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This article presents experimental results on the algebraic identification of the
magnitude and phase angle of unbalance in a rotor-bearing system in a Jeffcott
configuration. The algebraic identifier is designed based on a simplified
mathematical model of the system and it uses only the measurement of the
lateral vibration amplitude of the rotor. The proposed algebraic identifier is first
validated by numerical simulation. For experimental implementation, a
SpectraQuest Machinery Fault and Rotor Dynamics Simulator is used. The
designed identifier is evaluated in two scenarios. In the first, the rotor-bearing
system is balanced using the traditional coefficients of influence method, after
which a known unbalance is induced and compared with the identified
magnitude and phase values. In the second case, the unbalance magnitude
and phase values obtained by the algebraic identifier from an unknown
original unbalanced configuration are used to balance the rotor-bearing
system. The vibration amplitude reduction is quantified to evaluate the
identified values. The main contribution of this work is the discussion of
practical aspects that cannot be appreciated in simulation, but must be
considered in the experimental implementation of the algebraic identification
method, as they can limit the performance of the designed identifiers.
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1 Introduction

Unbalance is an inherent phenomenon in rotating machinery and is one of the most
common vibration sources in turbomachines. Rotor unbalancing is caused by an
asymmetric mass distribution, which can result from many diverse factors:
manufacturing imperfections, design tolerances, non-homogenous materials, thermal
distortion, eccentricity, geometrical discontinuities, corrosion, or wear (Muszynska,
2005; Novillo, 2022; Subbiah and Littleton, 2018). Unbalance occurs when the center of
rotation and the center of gravity of the rotor are not coincident. In this case, unbalance is
modeled as a concentrated mass located at a certain distance from the center of rotation
(called eccentricity). The product of these parameters (mass and eccentricity) is known as
the unbalance magnitude, and the angular location of the unbalance mass relative to a
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reference system provides the unbalance phase angle. Knowledge of
unbalance parameters is necessary to apply balancing methods to
attenuate vibration amplitudes during operation of rotating
machinery (Li et al., 2021; Schneider, 2023), but also to create
more accurate models to analyze and predict the dynamic
behavior of rotating systems (Bera et al., 2023; Lalanne and
Ferraris, 1998; Tiwari, 2018).

In recent years, unbalance identification has been a very active
area of rotordynamics research. Mao et al. (2016) proposed an
indirect method for identifying unbalance parameters. The authors
considered the eccentricity parameter as known, and the
identification of the mass and phase angle is formulated as the
unbalance force reconstruction problem. First, the unbalance force is
reconstructed from the transient system response, and then the
unbalance mass and phase angle are identified from the unbalance
force reconstruction. The proposed method is evaluated numerically
and experimentally. In the test rig, the identified unbalance
parameters were used for balancing the rotor system, achieving a
vibration attenuation of about 60%. In a similar way, Shrivastava
and Mohanty (2020) used a Kalman filter–based estimation
technique to estimate the unbalance force. The proposed
technique requires a mathematical model and the displacement/
velocity signals at different locations of the shaft which were
obtained by numerical integration of experimental acceleration
measurements. The estimated force is used to identify the
unbalance mass and phase angle at different constant speeds. The
authors found that, in some cases when variation in system speed is
observed, the estimated phase angle is not accurate. The same
authors identified the unbalance parameters using a joint input-
state estimation technique. The procedure includes the estimation of
the unbalance force and uses the mathematical system model and
the displacement measurements at the bearing locations. In the
experimental evaluation of the proposed technique, some deviations
were observed in the estimated phase angles for certain cases
(Shrivastava and Mohanty, 2019). It is important to mention that
these methods need to identify the bearing parameters before being
applied to estimate the unbalance parameters. Moreover, they
consider a rigid rotor model, which may not capture the
dynamics of some real-world machines, e.g., high-speed (flexible)
rotors, and the obtained results are not used for balancing the rotor
system. Machine and deep learning algorithms have been used for
rotor unbalance diagnosis in rotating machinery, but there are still
some issues to be considered for future analysis, such as the
influence of a noisy environment, the speed of convergence of
the algorithms, computational cost, volume of data, consistency
of data, loss of some input data, and trustworthiness of the input
data, etc. (Rajagopalan et al., 2023; Wisal and Oh, 2023).
Optimization is another approach utilized to solve the problem
of identifying the unbalance parameters. Abbasi et al. (2022)
proposed a novel optimization-based method to determine the
parameters of a rotating unbalance in a rotor-bearing system. A
hybrid algorithm integrating the salp swarm algorithm and
Nelder–Mead algorithms for detecting unbalance magnitude and
phase angle was developed. The results showed the superiority of the
proposed hybrid algorithm in terms of the accuracy of the unbalance
parameters and computational efficiency compared to other
optimization algorithms in the literature. Recently, Sheng et al.
(2024) proposed a method to identify the unbalanced vibration

feature, based on the fused cross-correlation fast Fourier transform
(FC-CFFT) method. Authors compared this method with FFT, the
cross-power, and the sine-approximation methods and they found
that FC-CFFT method is more accurate in extracting different
unbalanced vibration features of the rotor system. Zhou et al.
(2024) investigated the application of the augmented Kalman
filter (AKF) for unbalance identification of a practical turbofan
engine. The proposed method showed favorable convergence and an
accurate estimation for the unbalance magnitude, but results about
unbalance phase angle are not reported.

On the other hand, the algebraic identification method has been
recently explored in rotordynamics. Mendoza-Larios et al. (2021)
used the algebraic identification approach to estimate the stiffness
and damping rotordynamic coefficients in a rotor-bearing system
under the assumption that the elasticity and dissipative forces are
linear. The proposed identifiers are validated only numerically in
two scenarios, constant and variable rotational speed of the rotor-
bearing system. The simulation results indicate fast convergence in
the identification of stiffness and damping parameters, taking less
than 0.06 s for both considered operating conditions. Barrerdo et al.
(2024) proposed algebraic identifiers for the mass, stiffness and
damping parameters of a simplified rotor-bearing system with two
degrees of freedom. Authors evaluated numerically the proposed
identifiers showing that it is possible to determine the values of the
mass, damping and stiffness parameters of the rotor-bearing system
in a small-time interval less to 0.28 s. In Beltrán-Carbajal et al. (2013)
the algebraic parameter identification methodology is applied to
estimate the mass, stiffness, damping, rotor eccentricity, and on-line
reconstruction of the unknown centrifugal forces induced by rotor
unbalance in order to design an active unbalance controller in a
three degrees-of-freedom Jeffcott-like rotor-bearing system. The
proposed identifier-controller scheme performance is evaluated
by numerical simulations. Arias-Montiel et al. (2014) estimated
the unbalance forces in a two-disks rotor-bearing system by using an
asymptotic extended-state observer and a reduced-order finite
element model. The eccentricity parameter of unbalance in both
disks was identified from the estimated unbalance force using the
algebraic identification approach. The obtained unbalance forces are
used to synthesize an active control law to attenuate the vibration
response of the rotor-bearing system. An experimental test rig was
used only to validate the finite element model, but the observer and
algebraic identifier were validated only in simulation. A
methodology for balancing rotor-bearing systems based on an
active balancing disk is presented in Mendoza-Larios et al.
(2016). The algebraic identification method is used to determine
themagnitude of the unbalance and its angular position on the rotor.
The proposedmethodology is validated numerically. Baltazar-Tadeo
et al. (2023) developed and integrated approach for balancing
asymmetric rotor-bearing systems by combining algebraic
identification, modal balancing, and active balancing disks. The
authors concluded that the integration of such elements allows for
in-situ balancing the asymmetric rotor-bearing system in one single
trial run, but the presented results are based solely on numerical
simulation. More recently, a novel method for balancing asymmetric
rotor-bearing systems, designed to overcome some limitations of
previously reported methods, was developed, achieving the
simultaneous balance of four vibration modes by a single trial
run (Baltazar-Tadeo et al., 2024). The proposed method uses
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algebraic identification to calculate a modal masses array for the
modal unbalance of the asymmetrical rotor-bearing system. The
efficacy of the proposed method was demonstrated numerically.

As can be noted, the algebraic identification method has been
widely used for parameters estimation in rotordynamics. This is
mainly due to its advantages over other methods: robustness against
structured perturbations and noise, high convergence velocity, and it
does not require the classical “persistency of excitation condition”
(Fliess and Sira-Ramírez, 2003; Sira-Ramírez et al., 2014; Trapero
et al., 2008). These properties have been extensively proven by
numerical simulation in rotor-bearing systems. Baltazar-Tadeo et al.
(2024) showed through numerical simulations that the algebraic
identification method is sensitive to noise in vibration signals
obtained from rotordynamic systems, and the parameters
identified by this approach can be strongly affected by the
presence of high levels of noise; therefore, the use of filtering
techniques is recommended. Moreover, to the knowledge of the
authors, experimental implementation of algebraic identification in
real rotordynamic systems has not yet been carried out.

In this work, the experimental implementation of the algebraic
identification of magnitude and phase of unbalance in a rotor-bearing
system in a Jeffcott configuration is presented. The algebraic identifier is
designed based on a two-degree-of-freedom systemmodel and requires
only the measurement of the lateral vibration amplitude of the rotor.
The proposed algebraic identifier is numerically validated by
considering two different operating conditions: constant and variable
rotational velocity. After that, a SpectraQuest Machinery Fault and
RotorDynamics Simulator is used for the experimental implementation
of the algebraic identifier. For this case, the identifier is evaluated in two
scenarios. Firstly, the rotor-bearing system is balanced using the
traditional coefficients of influence method, and then a known
unbalance is induced, with the identified balance (magnitude and
phase) compared to this. In the second case, the rotor-bearing
system starts in an unknown unbalanced condition, and the
unbalance magnitude and phase values obtained by the algebraic
identifier are used to balance the rotor-bearing system. The
vibration amplitude reduction is quantified to evaluate the identified
values. Finally, important remarks on practical aspects about
experimental implementation of algebraic identifier are provided.

2 Materials and methods

2.1 Algebraic identifier development

Algebraic identification is a model-based method, and the
classical Jeffcott rotor model is used to develop the identifier for
the unbalance parameters. Different approaches have been
proposed for Jeffcott rotor modeling (Friswell et al., 2010;
Subbiah and Littleton, 2018; Tiwari, 2018; Vance et al., 2010),
but all of them agrees on the idea of a disk with an unbalanced
mass at a certain distance (eccentricity) from the geometrical
center, as shown in Figure 1, where M is the rotor mass, K and C
are the equivalent stiffness and damping of the rotor-bearing
system, respectively, mu is the unbalance mass, d is the
eccentricity parameter, α is the unbalance phase angle, and φ

denotes the rotation angle of the rotor. In this work, the dynamic
model obtained by the Euler-Lagrange formalism described in
Beltrán-Carbajal et al. (2014) and given in Equations 1, 2
is employed.

M€x + C _x +Kx � mud €φ sin α + φ( ) + _φ2 cos α + φ( )( ) (1)
M€y + C _y + Ky � mud _φ2 sin α + φ( ) − €φ cos α + φ( )( ) (2)

where x and y are the distances from the origin of the reference
frame to the geometrical disk center on the X and Y axes,
respectively.

For the development of the algebraic identifier, the time-domain
methodology explained by Sira-Ramírez et al. (2014) is followed.

First, both sides of Equations 1, 2 are multiplied by t2:

t2 M€x + C _x +Kx � mud €φ sin α + φ( ) + _φ2 cos α + φ( )( )( ) (3)
t2 M€y + C _y +Ky � mud _φ2 sin α + φ( ) − €φ cos α + φ( )( )( ) (4)

After that, the obtained Equations 3, 4 are integrated with
respect to t.

∫∫M€xt2 + ∫∫C _xt2 + ∫∫Kxt2

� ∫∫mudt
2 €φ sin α + φ( ) + _φ2 cos α + φ( )( ) (5)

∫∫M€yt2 + ∫∫C _yt2 + ∫∫Kyt2

� ∫∫mudt
2 _φ2 sin α + φ( ) − €φ cos α + φ( )( ) (6)

To solve Equations 5, 6, the four terms from each equation are
separated and solved individually as it is shown in Equations 7-14.

The integration by parts method is used to integrate the three
terms on the left side of Equation 5, resulting in

∫∫M€xt2 � M t2x − 4∫xt + 2∫∫x( ) (7)

∫∫C _xt2 � C ∫ t2x − 2∫∫xt( ) (8)

∫∫Kxt2 � K ∫∫ t2x( ) (9)

In an analogous manner, for Equation 6, we have

∫∫M€yt2 � M t2y − 4∫yt + 2∫∫y( ) (10)

FIGURE 1
Body-free diagram of the Jeffcott rotor.
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∫∫C _yt2 � C ∫ t2y − 2∫∫yt( ) (11)

∫∫Kyt2 � K ∫∫ t2y( ) (12)

For the right-side term in Equation 5, the integration by parts
method is applied by considering u � t2, du � 2t, dv �
d
dt ( _φ sin(α + φ)) and v � _φ sin(α + φ), and using the
trigonometric identity sin(α + φ) � sin(α) cos(φ) + cos(α) sin(φ),
we obtain

∫∫mudt
2 €φ sin α + φ( ) + _φ2 cos α + φ( )( )

� mud sin α( ) ∫ t2 _φ cos φ( ) − 2∫∫ t _φ cos φ( )( ) +mud cos α( )

× ∫ t2 _φ sin φ( ) − 2∫∫ t _φ sin φ( )( )
(13)

In a similar way, for the right side on Equation 6, we use u � t2,
du � 2t, dv � − d

dt ( _φ cos(α + φ)), v � _φ sin(α + φ) and cos(α + φ) �
cos(α) cos(φ) − sin(α) sin(φ) to obtain

∫∫mudt
2 _φ2 sin α + φ( ) − €φ cos α + φ( )( )

� mud sin α( ) ∫ t2 _φ sin φ( ) − 2∫∫ t _φ sin φ( )( ) −mud cos α( )

× ∫ t2 _φ cos φ( ) − 2∫∫ t _φ cos φ( )( )
(14)

Finally, the global solutions for Equations 5, 6 are

M t2x − 4∫xt + 2∫∫x( ) + C ∫ t2x − 2∫∫xt( ) +K ∫∫ t2x( )
� mud sin α( ) ∫ t2 _φ cos φ( ) − 2∫∫ t _φ cos φ( )( ) +mud cos α( )

× ∫ t2 _φ sin φ( ) − 2∫∫ t _φ sin φ( )( )
(15)

M t2y − 4∫yt + 2∫∫y( ) + C ∫ t2y − 2∫∫yt( ) + K ∫∫ t2y( )
� mud sin α( ) ∫ t2 _φ sin φ( ) − 2∫∫ t _φ sin φ( )( ) −mud cos α( )

× ∫ t2 _φ cos φ( ) − 2∫∫ t _φ cos φ( )( )
(16)

Regrouping and renaming terms as

mds � mud sin α( ) (17)
mdc � mud cos α( ) (18)

a1 � ∫ t2 _φ cos φ( ) − 2∫∫ t _φ cos φ( )( ) (19)

a2 � ∫ t2 _φ sin φ( ) − 2∫∫ t _φ sin φ( )( ) (20)

b1 � M t2x − 4∫xt + 2∫∫x( ) + C ∫ t2x − 2∫∫xt( ) + K ∫∫ t2x( )
(21)

b2 � M t2y − 4∫yt + 2∫∫y( ) + C ∫ t2y − 2∫∫yt( ) +K ∫∫ t2y( )
(22)

Equations 15, 16 can be rewritten as

a1 a2
a2 −a1[ ] mds

mdc
[ ] � b1

b2
[ ] (23)

The linear Equation 23 can be solved using the Cramer’s rule
(Strang, 2023) to obtain

mds � b1a1 + a2b2
a21 + a22

(24)

mdc � a2b1 − b2a1
a21 + a22

(25)

From the obtained values in Equations 24, 25, magnitude
(mud) and phase angle α of rotor unbalance can be
calculated with

mud � 											
mds2 +mdc2

√
(26)

α � arctan
mds

mdc
(27)

As can be appreciated in Equations 15–27, the algebraic
identifier developed to estimate the unbalance parameters is in
terms of a1, a2, which can be quantified by the known rotational
velocity of the rotor-bearing systems, and b1, b2, which only
depend on the measured lateral vibration system response x
and y.

TABLE 1 Numerical parameters for simulation.

Parameter Value

Rotor mass M 1.8581 kg

Equivalent damping C 22.0293 N · s/m

Equivalent stiffness K 38804.7144 N/m

Unbalance magnitude mud 1.0752 × 10−4 kg ·m

Unbalance phase angle α π
6 rad

Rotational velocity _φ 40π rad/s

Simulation time tsim 1.5 s

Integration step Pint 0.5 ms

FIGURE 2
Rotor-bearing system response in simulation at constant
rotational velocity.
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3 Results

3.1 Numerical validation of the
algebraic identifier

In order to prove the algebraic identifier’s performance by
simulation, the rotor-system dynamics given by Equations 1, 2
were numerically solved using Matlab-Simulink with the
numerical parameters presented in Table 1. The obtained
lateral vibration system response is shown in Figure 2. As can
be observed, the amplitudes on the x and y axes have the same
magnitude, but they are 90° out of phase because we are
considering a symmetrical rotor. These obtained data, along
with the rotational velocity and simulation time, are provided
to algebraic identifier, as shown in Figure 3, in which ”Algebraic
identifier” subsystem contains the programming code for
Equations 19–27 and the ”Jeffcott rotor model” subsystem the
corresponding code for Equations 1, 2.

Results for the identification of unbalance magnitude and phase
angle at constant rotational velocity are shown in Figure 4. As can be
observed, the identified unbalance parameters rapidly converge to
the values considered for simulation in Table 1. It is important to

note the high resolution on the vertical scale in both figures,
which allows for the precision of the calculated values to be
appreciated.

Numerical simulations were carried out at variable
rotational velocity of the rotor-bearing system to prove the

FIGURE 3
Block-diagram for rotor-bearing system model and algebraic identifier.

FIGURE 4
Identified unbalance magnitude and phase angle at
constant velocity.
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algebraic identifier’s performance for this operating condition. In
this case, a ramp velocity with an angular acceleration of 27 rad

s2

was considered. The system response is presented in Figure 5,
and the identified values for unbalance parameters are
shown in Figure 6. The algebraic identifier’s performance is
practically the same as for the constant velocity case,
the estimated values converge to the real ones in a few
milliseconds.

3.2 Test rig description

For experimental implementation of the proposed algebraic
identifier, the SpectraQuest Machinery Fault and Rotor Dynamics
Simulator shown in Figure 7 was used. Vibration amplitudes were
measured by two Eddy current proximity probes (1) by
SpectraQuest, located perpendicularly to each other, and the
measuring kit includes a signal conditioner (2) that transduces
displacement into a voltage signal. A DAQ 6024E data
acquisition card by National Instruments (3) was used to acquire
the proximity probe signals. The acquired data are processed in
Matlab Simulink (4) software to be used in the experimental
validation of the algebraic identifier. Finally, an infrared sensor
was utilized to generate a pulsing signal to be used as a reference to
measure the phase of the proximity probe signals.

3.3 Rotor-bearing system characterization

Mass, damping and stiffness parameters given in Table 1 were
experimentally estimated. The mass of the rotor-bearing system M
was calculated by Equation 28 (Rao, 2017).

M � md + 0.5 ms (28)
where md and ms are the masses of the disk and rotor shaft,
respectively. Both elements were directly weighed, yielding md �
1.5 kg and ms � 0.7163 kg, giving a result of M � 1.8581 kg.

For damping C and stiffness K estimation, the peak-picking
method (Ewins, 2000; Inman, 2017) was applied to the experimental
frequency response of the rotor-bearing system presented in
Figure 8, where amplitude R was calculated by Equation 29.

R �
						
x2 + y2

√
(29)

and x and y are the vibration amplitudes in steady-state for each
operating frequency.

The damping ratio ζ can be estimated by

ζ � ω2 − ω1

2 · ωr
(30)

where ω1 and ω2 are the frequencies corresponding to an
amplitude Amax	

2
√ , Amax is the maximum amplitude of the

FIGURE 5
Rotor-bearing system response in simulation at variable
rotational velocity.

FIGURE 6
Identified unbalance magnitude and phase angle at
variable velocity.

FIGURE 7
Rotor-bearing test rig.
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frequency response, and ωr is the frequency corresponding to the
maximum amplitude Amax.

From Figure 8, we can obtain the following values:
Amax � 5.1502 ×−4m, ωr � 144.5132 rad

s � 23 Hz,
Amax	

2
√ � 3.6418 ×−4m, ω1 � 21.5787Hz, and ω2 � 23.4659Hz.
Substituting them in Equation 30, we obtain the damping ratio as

ζ � 23.4659 Hz − 21.5787 Hz

2 · 23 Hz
� 0.04102

The equivalent stiffness coefficient can be obtained from the
natural frequency definition (Rao, 2017) given in Equation 31.

K � M · w2
r (31)

and substituting the mass and natural frequency values:

K � 1.8581 kg · 144.5132 rad/s( )2 � 38804.7144
N

m

Finally, the equivalent damping coefficient is obtained from the
critical damping (Cr) definition (Rao, 2017) as follows

Cr � 2 · 					
K ·M√ � 2 ·

																					
38804.7144

N

m
· 1.8581 kg

√
� 537.0401

N · s
m

C � Cr · ζ � 537.0401
N · s
m

· 0.04102 � 22.0293
N · s
m

Once the rotor-bearing system has been characterized, the
proposed algebraic identifier is experimentally proven for two
cases. In the first, the rotor-bearing system is balanced, and then
a known unbalance is induced. In the second scenario, the algebraic
identifier is used to estimate the unbalance parameters of an
unknown unbalanced condition, and the identified parameters
are used to balance the rotor-bearing system.

3.4 Identification of induced unbalance
parameters

The rotor-bearing system was balanced using the well-known
influence coefficients method (Bently and Hatch, 2002; Lees, 2016).
It is important to mention that this method requires a reference
signal to measure the phase angle, which was obtained from the
infrared sensor mentioned in the previous section. This reference

signal is also used to measure the unbalance phase angle estimated
by the algebraic identifier.

From this balanced condition, a heavy spot was induced. For
the first case, an unbalance massmu � 1.2868 × 10−3kg at a radial
distance d � 57 × 10−3m from the geometrical center of the disk
was applied. These parameters result in an unbalance magnitude
mud � 7.3347 × 10−3kg ·m, and the mass location corresponds to
a phase angle of 0° from the reference signal provided by the
infrared sensor. In Figure 9, the experimental response of the
rotor-bearing system operating at a constant rotational velocity
of 20 Hz is shown. These data were introduced into the proposed
algebraic identifier, and the results for the estimated unbalance
magnitude and phase angle are depicted in Figure 10.

As can be appreciated, the unbalance parameter values do not
converge to any value. This is mainly because the influence of
noise in the acquired data from the proximity probes. Some
digital filtering techniques were applied to the raw signals;
however, the identifier performance could not be improved
because digital filters induce delays in the filtered signals. This
characteristic affects the phase angle of the acquired signals and,
as a consequence, the identifier’s performance. Results of the
identified values with filtered signals are included as
Supplementary Material. Experimental filtered signals used as
input to the algebraic identifier are presented in Supplementary

FIGURE 9
Experimental unfiltered response of the rotor-bearing system at
20 Hz.

FIGURE 10
Identified unbalance magnitude and phase angle with
unfiltered signals.

FIGURE 8
Experimental frequency response of the rotor-bearing system.
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Figures S1, S2, and the obtained results for the identified values of
the unbalance parameters are shown in Supplementary
Figures S3, S4.

As a solution for this problem, we propose a signal
reconstruction procedure to obtain the system response free
of noise and without any delay that could affect the identifier’s
performance. Firstly, the raw signals are filtered. Then,
amplitude, frequency and phase angle of the signals are
obtained by analyzing the first two cycles, since according to
Baltazar-Tadeo et al. (2023), the unbalance parameters can be
obtained with the algebraic approach using just a small fraction
of the system response. The reconstructed signals of the rotor-
bearing system response are presented in Figure 11. These data
were used as input for the algebraic identifier, and the

corresponding identified values for unbalance magnitude and
phase angle are shown in Figure 12.

The identified unbalance parameter values converge rapidly (in
0.1s) to a constant value. The unbalance mass can be calculated from
the identified unbalance magnitude in Figure 12 as

mb � 4.59 ×−5kg ·m
57 × 10−3m

� 8.0526 × 10−4kg

This value is compared with the induced unbalance mass
(1.2868 × 10−3kg), resulting in a percentage difference of 37.4%.
The identified value for the unbalance phase angle is 12° and in this
case it is not possible to calculate a percentage difference because the
induced angle value is 0°.

The obtained differences may be due to various factors, such
as the residual unbalance after the rotor balancing by the
influence coefficient method (the rotor cannot be perfectly
balanced), the consideration of a simplified symmetric
mathematical model when the obtained experimental system
response is asymmetric, a possible shaft runout, and other
unmodeled dynamics. Moreover, it was not possible to obtain
balancing masses with the exact calculated values, and only
approximated values were used.

More experimental tests were carried out with the same
unbalance mass at different angular locations, following the
procedure for the system response signals reconstruction. The
obtained results for the identified unbalance mass and phase
angle are summarized in Table 2. These values were used for
rotor balancing by locating a similar mass 180° from the
identified value for the unbalance phase angle. In Table 3 the
balancing mass and angular location as well as the vibration
attenuation percentages for each experimental test, are
presented. Graphical results for vibration amplitude
attenuation in the case of the first row in Table 3 are shown
in Figure 13 for x and y-axes. It is important to mention that all
the signals in Figure 13 were digitally filtered to improve
visualization and comparison, as well as to facilitate the
quantification of vibration attenuation.

3.5 Identification of original unbalance
parameters

For the second scenario, all the trim, balancing and unbalance
masses were removed from the disk of the rotor-bearing system.
From this original unbalanced condition, the vibration system
response was obtained, and following the reconstruction signal
procedure described in the previous section, the unbalance
parameters were estimated by the proposed algebraic identifier.

FIGURE 11
Artificially reconstructed signals for response of the rotor-
bearing system at 20 Hz.

FIGURE 12
Identified unbalance magnitude and phase angle with
reconstructed signals.

TABLE 2 Identified unbalance parameters by experimental tests.

Induced mass Induced phase angle Identified mass Identified phase angle

1.2868 × 10−3kg 120° 0.69 × 10−3kg 121.6°

1.2868 × 10−3kg 180° 0.68 × 10−3kg −178.4°

1.2868 × 10−3kg 240° 0.82 × 10−3kg −118.3°

1.2868 × 10−3kg 270° 0.85 × 10−3kg −89.33°
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The resulting balancing parameters were: a balancing mass of
1.14 × 10−3kg located at 30°. In Figure 14, the obtained vibration
attenuation for a balancing mass of 1.2868 × 10−3kg at 30° is
presented. The calculated attenuation percentage is 63% for
x-axis and 62% for y-axis.

4 Conclusion and outlook

In this article, an identifier for the unbalance parameters of a
Jeffcott-like rotor-bearing system based on the algebraic method was
developed. A simplified mathematical model for the rotor-bearing

system and Matlab Simulink software were employed to design and
numerically prove the proposed identifier, finding a rapid convergence
of the estimated parameters to the correct values. In experimental
testing, however, the designed identifier was negatively affected by the
inevitable noise in the measured signals needed for the identification
procedure, finding that in presence of noise, the identified unbalance
parameters did not converge to any constant value. Digital filtering
techniques were not effective because the induced delay in the filtered
signals affected the estimated values, mainly the unbalance phase angle.
Taking advantage of the velocity convergence of the algebraic
identification method, a reconstruction signal procedure was
proposed in order to decrease the noise influence on the
identifier’s performance without phase delay effects. By
applying the reconstruction signal procedure, the identifier
performance was improved, achieving a rapid convergence of
the estimated unbalance parameters. This procedure has resulted
a viable and practical approach for off-line rotor balancing using
algebraic identifiers, but its applicability in cases of on-line balancing
must be addressed both numerically and experimentally to verify the
scope and limitations.

The proposed algebraic identifier was evaluated by using the
estimated unbalance parameters for rotor balancing. Experimental
results showed vibration amplitude attenuations around 60% for all
tests carried out. These vibration attenuation percentages are
comparable with those previously reported in literature. Mao et al.
(2016) achieved a reduction between 58% and 65% in vibration
amplitude but the proposed method must reconstruct the unbalance
force before the unbalance parameters could be estimated. Shrivastava
and Mohanty (2019) reported vibration amplitudes attenuation of
around 50% using a joint input-state estimation technique. This
approach also requires the calculation of the unbalance force
previously to the unbalance parameters estimation.

The obtained results could be improved by using a more complex
mathematical model of the rotor-bearing system that considers
dynamical effects ignored by the simplified model used here.
Moreover, the importance of properly measuring the phase of
signals was noted in the experimental tests. It is necessary to have
the same reference for both numerical data obtained by mathematical
model simulation and experimental signals. This is achieved by placing
the infrared sensor in a correct location, in this case, in the same angular
position than proximity probe used tomeasure the vibration amplitudes
in y-axis. Since algebraic identification is a model-based identification
method, as a future work we propose the consideration of finite element
(FE) models which describes more precisely the dynamics of the real
system. FE models can include various characteristics ignored by the
Jeffcott model such as more inertial disks along the shaft, changes in the
shaft diameter, gyroscopic effects, anisotropy in bearings and shaft

TABLE 3 Vibration attenuation for rotor balancing by the identified unbalance parameters.

Balancing mass Balancing angle Attenuation percentage in x-axis Attenuation percentage in y-axis

0.76 × 10−3kg −60° 67% 69%

0.76 × 10−3kg 0° 60% 65%

0.80 × 10−3kg 60° 54% 60%

0.80 × 10−3kg 90° 55% 61%

FIGURE 13
Vibration attenuation in x and y-axes (mass balance at 60°).

FIGURE 14
Vibration attenuation in x and y-axes for the original
unbalanced condition.
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properties. These models have already been used in the development of
unbalance parameters identifiers using the algebraic identification
method (Arias-Montiel et al., 2014; Mendoza-Larios et al., 2016;
Baltazar-Tadeo et al., 2023; Baltazar-Tadeo et al., 2024) but the
reported results are only in numerical simulations. Besides, some
additional problems have emerged by the use of this kind of model,
mainly the need to measure a great amount of vibration amplitudes
along the shaft. Some solutions for this problem has been reported as
the use of state observers (Arias-Montiel et al., 2014) or pseudo-modal
models (Baltazar-Tadeo et al., 2024). However, these proposals have
been evaluated only numerically. Therefore further experimental work
is required to overcome these difficulties and achieve the
implementation of algebraic identification in more complex systems.
Theoretically, the algebraic identification method is robust against the
noise in the acquired signals (Fliess and Sira-Ramírez, 2003; Sira-
Ramírez et al., 2014; Trapero et al., 2008), but in our experience,
noise is an important factor which negatively affect the estimated
parameters value. Thus, we believe that more experimental evidence
is needed about the influence of noise in the measured signals on the
performance of identifiers based on algebraic method, in order to verify
its robustness in comparison with other methods in real systems
applications.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found below: Google drive https://drive.google.
com/drive/folders/1UXa3e1aIR2iBXHUSbaRpMKoVKb0bAJRN.

Author contributions

JQ-B: Investigation, Software, Validation, Writing–review and
editing. MA-M: Conceptualization, Formal Analysis, Methodology,
Project administration, Resources, Writing–original draft,
Writing–review and editing. JM-L: Conceptualization, Formal
Analysis, Methodology, Resources, Writing–review and editing.
LV-S: Formal Analysis, Resources, Writing–review and editing.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Acknowledgments

The authors thank the Universidad Tecnológica de la Mixteca
for its support in the development of this project.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fmech.2025.1553759/
full#supplementary-material

References

Abbasi, A., Firouzi, B., Sendur, P., Ranjan, G., and Tiwari, R. (2022). Identification of
unbalance characteristics of rotating machinery using a novel optimization-based
methodology. Soft Comput. 26, 4831–4862. doi:10.1007/s00500-022-06872-9

Arias-Montiel, M., Beltrán-Carbajal, F., and Silva-Navarro, G. (2014). On-line
algebraic identification of eccentricity parameters in active rotor-bearing systems.
Int. J. Mech. Sci. 85, 152–159. doi:10.1016/j.ijmecsci.2014.05.027

Baltazar-Tadeo, L. A., Colín-Ocampo, J., Abúndez-Pliego, A., Mendoza-Larios, J. G.,
Martínez-Rayón, E., and García-Villalobos, A. (2024). Balancing of asymmetric rotor-
bearing systems using modal masses array calculated by algebraic identification of
modal unbalance. J. Vib. Eng. Technol. 12, 4765–4788. doi:10.1007/s42417-023-01151-9

Baltazar-Tadeo, L. A., Colín-Ocampo, J., Mendoza-Larios, J. G., Abúndez-Pliego, A.,
Nango-Blanco, M., Blanco-Ortega, A., et al. (2023). An integrated balancing method for
asymmetric rotor-bearing systems: algebraic identification, modal balancing, and active
balancing disks. J. Vib. Eng. Technol. 11, 619–645. doi:10.1007/s42417-022-00598-6

Barrerdo, E., Mendoza-Larios, J. G., Baltazar-Tadeo, L. A., and Landa-Damas, S. J.
(2024). Algebraic identification of the physical parameters of a simplified two-degrees-
of-freedom rotor-bearing system (in Spanish). CULCYT Cult. Científica Tecnológica 21,
4–12. doi:10.20983/culcyt.2024.1.2.1

Beltrán-Carbajal, F., Silva-Navarro, G., and Arias-Montiel, M. (2013). Active
unbalance control of rotor systems using on-line algebraic identification methods.
Asian J. Control 15, 1–11. doi:10.1002/asjc.744

Beltrán-Carbajal, F., Silva-Navarro, G., and Arias-Montiel, M. (2014). Active
vibration control in a jeffcott-like rotor with variable speed using an
electromechanical suspension (in Spanish). Rev. Iberoam. Automática Inform. Ind.
11, 295–303. doi:10.1016/j.riai.2014.05.002

Bently, D., and Hatch, C. (2002). Fundamentals of rotating machinery diagnostics.
Minden, NV, USA: Bently Pressurized Bearing Press.

Bera, B., Huang, S.-C., Najibullah, M., and Lin, C.-L. (2023). An adaptive model-based
approach to the diagnosis and prognosis of rotor-bearing unbalance. Machines 11,
976–1018. doi:10.3390/machines11100976

Ewins, D. J. (2000). Modal testing: theory, practice and application. Hertfordshire,
England: Research Studies Press LTD.

Fliess, M., and Sira-Ramírez, H. (2003). An algebraic framework for linear
identification. ESAIM Control, Optimisation Calc. Var. 1, 151–168. doi:10.1051/cocv:
2003008

Frontiers in Mechanical Engineering frontiersin.org10

Quiroz-Bautista et al. 10.3389/fmech.2025.1553759

https://drive.google.com/drive/folders/1UXa3e1aIR2iBXHUSbaRpMKoVKb0bAJRN
https://drive.google.com/drive/folders/1UXa3e1aIR2iBXHUSbaRpMKoVKb0bAJRN
https://www.frontiersin.org/articles/10.3389/fmech.2025.1553759/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmech.2025.1553759/full#supplementary-material
https://doi.org/10.1007/s00500-022-06872-9
https://doi.org/10.1016/j.ijmecsci.2014.05.027
https://doi.org/10.1007/s42417-023-01151-9
https://doi.org/10.1007/s42417-022-00598-6
https://doi.org/10.20983/culcyt.2024.1.2.1
https://doi.org/10.1002/asjc.744
https://doi.org/10.1016/j.riai.2014.05.002
https://doi.org/10.3390/machines11100976
https://doi.org/10.1051/cocv:2003008
https://doi.org/10.1051/cocv:2003008
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1553759


Friswell, M. I., Penny, J. E. T., Garvey, S. D., and Lees, A. W. (2010). Dynamics of
rotating machines. Cambridge, UK: Cambridge University Press.

Inman, D. J. (2017). Vibration with control. Hoboken, NJ, USA: Wiley.

Lalanne, M., and Ferraris, G. (1998). Rotordynamics prediction in engineering. New
York, USA: Wiley.

Lees, A. W. (2016).Vibration problems in machines. Boca Raton, FL, USA: CRC Press.

Li, L., Cao, S., Li, J., Nie, R., and Nou, L. (2021). Review of rotor balancing methods.
Machines 9, 89–16. doi:10.3390/machines9050089

Mao, W., Liu, G., Li, J., and Liu, J. (2016). An identification method for the unbalance
parameters of a rotor-bearing system. Shock Vib. 2016, 1–9. doi:10.1155/2016/8284625

Mendoza-Larios, J. G., Barredo, E., Arias-Montiel, M., Baltazar-Tadeo, L. A., Landa-
Damas, S. J., Tapia-Herrera, R., et al. (2021). An algebraic approach for identification of
rotordynamic parameters in bearings with linearized force coefficients. Mathematics 9,
2747–2821. doi:10.3390/math9212747

Mendoza-Larios, J. G., Colín-Ocampo, J., Blanco-Ortega, A., Abúndez-Pliego, A., and
Gutiérrez-Wing, E. S. (2016). Automatic balancing of a rotor-bearing system: on-line
algebraic identifier for a rotordynamic balancing system (in Spanish). Rev. Iberoam.
Automática Inform. Ind. 13, 281–292. doi:10.1016/j.riai.2016.03.004

Muszynska, A. A. (2005). Rotordynamics. Boca Raton, FL, USA: CRC Press.

Novillo, E. (2022). “Vibration control engineering,” in Passive and feedback systems
(Boca Raton, FL, USA: CRC Press).

Rajagopalan, S., Purohit, A., and Singh, J. (2023). “A systematic review of rotor
unbalance diagnosis in rotating machinery based on machine learning algorithms,” in
Vibration engineering and technology of machinery. Editors R. Tiwari, Y. S. R. Mohan,
A. K. Darpe, V. A. Kumar, and M. Tiwari (Singapore: Springer), 281–300.

Rao, S. S. (2017). Mechanical vibrations. Harlow, UK: Pearson.

Schneider, H. (2023). “Rotor balancing,” in Fundamentals for systematic processes.
Berlin, Germany: Springer Vieweg.

Sheng, Y.,Wang, Z., Zhou, P., Wang, Z., Niu, Q.W. S., and Niu, S. (2024). Unbalanced
feature identification of rotor system based on fused cross-correlation fast fourier
transform. Int. J. Aerosp. Eng. 2024, 1–12. doi:10.1155/2024/3095976

Shrivastava, A., and Mohanty, A. R. (2019). Identification of unbalance in a rotor
system using a joint input-state estimation technique. J. Sound Vib. 442, 414–427.
doi:10.1016/j.jsv.2018.11.019

Shrivastava, A., and Mohanty, A. R. (2020). Identification of unbalance in a rotor-
bearing system using kalman filter–based input estimation technique. J. Vib. Control 26,
1081–1091. doi:10.1177/1077546319891642

Sira-Ramírez, H., García-Rodríguez, C., Cortés-Romero, J., and Luviano-Juárez, A.
(2014). Algebraic identification and estimation methods in feedback control systems.
Chichester, United Kingdom: Wiley.

Strang, G. (2023). Introduction to linear algebra. Wellesley, MA, USA: Wellesley-
Cambridge Press.

Subbiah, R., and Littleton, J. E. (2018). Rotor and structural dynamics of
turbomachinery. A practical guide for engineers and scientists. Cham, Switzerland:
Springer.

Tiwari, R. (2018). Rotor systems: analysis and identification. Boca Raton, FL, USA:
CRC Press.

Trapero, J. R., Sira-Ramírez, H., and Batlle, F. (2008). On the algebraic identification
of the frequencies, amplitudes and phases of two sinusoidal signals from their noisy
sum. Int. J. Control 81, 507–518. doi:10.1080/00207170701561419

Vance, J., Zeidan, F., and Murphy, B. (2010).Machinery vibration and rotordynamics.
New Jersey, USA: Wiley.

Wisal, M., and Oh, K.-Y. (2023). A new deep learning framework for imbalance
detection of a rotating shaft. Sensors 23, 7141–7219. doi:10.3390/s23167141

Zhou, L., Zhang, D., He, T., and Wang, H. (2024). Unbalance identification for a
practical turbofan engine using augmented kalman filter improved with the
convergence criterion. J. Vib. Control 30, 1566–1579. doi:10.1177/10775463231165092

Frontiers in Mechanical Engineering frontiersin.org11

Quiroz-Bautista et al. 10.3389/fmech.2025.1553759

https://doi.org/10.3390/machines9050089
https://doi.org/10.1155/2016/8284625
https://doi.org/10.3390/math9212747
https://doi.org/10.1016/j.riai.2016.03.004
https://doi.org/10.1155/2024/3095976
https://doi.org/10.1016/j.jsv.2018.11.019
https://doi.org/10.1177/1077546319891642
https://doi.org/10.1080/00207170701561419
https://doi.org/10.3390/s23167141
https://doi.org/10.1177/10775463231165092
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1553759

	Experimental implementation of algebraic identifier for unbalance parameters in a rotor-bearing system
	1 Introduction
	2 Materials and methods
	2.1 Algebraic identifier development

	3 Results
	3.1 Numerical validation of the algebraic identifier
	3.2 Test rig description
	3.3 Rotor-bearing system characterization
	3.4 Identification of induced unbalance parameters
	3.5 Identification of original unbalance parameters

	4 Conclusion and outlook
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


