven inequality constraint conditions for the required volume optimization of the problem.

Designing variables (to optimize):
�x � B mM ZP LP LG DP DG[ ]
Objective function (tominimize):
Ψ( �x) � 0.7854BmM

2 3.3333ZP
2 + 14.9334ZP − 43.0934( ) − 1.508B DP

2 +DG
2( )

+7.477 DP
3 +DG

3( ) + 0.7854 LPDP
2 + LGDG

2( ) cm3

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭ (46)
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The problemdesign inequality constraints to satisfy:

C1x � Bending stress condition on gear teeth � 27

BmM
2ZP

− 1≤ 0

C2x � Surface compressive stress condition on both pinion and gear � 397.5

BmM
2ZP

2 − 1≤ 0

C3x � Limitation on pinion shaft transverse deflection under transmitted load � 1.93LP
3

mMZPDP
4 − 1≤ 0

C4x � Limitation on gear shaft transverse deflection under transmitted load � 1.93LG
3

mMZPDG
4 − 1≤ 0

C5x � Condition for developed stress in pinion shaft �

��������������������
745LP

mMZP
( )2

+ 16.9 × 106
√

110DP
3 − 1≤ 0

C6x � Condition for developed stress in gear shaft �

��������������������
745LG

mMZP
( )2

+ 157.5 × 106
√

85DG
3 − 1≤ 0

C7x � Limitation on pitch circle diameter of pinion � mMZP

40
− 1≤ 0

C8x � Condition for lower limit of relative face width � 5mM

B
− 1≤ 0

C9x � Condition for upper limit of relative face width � B

12mM
− 1≤ 0

C10x � Dimensional condition for pinion � 1.5DP + 1.9
LP

− 1≤ 0

C11x � Dimensional condition for gear � 1.1DG + 1.9
LG

− 1≤ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(47)

Specified intervals of designing variables:
B � 2.6, 3.6[ ] cm, mM � 0.7, 0.8[ ] cm, ZP � 17, 28[ ] integer variable( ),
LP � 7.3, 8.3[ ] cm, LG � 7.3, 8.3[ ] cm, DP � 2.9, 3.9[ ] cm, DG � 5.0, 5.5[ ] cm

⎫⎪⎬⎪⎭ (48)

Constant inputs for the problem:
Power to be transmitted � 75 × 104 kg − cm s−1
Speed of the pinion � 1500 rpm

Bending moment developed on gear teeth � 4.7746 × 103 kg − cm

Transm ission ratio � 1
3
, Tooth form factor � 2.54

Allowable maximum limit for gear teeth′bending stress � 900 kg cm−2
Allowable maximum surface compressive stress limit for both pinion and gear

� 5800 kg cm−2
Allowable maximum limit for pinion shaft′s bending stress � 1100 kg cm−2
Allowable maximum limit for gear shaft′s bending stress � 850 kg cm−2

Elastic coefficient value (modulus of elasticity dependent)
� 1.4003 × 106 kg cm−2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(49)

3.2.8 Shell and tube heat exchanger design (STHED)
The STHED case (Venkata Rao and Pawar, 2020; Mariani et al., 2019; Kern and Kern, 1950; Caputo et al., 2008; Amin and Ali,

2013) deals with the minimization of the total annual cost CT of a STHE (Kern and Kern, 1950) with one shell passage for distilled
water and two tube passages for raw water, is to transfer the required heat duty of 0.46MW. Figure 2 for STHED presents a typical
design of this system with the triangular tube pitch setting. Three continuous variables, i.e., the tubes’ outside diameter DOt, the
shell’s internal diameter DIs and the baffles spacing Sb have to be optimized while fulfilling the eight design constraints for this cost
minimization problem.
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Designing variables (to optimize):
�x � DOt DIs Sb[ ]

Objective function (tominimize):
Ψ( �x) � CT � CCI + CTDO €

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (50)

The problem design inequality constraints to satisfy:

C1x � Lt

DIs
− 3≥ 0, C2x � Lt

DIs
− 5≤ 0

C3x � VCt − 1 ms−1( )≥ 0, C4x � VCt − 2 ms−1( )≤ 0
C5x � VHs − 0.3 ms−1( )≥ 0, C6x � VHs − 1 ms−1( )≤ 0
C7x � ΔpCt − 35000 Pa( )≤ 0, C8x � ΔpHs − 35000 Pa( )≤ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(51)

Specified intervals of designing variables:
DOt � 0.008, 0.051[ ] m, DIs � 0.2, 1.0[ ] m, Sb � 0.2, 0.5[ ] m} (52)

Constant inputs for the problem:
_mHs & _mCt � Hot& cold fluidmass flow rates � 22.07 & 35.31 kgs−1 respectively

THs i( ) & TCt i( ) � Hot& cold fluid inlet temperatures � 33.9 & 23.9 ◦C � 307.05 & 297.05 ◦K respectively
THs o( ) & TCt o( ) � Hot& cold fluid outlet temperatures � 29.4 & 26.7 ◦C � 302.55 & 299.85 ◦K respectively

ρHs & ρCs � Hot& cold fluidmass density � 995 & 995 kgm−3 respectively
CHs p( ) & CCt p( ) � hot& cold fluid specific heats at constant pressure � 4.18 × 103 & 4.18 × 103 Jkg−1K−1

respectively
μHs & μCt � Hot& cold fluid dynamic viscosity � 0.0008 & 0.00092 Nsm−2 respectively

μHs w( ) & μCt w( ) � Shell & tube side dynamic viscosity of water � 0.00038 & 0.00052 Nsm−2 respectively
kHs & kCt � Thermal conductivity of shell & tube � 0.62 & 0.62 Wm−1K−1 respectively

RFHs & RFCt � Fouling resistance of flow for shell & tube side fluid � 0.00017 & 0.00017 m2KW−1

respectively
N � Number of the tube passes � 2
K1 � Coefficient for the triangular tube pitch andN � 2 � 0.249
n1 � Coefficient for the triangular tube pitch andN � 2 � 2.207
CE � Energy cost � 0.00012 € kWh−1, NYe � Equipment life (in year) � 10 years

ηPUMP � Overall pumping efficiency � 80% � 0.8
AOT � Annual operating time � 7000 h year−1, j � Annual discount rate � 10% � 0.1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(53)
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Prob lem′s input relations:
Pt � Tube pitch for the triangular arrangement � 1.25DOt m

D h( ) � Shell hydraulic diameter or equivalent diameter � 1.11
DOt

Pt
2 − 0.917DOt

2( ) m
N t( ) � Number of tubes � K1

DIs

DOt
( )n1

, DIt � Internal diameter of the tubes � 0.8DOt m

Ans � Normal cross − sectional area to the flow direction � DIsSb 1 − DOt

Pt
( ) m2

VCt & VHs � Flow velocity through tubes & shell � _mCt

π

4
DIt

2ρCt

N

N t( )( ) &
_mHs

ρHsAns
ms−1 respectively

Re Ct( ) & Re Hs( ) � Reynolds number for tube& shell flow � ρCtVCtDIt

μCt
&

_mHsD h( )
AnsμHs

respectively

Pr Ct( ) & Pr Hs( ) � Prandtl number for flow through tube& shell � μCtCCt p( )
kCt

&
μHsCHs p( )

kHs
respectively

h s( ) � Coefficient of convective heat transfer for shell side flow � 0.36
kHs

D h( )( )Re Hs( )0.55Pr Hs( )0.33 μHs

μHs w( )( )0.14

Wm−2K−1

f s( ) � Shell side flow friction factor � 1.44Re Hs( )−0.15

f t( ) � Tube side flow friction factor �
1.82log10Re Ct( ) − 1.64( )−2 for Re Ct( )≤ 2100

0.0054 + 0.00000023 Re Ct( )32( ) for 2100<Re Ct( )< 4000

0.00128 + 0.1143 Re Ct( ) −1
3.214( ) for Re Ct( )≥ 4000

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

h t( ) � Coefficient of convective heat transfer for tube side flow �

kCt
DIt
( ) 3.657 +

0.0677 Re Ct( )Pr Ct( ) DIt

Lt
( )( )1.33

1 + 0.1Pr Ct( ) Re Ct( ) DIt

Lt
( )( )0.3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ for Re Ct( )≤ 2100

kCt
DIt
( ) f t( )

2
Re Ct( ) − 1000( )Pr Ct( )

1 + 12.7

����
f t( )
2

√
Pr Ct( )0.66 − 1( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ for 2100<Re Ct( )< 10000

0.027
kCt
DIt
( )Re Ct( )0.8Pr Ct( )0.33 μCt

μCt w( )( )0.14

for Re Ct( )≥ 10000

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Wm−2K−1

Nu Hs( ) & Nu Ct( ) � Nusselt number for the shell & tube side flow � h s( )D h( )
kHs

&
h t( )DIt

kCt
respectively

UST � Overall heat transfer coefficient � 1

1
h s( ) + RFHs + DOt

DIt
( ) RFCt + 1

h t( )( ) Wm−2K−1

ΔTLM � Logarithmicmean temperature difference � THs i( ) − TCt i( )( ) − THs o( ) − TCt i( )( )
loge

THs i( ) − TCt o( )
THs o( ) − TCt i( )( ) ◦K

RC � Correction coefficient � THs i( ) − THs o( )
TCt o( ) − TCt i( ) , M Efficiency( ) � TCt o( ) − TCt i( )

THs i( ) − TCt i( )

FC � Correction factor forΔTLM �
�������
RC2 + 1

√
RC − 1

loge
1 −M

1 −M RC
( )

loge

2 −M RC + 1 − �������
RC2 + 1

√( )
2 −M RC + 1 + �������

RC2 + 1
√( )⎛⎝ ⎞⎠

_QST � Heat transfer rate for sensible heat transfer � _mHsCHs p( ) THs i( ) − THs o( )( ) � _mCtCCt p( ) TCt o( ) − TCt i( )( ) W
A � Total heat exchanger surface area � _QST

USTFC ΔTLM
m2, Lt � Required tube length based onA) � A

πDOtN t( ) m

ΔpHs � Shell side flow pressure drop � 1.44Re Hs( )−0.15 ρHsVHs
2

2
( ) Lt

Sb
( ) DIs

D h( )( )[ ] Pa

ΔpCt � Pressure drop for the tube side flow � Δp (along tubes length) + Δp (in inlet & exit nozzles and elbows)
� ρCtVCt

2

2
Lt

DIt
f t( ) + 4( )N Pa

P � Required pwer for pumping � 1
ηPUMP

_mCt

ρCt
ΔpCt + _mHs

ρHs

ΔpHs( )W

CCI � Capital investment for both shell & tubes of stainless steel( ) � 8000 + 259.2 A( )0.91 €
CAO � Annual operating cost) � PCEAOT € year−1

CTDO � Total discounted operating cost � ∑NYe

i�1

CAO

1 + j( )i €

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(54)
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3.2.9 Gear train design (GTD)
This problem (Sandgren, 1990) deals with the minimization of the square of difference between the desired gear ratio ( 1

6.931) of a gear train
and its current gear ratio (GDGB

GAGF
). GD, GB, GA and GF are the numbers of gear teeth of the shafts D,B, A and F of the gear train respectively,

and have been considered as the four optimizing variables for this unconstrained problem.

Designing variables to optimize( ):
�x � GD GB GA GF[ ]

Objective function tominimize( ):
Ψ( �x) � 1

6.931
− GDGB

GAGF
( )2

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭ (55)

Spe cified intervals of designing variables : all are integer variables( )
GD � 12, 60[ ], GB � 12, 60[ ], GA � 12, 60[ ], GF � 12, 60[ ]} (56)

Constant input for the problem:

Gear ra tio of the gear train G.R.( ) � GDGB

GAGF

⎫⎪⎬⎪⎭ (57)

3.2.10 Multiple disc clutch brake design (MDCBD)
The MDCBD problem requires minimization of the mass of a multiple disc clutch brake (Deb and Srinivasan, 2006) system (Figure 2 for

MDCBD). Inner radius of contacting surfaces of friction or friction discs (RI), outer radius of contacting surfaces of friction or friction discs
(RO), friction discs’ thickness (tF), actuating force (PA) and the number of contacting surface (friction) pairs (NF) are the five optimizing
parameters along with eight design inequality constraints have been considered for this weight minimizing problem.

Designing variables to optimize( ):
�x � RI RO tF PA NF[ ]

Objective function tominimize( ):
Ψ( �x) � π R2

O − R2
I( ) tF NF + 1( ) ρ kg

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (58)

The problem design inequality constraints to satisfy:
C1x � Limitation on difference between the friction surfaces radii � RO − RI − ΔR≥ 0
C2x � Overall axial length of friction discs or surfaces � LFM − NF + 1( ) tF + ΔL( )≥ 0
C3x � Maximum allowable intensity of pressure on the friction surfaces � PM − P≥ 0
C4x � Condition formaximum rubbingwork � PMVM − PV≥ 0
C5x � Condition formaximumvelocity � VM − V≥ 0
C6x � Frictional torque capacity requirement for the clutch brake system � TH − sFTS ≥ 0
C7x � Condition of non − negativity for the stopping time � tSTOP ≥ 0
C8x � Condition for stopping time � tSTOPM − tSTOP ≥ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(59)

Specified intervals of designing variables: Discrete( )
RI � 60, 61, 62, . . . . 78, 79, 80[ ] mm ,
RO � 90, 91, 92, . . . . 108, 109, 110[ ] mm, tF � 1, 1.5, 2, 2.5, 3[ ] mm,

PA � 600, 610, 620, . . . . 980, 990, 1000[ ] N, NF � 2, 3, 4, . . . . 8, 9[ ]

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (60)

Co nstant inputs for the problem:
ΔR � Difference between the friction surfaces’ outer and inner radii � 20 mm
LFM � Friction discs’ axial length (maximum) � 30 mm
μF � Coefficient of friction between the discs or surfaces in contact � 0.5
sF � 1.5, TS � 40 N −m and TF � 3 N −m
ρF � Density of friction disc or platematerial of brake system � 0.0000078 kg mm−3
PM � Allowablemaximumpressure intensity between surfaces in contact � 1 N mm−2
VM � Maximumvelocity � 10 m s−1
Z � Brake shaft’s rotational speed � 250 rpm
ΔL � Mating friction plates’ axial spacing fromone another � 0.5 mm
IZZ � Polarmoment of inertia (mass) for flywheel rotation � 55 kg m−2
PAM � Allowablemaximum actuating force on the friction surfaces � 1000 N

tSTOPM � Maximum stopping time � 15 s

ωF � Contacting friction discs or surfaces’ angular velocity � 2πZ
60

radian s−1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(61)

Frontiers in Mechanical Engineering frontiersin.org41

Bhattacharjee et al. 10.3389/fmech.2025.1547819

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1547819


Input relations for the problem:
AF � Amating friction surface pair’s area � π R2

O − R2
I( ) mm2

P � uniform pressure level across all contacting friction surfaces

� Axial actuating force, PA

AF
N mm−2

RFE � Mean or effective radius of friction of clutch brake disc surfaces

� 2
3

R3
O − R3

I

R2
O − R2

I

× 10−3 m

V � Tangential velocity of the friction surfaces or discs � ωFRFE m s−1
TH � Total frictional torque transmitted by brake on uniform pressure

� 2
3
μFPANF

R3
O − R3

I

R2
O − R2

I

N −mm

tSTOP � Stopping time � IZZω

TH + TF
s

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(62)

4 Simulation results analysis

An optimization algorithm optimizes the control or the design variables of a concerned problem to maximize or minimize its
objective function/s. For verifying the optimizing ability of the proposed OCAHA algorithm effectively, the present simulation has
been carried out in two stages. OCAHA and its chosen competitors have been implemented on the two sets of 29 unconstrained
functions (50-dimensional and 100-dimensional) of CEC 2017 test suite (Awad et al., 2017) in the first stage, and then, it has been
evaluated on ten challenging engineering cases in the second stage. A 64-bit operating system, an Intel (R) Core (TM) i3-7020U CPU
running at 2.30 GHz with 4.00 GB of RAM, and the MATLAB R2020a version make up the common system used for both
experimental phases.

4.1 CEC 2017 unconstrained functions

OCAHA, the four state of the art methods, namely, PSO (Kennedy and Eberhart, 1995), DE (Storn and Price, 1997), GWO (Mirjalili et al.,
2014) and WOA (Mirjalili and Lewis, 2016), some of their recently developed effective variants, namely, SLPSO (Cheng and Jin, 2015),
MTDE (Nadimi-Shahraki et al., 2020), SOGWO (Dhargupta et al., 2020) and EWOA (Tan and Mohamad-Saleh, 2023), and the inspiring
method AHA (Zhao et al., 2022) have been tested on the 50D and 100D sets of CEC 2017 in this first simulation phase. Every function from
each dimension has been run 30 times independently with each participating algorithm. The implemented population size (w) and
maximum generations (tmax) for each experimental run of the study are 50 and 1,000 respectively. The analysis of CEC 2017 results is aimed
as follows; a) to evaluate the OCAHA algorithm on the 50D functions and to compare the same with the other considered algorithms
statistically, b) to verify the solving ability of OCAHA for the 100D functions, c) to ensure the statistical importance of OCAHA outcomes in
relation to each competing result for each 100D function throughWilcoxon rank-sum test (Wilcoxon, 1992) at 0.05 level of significance, d) to
compare the mean rank of OCAHA with the others for both 50D and 100D CEC 2017 unconstrained benchmark functions through
Friedman Mean Rank test (Friedman, 1937), and e) to compare the OCAHA convergence profiles with their competitors.

Both 50D (Table 4) and 100D (Table 5) simulated results show that, theMTDE algorithm achieved the lowestMean and the lowest SD for
the majority of all four categories of functions. The reason behind this high level performance merit is the developed multi-trial vector based
approach (Nadimi-Shahraki et al., 2020) to properly distribute the population between their subpopulations to enhance the algorithm search
ability in dealing with different levels of complexity. OCAHA has been observed as competitive and as the second performer for both 50D and
100D unconstrained CEC 2017 test functions. Comparing with the results of its parent algorithm AHA, OCAHA performed much well in all
the functions of both the dimensional sets of the suite. The lowest average fitness (Mean) and the lowest standard deviation (SD) for each CEC
2017 function have been written in bold fonts, and the italic fonts have been used for the second lowest values of these statistical indexes.

Table 4 demonstrates that, of the 58 best performance indicators, 43 (22 Mean & 21 SD) have been achieved by MTDE, 10 (6 Mean
& 4 SD) by OCAHA and the rest 5 (1 Mean & 4 SD) positions have been achieved by SLPSO. The same algorithms have achieved 13
(6 Mean & 7 SD), 27 (13 Mean & 14 SD) and 14 (7 Mean & 7 SD) positions respectively as the second best performer for the 50D set. For
unimodal functions (F 1 and F 3), MTDE obtained outstanding optimized solutions followed by good solutions by SLPSO, and then the
solutions of OCAHA come. For the multimodal category (F 4-F 10), MTDE achieved the minimum Mean for F 4, F 5, F 6, F 8 and F 9,
and OCAHA obtained the same for the rest two functions F 7 and F 10. SLPSO achieved second best solution for F 4, F 5 and F
6 functions, and OCAHA achieved the second best solution for F 8 and F 9 functions. For the 10 hybrid functions (F 11-F 20), MTDE
obtained almost all the best solutions, OCAHA obtained the second best mean fitness for F 11, F 12, F 13, F 14, F 16, F 17 and F
19 functions and the second best standard deviation for F 11, F 12, F 13, F 14 and F 19 functions. SLPSO achieved the second lowest
mean value for F 15 and F 18 functions and EWOA achived the same for F 20 function. OCAHA results for the hybrid and the simple
multimodal functions shows its better exploratory search ability than all the other algorithms except MTDE. MTDE emerges as the top
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performer among the 10 composition functions (F 21-F 30), providing the best Mean for F 22, F 23, F 26, F 27 and F 30 functions,
OCAHA is the next performer with the lowest mean fitness value for F 21, F 24, F 28 and F 29 functions, and SLPSO obtained the same
for F 25 function. The second best solution for mean fitness value for F 22, F 26, F 27 and F 30 functions and the second best value for
standard deviation for F 23, F 24, F 27, F 28 and F 30 functions have been achieved by OCAHA. For composition functions, OCAHA
solutions are competitive with respect to those of MTDE, and superior to all the other solutions for this simulation study with 50D set
of CEC 2017 unconstrained benchmark functions. OCAHA’s performance on the composition functions demonstrates the algorithm’s
strong local entrapment avoidance and its capacity to optimize complex real-world requirements.

Table 5 for 100D set demonstrates that, of the 58 best performance indicators, MTDE achieved 41 (18 Mean & 23 SD), OCAHA
achieved 10 (9 Mean & 1 SD), SLPSO achieved 5 (2 Mean & 3 SD) and the rest 2 SD positions have been achieved by EWOA. The
achieved positions among the 58 s best indicators are 12 (7 Mean & 5 SD) by MTDE, 23 (11 Mean & 12 SD) by OCAHA, 13 (6 Mean &
7 SD) by SLPSO, 6 (2 Mean & 4 SD) by EWOA, 2 (2 Mean) by GWO and 2 (1 Mean & 1 SD) by SOGWO. Comparing the results of 50D
(Table 4) and 100D (Table 5), it is evident that, among the 9 100D functions with the best mean fitness solution by OCAHA, F 10 and F
21 are common to both dimensions with the best mean fitness solution by OCAHA, the functions F 5, F 11, F 16, F 20, F 22 and F
27 with the best mean fitness solution by MTDE for 50D, and the function F 25 with the best mean fitness solution by SLPSO. On the
other side, in term of mean fitness solution, among the functions F 7, F 24, F 28 and F 29 with the best solution by OCAHA for 50D,
MTDE ranked first for F 24, F 28 and F 29 for 100D. and SLPSO ranked first for the function F 7 for 100D. OCAHA obtained seventh,
second, third and fifth ranked mean fitness solutions for the functions F 7, F 24, F 28 and F 29 respectively for 100D. OCAHA continues
to provide the second best result for F 9, F 12, F 14, F 19 and F 30. In addition, OCAHA achieved the best standard deviation value for F
6 function, and the second best value of this statistical performance index for the functions F 1, F 4, F 7, F 11, F 12, F 15, F 16, F 18, F 19,
F 25, F 27 and F 30. With 100D set, OCAHA continues to provide positive performance in the majority of its well performed 50D
functions and achieved much better results in some new functions. The statistical results of 100D show that, the OCAHA’s optimizing
performance is superior to all the comparing algorithms except MTDE, and the algorithm is capable of dealing with high-dimensional
optimization problems.

At the 0.05 level of significance, the Wilcoxon test (WRST) (Wilcoxon, 1992) is performed to confirm the statistical importance of the
OCAHA outcomes with regard to each participating result for each 100D function of the CEC 2017 test suite. p values are generated for each
comparing pair between the OCAHA results and the participating algorithms’ results for each function. The WRST or MannWhitney U test
findings for OCAHA are shown in Table 6. A ‘+’ sign denotes the statistical importance between the verifying results, such as between
OCAHA and its competitor, while a ‘−’ sign denotes no statistical significance between their outcomes, meaning that there is no statistical
distinction between the two sets of results of a comparing combination. The Wilcoxon test results (Table 6) show that, OCAHA and SLPSO
solutions are not statistically different from each other for the 8 functions: multimodal functions F 4, F 9 and F 1; hybrid functions F 11, F 12, F
16 and F 20; and 1 composition function F 28. The same observations of no statistical significance of the OCAHA results are found with PSO
for F 3, F 9, F 26 and F 29, with GWO for F 9, F 15, F 17 and F 29, with EWOA for F 7, F 13, F 26 and F 29, with SOGWO for F 9, F 24 and F 29,
and withMTDE for the function F 16. However, compared to its nine competitors, OCAHA achieved statistically significant outcomes in 91%
of the 261 test measures, which proves the significant statistical advantages of the OCAHA optimized solutions.

The present study has conducted the Friedman Mean Rank test (Friedman, 1937) (FMRT) to assess OCAHA’s overall performance
and compare it to the other considered performances for both 50D and 100D functions of CEC 2017. The FMRT test rank of each
method for each 100D function has been reported in Table 7, which shows that OCAHA stands first for 9 functions out of the
29 functions and second for 11 functions. The total optimization performance of all participating methods for both dimension sets can
be visualized from Figure 3. As stated earlier, the developed multi-trial vector based approach (Nadimi-Shahraki et al., 2020) properly
distributes the population between their subpopulations to enhance the search performance of MTDE, and this explains why the
algorithm did better than any performance on the majority of the test functions of both dimensions. OCAHA achieved the second
position with the Friedman mean ranks of 2.38 and 2.55 for 50D and 100D benchmark functions respectively. SLPSO has been found as
the third best performer of this study with the mean ranks of 3.21 and 2.98 for 50D and 100D functions respectively, whereas the
original PSO ranks eighth and seventh for these two dimensions of functions respectively. The performance of EWOA also reached to
the fourth overall position with the mean ranks of 4.78 and 4.83 for 50D and 100D functions respectively, whereas its parent algorithm
WOA stayed at the ninth position for both the dimensional sets of the benchmark functions. The performance of SOGWO has not been
found satisfactory with respect to the original GWO performance for both the dimensions of the functions. However, OCAHA
outperformed the original AHA in all the functions of both 50D and 100D.

In Figure 4, the convergence profiles of OCAHA and 8 comparative methods for 1 unimodal (F 1), 2 multimodal (F 5 and F 10),
2 hybrid (F 15 and F 20) and 2 composition (F 22 and F 28) functions of 100-dimensional set of CEC 2017 have been drawn to evaluate
the solving ability of OCAHA with respect to the steps of iterations, and to compare the same with the stated 8 algorithms including
AHA. The mean of the best fitness values of 30 runs of each iteration of each algorithm has been considered to draw these convergence
curves. For F 1, OCAHA shows the fastest convergence up to the first 50% of iterations and then slowly moves towards the better
converged solution than all the other performers except MTDE. For F 5, F 10 and F 28, OCAHA reaches the fastest converged mean
solution within the first 200 number of iterations and then finds more accuracy in the obtained solution in the later number of
iterations, and obtains the best solution for F 5 and F 10 and 3rd best solution for F 28. For F 15, even though OCAHA does not show
good convergence with respect to its competitors, like SLPSO, PSO, SOGWO, GWO, EWOA and even AHA up to the first 60% of
iterations, it highly explores in the next 20% of iterations and converges into the second best solution after MTDE. For F 20 and F 22,
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OCAHA explores with a moderate convergence rate up to the first 40% of iterations and then updates its solution towards the global
value for both the functions. OCAHA convergence profiles prove that the oppositional-chaotic approach has made the OCAHA
methodology competitive with many leading algorithms in solving complex optimization problems.

4.2 Engineering design problems

In this phase, OCAHA has been studied on ten different engineering problems with mixed types of control or design variables and
with the fulfilling requirements of both equality and inequality limitations of design. In all these engineering benchmark models, the
present methodology is penalized with the high fitness value of a simple scalar penalty function to control the specified conditions of
design constraints.

Population size and maximum iterations for each problem have been decided after some trial runs, and then for each problem,
OCAHA CAHA and AHA (wherever required) have been implemented for 30 independent runs. Based on these 30 separate runs, the
mean, best, worst and the standard deviation (SD) figures have been reported and have been compared with the available competing
algorithms.

In theWBD optimization, a 50 population size and a 5,000 maximum function evaluations have been set for the algorithms AHA, CAHA
andOCAHA. Table 8 shows the obtained optimized designs and its statistical comparison for the problem. To date, the best solution obtained
for this model is the fitness function value of 1.955301 by PSO (real integer discrete coded) (Datta and Figueira, 2011) for a function
evaluations number ranges from 19584 to 127848, and the same fitness value has been obtained by CAHA and OCAHA for 2,900 and
2,100 number of their function evaluations respectively. From the statistical comparison, OCAHA has been found to be the best and the most
robust performer among all. Figure 5 forWBD problem presents the AHA, CAHA and OCAHA convergence profiles for the problem, where
AHA reaches its solution of 1.958180 fitness function value at 92nd iteration, CAHA achieves the best outcome for the problem, i.e. 1.955301
fitness at its 58th iterations, and OCAHA takes only 42nd iterations to converge into the same solution.

The considered population size and maximum function evaluations for the BPDD (Venkata Rao and Pawar, 2020, Thamaraikannan and
Thirunavukkarasu, 2014) problem are 10 and 100000 respectively for the algorithms AHA, CAHA and OCAHA. Based on the 30 individual
result sets, the OCAHA optimized designs and its statistical comparison for this problem have been reported in Table 9. Optimized designs of
Table 9 clearly identifies OCAHA with the top feasible fitness function outcome of 104.761163 at the lowest computational cost of
12870 number of function evaluations. The average or mean, worst and the SD values in the statistical comparison of Table 9 proves the
robustness quality of OCAHA solutions among all including CAHA and AHA. Figure 5 for BPDD problem presents the AHA, CAHA and
OCAHA convergence profiles, where, AHA obtains its solution with the fitness function value of 104.761207 at the 4,216 iterations, CAHA
achieves 104.761175 fitness after 2,812 iterations, and OCAHA converges into the best finding of the case at its 1287th iteration.

A 50 population size and a 75000 maximum function evaluations were decided for AHA, CAHA and OCAHA for solving the HCSD
weight minimization problem. The reported optimization of Table 10 shows that, the best optimized position with 2.658559 fitness
value has been attained by PSO (RIDC) (Datta and Figueira, 2011) at the ‘4,784 to 98992’ range of function evaluations, by Rao-1
(Venkata Rao and Pawar, 2020) and Rao-2 (Venkata Rao and Pawar, 2020) at 45,400 & 25,000 number of function evaluations
respectively, for AHA the required function evaluations number is 4,300, for CAHA 3650 function evaluations, and for OCAHA, this
number is 2,850 only to reach the stated optimal solution. The statistical findings of Table 10 clearly identify the most robust
performance of OCAHA among all. The AHA, CAHA and OCAHA convergence profiles of Figure 5 for the HCSD problem show
that, AHA converges into the solution at its 86th iteration, CAHA in its 73 iterations, and OCAHA takes 57 iterations to
achieve the same.

For the HTBD (Siddall, 1982) design optimization problem, a 10 population size and for a close comparison with the available competing
algorithms (Venkata Rao et al., 2011; Venkata Rao and Pawar, 2020, Zhao et al., 2022; He et al., 2004, Deb, 1997, Venkata Rao andWaghmare,
2017), a maximum 25000 function evaluations have been considered for implementing the algorithms CAHA and OCAHA. Table 11 of the
optimized designs for the problem shows that, the best fitness of 1624.512578 has been achieved by OCAHA at the 22190 function
evaluations and CAHA achieves 1624.516195 fitness at its 24180 function evaluations, whereas Rao-2 (Venkata Rao and Pawar, 2020)
obtained 1625.184754 fitness value at its 24080 function evaluations. Statistical comparison part of Table 11 establishes the OCAHA
algorithm as the most robust performer among all its competitors. Figure 6 for HTBD problem presents a statistical comparison plot for the
obtained results by OCAHA and the other considered algorithms for the problem.

For the PVD problem, a 100 population size and a maximum 10000 function evaluations were fixed for AHA, CAHA and OCAHA
methods. The reported optimized designs of Table 12 show that, the best fitness solution of 6059.70161 has been generated by EA (Mezura-
Montes and Coello, 2005) at the computation of 30000 function evaluations, OCAHA secured the second position with a fitness value of
6059.71426316 after proceeding through its 4,300 function evaluations, CAHA ranked third with 6059.71427015 at its 5,600 function
evaluations, AFA (Baykasoğlu and Ozsoydan, 2015) obtained the fourth best solution with a fitness value of 6059.71427196 at its
3,000 function evaluations approximately, and IPSO (He et al., 2004) performs with the fifth best design with 6059.7143 fitness value at the
cost of its 30000 function evaluations. The statistical comparison of Table 12 for the obtained solutions of the problem indicates that,
WAROA + JADE (Jiang et al., 2020) and TLBO (Venkata Rao et al., 2011) algorithms outperform all the algorithms including OCAHA in
term of mean or average fitness result. However, compared to theWAROA + JADE algorithm, the OCAHA algorithm requires a significantly
lower computing cost.
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PFHED problem (Ramesh and Sekulic, 2003) considers seven designing variables and twenty two design inequality constraints to
minimize the entropy generation units N(s) of a typical cross-flow (gas-to-air and single-pass) model of this system. The considered
population size and maximum function evaluations for AHA, CAHA and OCAHA for the problem are 10 and 14000 respectively. Based on
the 30 separate test-runs for all the three implementing methods, the optimized outcomes (Venkata Rao and Pawar, 2020; Zarea et al., 2014;
Mariani et al., 2019; Ramesh and Sekulic, 2003) for this problem have been reported in Table 13. OCAHA obtains the best optimized fitness
solution of 0.115402 at its 9,730 function evaluations. Rao-2 (Venkata Rao and Pawar, 2020) obtains 0.116546 and Rao-1 (Venkata Rao and
Pawar, 2020) 0.116597 stand as the second and the third best designer for the problem respectively. FOA (Mariani et al., 2019) spends its
3,500 function evaluations in order to attain a comparatively faster convergence with a 0.1333 fitness value. Statistical comparison of Table 13
establishes that, for the same maximum function evaluations of 14000, OCAHA outperforms all the participating algorithms including AHA
in all the performance indexes.

The SRD problem requires weight minimization of a speed reducer. A population size of 100 has been decided to implement
both CAHA and OCAHA algorithm for the problem. The designs optimized for this minimization problem have been outlined in
Table 14. Table 14 demonstrates that, MBA (Ali et al., 2013) obtains a solution with 2,994.482453 fitness function value at the cost of
its 6300 function evaluations, AHA (Zhao et al., 2022) solves the problem with a fitness value of 2,994.471158 after proceeding
through its 30000 function evaluations, CAHA generates 2,994.344816 fitness solution at its 7,200 function evaluations, and
OCAHA obtains the best fitness value of 2,994.342041 im its 6900 number of function evaluations. With respect to the required
computational cost, i.e the function evaluations in optimizing the problem in marginal deviation, MBA outperforms all the reported
algorithms including OCAHA. Statistical comparison of Table 14 shows that, the best, mean or average and the worst values of
OCAHA solutions are best among all, whereas, Jaya (Venkata Rao and Waghmare, 2017) and CAHA algorithms outperform
OCAHA with the standard deviation (SD) values of 0 and 5.37 × 10−5, respectively for the same number of maximum function
evaluations 10000. The statistical comparison plot in Figure 6 for the SRD problem clearly identifies the robustness solving ability of
OCAHA among all the considered competing algorithms.

In the STHED (Kern and Kern, 1950) problem, three control or designing variables have been considered along with eight
inequality constraints for the total annual cost CT minimization of a shell and tube model of heat exchanger. A 10 population size
and a maximum 6000 function evaluations are the decided algorithmic parameters for all the three methods (AHA, CAHA and
OCAHA) to optimize the problem, and based on the 30 individual result sets, the obtained designs have been compared with the
available designs from literature as reported in Table 15. OCAHA outperforms all the algorithms (Venkata Rao and Pawar, 2020;
Mariani et al., 2019; Kern and Kern, 1950; Caputo et al., 2008; Amin and Ali, 2013; Patel and Rao, 2010) with a fitness function
value of 18240.94 at the cost of its 2,700 number of function evaluations. CAHA ranks second with the fitness solution of
18285.31 at the cost of its 4,050 function evaluations. Rao-1 and 3 (Venkata Rao and Pawar, 2020), both the algorithms with the
same fitness result of 18335.99 and FOA (Mariani et al., 2019) with 18560.3 rank third, fourth, and fifth performers, respectively
for this minimizing optimization case. With just 350 function evaluations, PSO (Patel and Rao, 2010) achieved the fastest
converged solution with a 20310 fitness value. Statistical comparison of Table 15 clearly shows that the Rao-1 (Venkata Rao and
Pawar, 2020) method achieves the most robust optimization with the standard deviation of 5.77e-02, whereas, OCAHA
outperforms all the participating algorithms including Rao-1 in the remaining comparing indexes. Convergence profiles of
Figure 5 for STHED problem show that, the AHA reaches the 18926.45 fitness value at its 517 number of iterations and CAHA
achieves 18285.31 after 405 iterations, whereas, with a faster rate of convergence, OCAHA obtains the best solution at its
270th iteration.

The GTD is an unconstrained minimization problem, which optimizes four number integer type control or designing variables to
minimize the problem objective. A 50 population has been considered for AHA, CAHA and OCAHA to solve this problem. The obtained
optimized designs (Table 16) show that, the ABC (Akay and Karaboga, 2012) algorithm obtains the global solution with 2.700857 × 10−12

fitness function value at the lowest computational cost of only its 60 function evaluations among all. OCAHA comes out as the second
performer in this regard with 350 number of its function evaluations to converge into the stated global solution. CAHA takes its 450 function
evaluations to reach the same solution for this case. Statistical comparison of Table 16 shows that, the average or mean, worst and the SD
measures of OCAHA results are the best of all the participating methods including ABC (Akay and Karaboga, 2012). However, ABC
employed a maximum of 30000 function evaluations, whereas, for MBA (Ali et al., 2013), CSA (Askarzadeh, 2016), AHA, CAHA and
OCAHA algorithms, a maximum of 10000 function evaluations have been considered to obtain the reported results. Statistical comparison
plot of Figure 6 for GTD problem clearly identifies OCAHA and CAHA as the first and the second robust performers for the case
respectively among all.

The applied population size in the MDCBD problem for CAHA and OCAHA for mass minimization of a multiple disc clutch brake
system is 5. Table 17 demonstrates that, OCAHA obtains the so far lowest solution (0.3136566) with the optimized actuating force (PA) of
800 at its 105th function evaluations. CAHA achieves the same set of solution at the cost of its 125 function evaluations. Statistical comparison
of Table 17 reveals that, for the same number (600) of maximum function evaluations, the average or mean, worst and the standard deviation
measures of OCAHA solutions are best among all. Statistical plot of Figure 6 forMDCBD clearly identifies the OCAHA algorithm for its most
robust performance parameters for the problem.

Frontiers in Mechanical Engineering frontiersin.org45

Bhattacharjee et al. 10.3389/fmech.2025.1547819

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1547819


5 Conclusion

This work modified the newly designed AHA methodology by the OBL rule and the chaos of Gauss/mouse map for more accurate and faster
optimization. The proposedOCAHAmethod has been tested on 50 and 100 dimensional sets of the unconstrained CEC 2017 benchmark suite, and
on the 10 challenging models of engineering optimization. Four state of the art optimizers, viz. PSO, DE, GWO andWOA, their recently developed
4 effective variants, viz. SLPSO, MTDE, SOGWO and EWOA, and AHA have been the participating algorithms benchmarked on CEC
2017 functions to evaluate the overall optimization performance of OCAHA. OCAHA performance parameters for the engineering problems have
been compared with the leading algorithms of literature to verify its applicability in the complex real-world cases of optimization.

Statistical assessment of the CEC 2017 results through the standard indexes and tests (WRST and FMRT), and the convergence profiles
identify OCAHA as the second performer of the evaluation after MTDE. The OCAHA optimized designs for engineering cases have been
found superior to the previous performances. In the engineering design optimizations, on average, it has reduced the computational cost by
57.5% and 22.63% in term of function evaluations and the fitness value by 2.4% and 0.23% in comparison to the parent method AHA and its
chaotic version CAHA, respectively. Overall, the study justifies modifying AHA with the proposed strategy, and confirms its potential to
compete with many leading optimizers in dealing with the practical complexities.

In the future works, (a) the present method can be applied for the other challenging problems of engineering optimization, (b) the
methodology can be equipped with the appropriate enhancers for more effectiveness, (c) it can be enabled for the current and more
complex aspects of engineering and for real data optimization, and for the ongoing applications of machine learning, (c) the multi-
objective algorithmic form of OCAHA can be implemented.
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Glossary
AHA Artificial hummingbird algorithm

MTDE Multi-trial vector-based differential evolution

BA Bees algorithm

MDCBD Multiple disc clutch brake design

BPDD Belt-pulley drive design

NSGA-II Non dominated sorting genetic algorithm-II

BBO Biogeography-based optimization algorithm

OBL Opposition-based learning

CAHA Chaotic artificial hummingbird algorithm

OCAHA Oppositional chaotic artificial hummingbird algorithm

DE Differential evolution

PSO Particle swarm optimization

EWOA Equilibrium whale optimization algorithm

PSO (RIDC) Particle swarm optimization (real integer discrete coded)

FOA Falcon optimization algorithm

PFHE Plate fin heat exchanger design

FA Firefly algorithm

PVD Pressure vessel design

FMRT Friedman mean rank test

SOGWO Selective opposition based grey wolf optimization

FE Function evaluation

SLPSO Social learning particle swarm optimization

GA Genetic algorithm

SRD Speed reducer design

GTD Gear train design

STHED Shell and tube heat exchanger design

GeneAS Genetic adaptive search

SD Standard deviation

GWO Grey wolf optimizer

TLBO Teaching-learning based optimization algorithm

HCSD Helical compression spring design

VT Visit table

HTBD Hydrostatic thrust bearing design

WBD Welded beam design

HSIA Hybrid swarm intelligence approach

WOA Whale optimization algorithm

IPSO Improved particle swarm optimizer

WRST Wilcoxon rank sum test

Frontiers in Mechanical Engineering frontiersin.org50

Bhattacharjee et al. 10.3389/fmech.2025.1547819

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1547819

	Oppositional chaotic artificial hummingbird algorithm on engineering design optimization
	Highlights
	1 Introduction
	2 Algorithmic methodologies
	2.1 Artificial hummingbird algorithm (AHA)
	2.1.1 Initialization
	2.1.2 Guided foraging
	2.1.3 Territorial foraging
	2.1.4 Migration foraging
	2.1.5 AHA pseudocode

	2.2 Opposition-based learning rule (OBL)
	2.2.1 Opposite population

	2.3 Chaos property
	2.3.1 Chaotic maps

	2.4 Oppositional chaotic artificial hummingbird algorithm (OCAHA)
	2.5 OCAHA implementation

	3 Descriptions and formulations of optimization problems
	3.1 CEC 2017 unconstrained functions
	3.2 Engineering design problems
	3.2.1 Welded beam design (WBD)
	3.2.2 Belt-pulley drive design (BPDD)
	3.2.3 Helical compression spring design (HCSD)
	3.2.4 Hydrostatic thrust bearing design (HTBD)
	3.2.5 Pressure vessel design (PVD)
	3.2.6 Plate fin heat exchanger design (PFHED)
	3.2.7 Speed reducer design (SRD)
	3.2.8 Shell and tube heat exchanger design (STHED)
	3.2.9 Gear train design (GTD)
	3.2.10 Multiple disc clutch brake design (MDCBD)


	4 Simulation results analysis
	4.1 CEC 2017 unconstrained functions
	4.2 Engineering design problems

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References
	Glossary


