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Fault detection and diagnosis are essential for maintaining the continuous
operation of manufacturing systems. To achieve this, an innovative tool is
required to immediately identify any faults in the production process and
recommend the appropriate mechanisms to be adopted proactively to
prevent future mishaps or accidents. This capability is critical for many
industries to improve the efficiency and effectiveness of their production
processes. Several methods can be used to detect trends or patterns in any
given process and determine if the process variable is within normal limits.
However, these techniques may only detect evident process characteristics or
defects while leaving behind latent ones. This paper aims to review recent
achievements and classics in fault diagnosis and detection, and suggest steps
that can be taken to plan and implement this process. It will also explore emerging
research streams, critical issues in the field, and strategies that can be applied to
overcome these barriers. The paper outlines how the performance of fault
detection and diagnostics can be improved in production processes and how
a safer and fully efficient production environment can be promoted.
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1 Introduction

Over the past three centuries, industrial productivity has significantly increased.
Machines and processes were innovated and improved in the first and second industrial
revolutions, with the first based onmechanical technologies employing steam and water and
the following on electricity and complex machine tools (Bilbao-Ubillos et al., 2024). The
third industrial revolution, which started in the 1950s, was more digitized, with
semiconductors and communication networks, allowing automated manufacturing
(Miah et al., 2024). The production business has experienced the positive influence of
artificial intelligence (AI) and machine learning (ML) technologies since their advent
10 years ago. That has influenced the growth of productivity levels, resource consumption
and waste reduction, and the strengthening of sustainability, worker safety, and quality and
output (Gawde et al., 2024). An AI foundation provides a promising basis for complex
manufacturing processes, including fault detection and diagnosis (FDD) techniques. AI
methodologies enable manufacturers to identify and resolve operational obstacles in real
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time. This means the production process is less prone to bottlenecks,
resulting in higher-quality products and improved company
performance. Therefore, organizations should analyze how AI
technology can empower production and make them one of the
successful players in the market.

1.1 Transforming industry 4.0 with
machine learning

The future “Industry 4.0″revolution aims to foster a
manufacturing environment that is intelligent, self-dependent,
interoperable, and operates in a real-time mode (Gawde et al.,
2024). To achieve the goals of Industry 4.0, it is essential to have
advanced capabilities in computing, communications, and industrial
innovation (ElMaraghy and ElMaraghy, 2022; Bilbao-Ubillos et al.,
2024). The Internet of Things (IoT) also allows for secure,
dependable, and instantaneous interconnectivity among various
devices, such as sensors, machines, robots, and actuators. The
IoT comprises numerous communication networks, including
machine-to-machine deployments, cloud technologies, 5G
networks, and Wi-Fi networks (cloud, fog, edge, etc.) (ElMaraghy
et al., 2021; Attaran et al., 2024). Despite the increased utilization of
AI in decision-making, smart devices, and virtual reality (VR)/auto
regressive (AR) capabilities, humans should still play a significant
role in Industry 4.0 (ElMaraghy et al., 2021; ElMaraghy and
ElMaraghy, 2022). Industry 4.0 promises to revolutionize current
industrial production methods, benefiting companies, workers, and
the environment with cutting-edge technologies. Industry 4.0 offers
numerous applications for agile, expert, and automated processes
that simplify complex tasks and ensure high-quality results.
Moreover, the most suitable applications for widespread use can
be found in production and manufacturing. Developing these
applications involves identifying, predicting, and preventing
errors (Gawde et al., 2024).

Machine learning algorithms play an essential role in the fast
and accurate detection of faults, which implies decreasing downtime
by finding the affected and faulty items or parts in real time (Zaben
et al., 2024). Such algorithms will help immediately detect machines
containing faulty items, components, or other equipment.
Accumulating vast amounts of information can facilitate the
precise prediction of machine system conditions, the remaining
useful life of components, and any issues. This fact will be further
utilized to build a proper maintenance program, which will help
prevent failures and reduce failure-related downtimes (Nelson and
Dieckert, 2024; Zaben et al., 2024). Algorithms that can understand/
read human actions can eliminate errors, boost productivity, and
make decisions more safely. Plenty of data is necessary to integrate
ML algorithms into manufacturing decision-making. Discoveries in
Big Data Analytics (BDA) revealed the crucial role of technological
advances in cyber-physical systems (CPS) and IoT applications,
where multiple data types were created. It can be challenging to
distinguish between primary data and noise, as the acquired data
often contains noise from the surrounding environment that will be
processed in subsequent phases. Reliable and secure real-time data
transmission and processing have become increasingly critical due
to the growing interconnection of subsystems (Nelson and
Dieckert, 2024).

Figure 1 provides a graphical representation of the four
categories of ML (Naqvi et al., 2024) nand their distinguishing
features. The paragraphs below describe various categories in detail.
Supervised learning entails enabling an algorithm to learn from
given inputs and outputs denoted by an experienced expert in some
field. Applications of this approachmay be found quite widely across
the field of machine learning in such tasks that may be classified
under classification or regression analysis in which labeled data is
available (Jiang et al., 2020). Some very popular examples of
supervised machine learning models offered are support vector
machines (SVM) and neural networks (NN) (Jiang et al., 2020).
In the case of unsupervised learning, the learning algorithm tries to
search for patterns in the given data sets without any feedback from
the outside. Effective methods for performing such analyses include
clustering, association rules, and self-organized maps (Botvinick
et al., 2019; Alzubaidi et al., 2021). One popular approach for
monitoring is principal component analysis (PCA), a technique
that may be found often under the unsupervised category (Alzubaidi
et al., 2021). Semi-supervised learning is a learning mechanism using
labeled data to guide the training of a model. At the same time,
unlabeled data are also utilized to fine-tune the model within the
underlying data distribution. The key difference between supervised
learning, wherein the model is allowed to be aware of the correctness
of its predictions on unlabeled data while it is still being trained, and
semi-supervised learning, wherein there is no feedback while using
unlabeled data, is that the latter shows no such mechanism (Jiang
et al., 2020). The main purpose of reinforcement learning (RL) is to
distinguish between actions that yield a benefit and actions that do
not according to some performance criterion already known (Wang
and Biljecki, 2022). The process during which various steps are
performed requires that the testing results of each possible outcome
be confirmed first, after which successive steps are allowed
(Botvinick et al., 2019).

Deep Learning (DL) imitates the human mind with an
architecture model with several hidden layers. Such networks are
considered a sturdy foundation for popular implementations of
advanced ML methods. Alternatively, a perceptron is a network
containing only one hidden layer (Sarker, 2021). An artificial neural
network (ANN) typically has three layers: an in, hidden, and output
layer. An artificial neuron is comprised of three components: the
input, a weight that corresponds to each input, a bias applied to the
weighted sum of inputs, and an activation function that outputs
results correctly (Sedej et al., 2022). Autoencoders are ANNs that
follow a particular type of architecture - encoder-decoder neural
networks. They are built with the consolidation of information
without human supervision, in which the model reduces the
dimensionality of the data and tries to map the low-dimensional
latent space. Autoencoders can shine in the domain of
dimensionality reduction tasks, and thus, PCA is seen as a best
practice approach to a problem that used to be a domain of methods
such as PCA. Dimensionality reduction is only one of many
autoencoder capabilities; the other applications are compression,
denoising, feature detection, and anomaly detection. For instance,
decoder reconstruction can work to assess how well an encoder
performs or even generate reinforced data. Autoencoders are
predominantly used in these fields as they are seen increasingly
in cybersecurity, facial recognition, and image processing (Sarker,
2021). Computer vision (CV) applications that require a pattern
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recognition process on image-based data tend to rely on the
convolutional neural network (CNN) due to its incredible
effectiveness and wide application suitability among DL
architectures. Input and output nodes, convolutional layers,
pooling layers, and fully connected layers are elements of CNN
(Yamashita et al., 2018). Through a convolutional layer, the filter or
kernel, containing trainable parameters, calculates the items of the
scalar product of some segmented parts of the input image or matrix,
respectively. The computation of this quantity involves the most
significant processing power and memory demand that a CNN uses.
The output is then taken to a rectified linear (ReLU) function, which
is used as an activation before the next layer. The pooling layer
reduces data by replacing some values with statistics for other data in
the neighborhood. The above layer is next, and it faces only lighter
workloads. In a wholly coupled layer, all neurons are necessarily
linked to each other, exactly like in a standard network. An
activation function is then used to create output scores in the
desired shape. Disregarding the computing cost relative to CNN,
they have been applied in other areas, including object recognition,
data classification, and translation over the past few years (Alzubaidi
et al., 2021). Recurrent neural networks (RNNs) sort out time-series
data, such as text and speech readings, the best since they have the
memory programmed with a unique capacity to store information
about the input in general and include it. Unlike most deep learning
algorithms, RNNs utilize a feedback loop, which enables this
memory to be retained. However, the influence of some neurons

on a large number of other neurons through the process of
remembering can cause the problems of vanishing and exploding
gradients, limiting the ability of RNNs to learn new information. As
a solution to this complication, the Gated Recurrent Unit (GRU) and
Long Short-Term Memory (LSTM) techniques have become
popular, as they incorporate gates to determine which pieces of
data should be retained (Zhao et al., 2024).

As a type of linear model, Support Vector Machines (SVMs) can
solve both classification and regression issues. Maximizing the
distance between a line or hyperplane and the closest data points
allows SVMs to approximate the optimal hyperplanes or lines for
distinguishing classes. SVMs can perform regression, but their
primary application is in classification. Despite producing results
similar to DL methods, SVMs require less computational resources
and training data than their counterparts (Sarker, 2021). Decision
trees are graphical structures that use specific thresholds to branch
out and evaluate predictive features recursively. Although decision
trees can function independently for making predictions, using a
random forest, an aggregated collection of decision trees, can
enhance performance and mitigate overfitting. This ensemble
learning technique involves training different trees on the subsets
of data or features and later fusing the outcomes. Bagging or
bootstrapping could enhance the model using multiple subsets
rather than just the original training data. Despite the lower
accuracy of the decision trees compared with the boosting
algorithms, there is a significant variation in the graduated trees

FIGURE 1
Machine learning classifications.

Frontiers in Mechanical Engineering frontiersin.org03

Seid Ahmed et al. 10.3389/fmech.2025.1564846

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1564846


and the dataset regarding performance. The ensemble is an idea that
gives more power to “weak learners,”which are simple decision trees
that attain outcomes that are more accurate than random. Through
the application of simple dragons, overfitting is less likely because
these models are often too basic to capture the intricacies of the
dataset (Sarker, 2021). One of the popular methods, the nearest
neighbor technique, works by finding the closest sample to the given
feature (input) in terms of distance. This technique is applied to
identify new data points closest to existing ones in terms of
similarity, where similarity is generally mathematically defined by
Euclidean distance. Two approaches for performing nearest
neighbours use brute force and K-D and ball tree algorithms.
With a simple principle at its core, the closest neighbour is
adaptable to address several complex issues (Guo et al., 2003). A
generative adversarial network (GAN) is an unsupervised model
developed to produce entirely new data samples that look very
similar to the examples found in the input data. The GAN
architecture comprises two DL models - a generator that
produces synthetic samples and a discriminator that identifies
fraudulent samples. The generator learns from the discriminator’s
feedback, while the discriminator learns from the real versus fake
labels. This mutual learning process makes the GAN highly effective.
GANs are increasingly used in real-world applications where data is
limited, as they can generate data points to support critical decisions.
In addition to data synthesis, GANs have potential applications in
image processing, music creation, and drug discovery (Goodfellow
et al., 2014).

1.2 The importance of fault detection
and diagnosis

Industry 4.0 has brought about smarter manufacturing
processes incorporating advanced sensors to track processes,
detect faults, and prevent errors. With the increasing adoption of
fully automated industrial environments, better supervision is
needed to ensure optimal process efficiency, including process
control and corrective actions. However, maintaining optimal
performance in manufacturing processes that encounter various
types of faults is a challenging task. Industries aim to enhance FDD
capabilities for improved process performance (Yamashita et al.,
2018; Sedej et al., 2022). For the last few decades, FDD has gained
considerable attention among the industry and academia for its
precious advantages like reduced cost, improved quality, and
enhanced productivity of the process or product, sometimes cited
in literature (Gnanamalar et al., 2023). In order to maintain a cost-
effective operation, it has become more and more important to
properly identify and diagnose faults since they can adversely affect
product quality or throughput. In this regard, FDD is a primary yet
prominent technique for process supervision based on the data
gleaned from sensory tools. Different investigations proposed
methods of varying kinds for either online or offline process fault
detection (Mercorelli, 2024; Orhan and Celik, 2024; Shang et al.,
2024). After the detection, many authors use model-based or
statistical models to address the practical, theoretical, and
experimental side of the problem to perform diagnosis, isolation,
and identification of the root cause of process anomalies. These FDD
techniques can be classified into three main groups: data-driven,

model-based, and knowledge-based methods. Typical methods
involved include, but are not limited to, data-driven and model-
based approaches, which have found great success in industrial
process FDD due to their straightforwardness and efficiency. Real-
time, online FDD is an urgent problem in some particular industries,
especially for large-scale production processes.

Besides the foundational studies referred to before, several new
research studies have made the field wide with new solutionmethods
to tackle the problems of bearing failures, introducing modern
different methods to deal with data imbalance, variable operating
conditions, or the need for advanced AI-driven fault detection
methods, such as that which (Li et al., 2024) have proposed-the
adaptive clustering weighted oversampling method-to enhance the
bearing fault diagnosis performance under data imbalance and
variable speed operations. Due to the limited fault data available,
traditional fault detection models exhibit biased learning and poor
classification performance. The proposed study counteracts this
limited diversity of the data by performing adaptive oversampling
for the minority fault classes; further enhances the classification
accuracy and robustness in a more realistic industrial environment,
where it is often not easy to obtain balanced fault datasets.

Similarly, Li et al. (2023) investigate the verification of icing on
wind turbine blades using a Clustered Joint Bayesian Modeling
(CJBM)-based approach with imbalanced data. While mainly
applied to turbine components, the manner in which the CJBM
is leveraged to increase fault prediction on highly imbalanced
datasets is relevant to bearing fault diagnosis. This study
exemplifies how Bayesian-based models could be useful in
addressing the uncertainty surrounding the requisite
requirements in fault detection; it posits a framework expandable
into the health monitoring of bearings facing variable environmental
conditions. Moreover, Fan et al. (2024) describe the Variable Scale
Multilayer Perceptron (VS-SMLP) that helps diagnose abnormal
helicopter transmission system vibrations. The study shows how
deep learning-based techniques applied to bearings can improve
condition monitoring in rotating machinery. The model can
improve feature extraction, even from noisy vibration signals,
using a dynamically adjustable network scale based on the
complexity of the data being processed. This offered an
opportunity for more adaptive AI-driven fault detection in on-
the-field applications, especially where machinery works on time-
varying conditions. Furthermore, Li et al. (2024) present a
semisupervised fault diagnosis approach utilizing CJBM for
imbalanced bearing failure data. This study addresses the
challenge of the small volume of labeled fault data in some
production environments by applying semi-supervised learning,
wherein both labeled and unlabeled data are used for training.
The contributions of this study demonstrate that hybrid learning
techniques could effectively enhance detection for early-stage faults
for applications where manually labeled fault data is scarce or
infeasible due to high cost. Such contributions highlight the
diverse ways bearing failures could occur, thus requiring a variety
of diagnosis techniques. These studies explore modern industrial
emergencies regarding fault detection capabilities by exploiting such
techniques as oversampling, Bayesian modeling, adaptive deep
learning architectures, and semi-supervised learning.

The graph in Figure 2 displays the results of a Scopus search
conducted using selected keywords in documents published
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annually since 2010. According to Scopus, the number of
publications related to FDD in Industry 4.0 has been steadily
increasing, with the emergence of works on FDD for production
in recent years. By searching for the keywords “fault detection and
diagnosis AND Industry 4.0″and “fault detection and diagnosis
AND Industry 4.0 AND Production” in the title, abstract, and
keywords fields, over 5,635 and 3,272 results were obtained,
respectively, as of November 2024. This indicates that interest in
FDD in Industry 4.0 is expanding, with the involvement of
researchers from different disciplines, such as engineering,
computer science, and statistics. The ongoing increase in
publications about FDD concerning the production process
means that the field has become the subject of constant upgrades
and innovations by researchers to improve the precision and
efficiency of FDD. This trend will likely be the future as the
demand for dependable and efficient systems is very high in
various industries.

1.3 Motivation, novelty and contribution

As we continue to adopt Industry 4.0 technologies, we realize the
importance of having automated FDD systems. This review paper
examines the current focus on FDD in production systems. By
utilizing robotics automation for work operations, production units
can save on costs and increase competitiveness. We present a
systematic approach to addressing errors that arise in the
Industry 4.0 environment.

Compared to these diagnostic studies, such as (Mercorelli, 2024;
Orhan and Celik, 2024; Shang et al., 2024), this review is intended to
provide a wider and integrative basis for diagnosing and detecting
faults in production environments. Most of the previous works were
targeted toward certain types or diagnostics sectors, limiting them to

the particular needs of production processes. Mercorelli advanced
many intelligent algorithms for fault detection in 2024; however, he
focused mainly on developing algorithms rather than on their
validation through extensive real-life industrial applications. It
poses difficulties when one attempts to assess how feasible these
schemes would be in actual implementation within real-world
industrial setups, where computational limitations and
adaptability matter. In turn, Orhan and Celik offer helpful
insights into the marine machinery systems in 2024; however,
their study is still limited to a single industry and does not
conduct any comparative analysis with other FDD approaches.
This industry-based approach restricts its applicability in broader
production systems with diverse failure modes and operational
conditions. Shang et al. lent guidelines industry-based for battery
systems in 2024, but they did not deal with how FDD techniques
would be able to cross multiple domains. Their work does not
consider hybrid approaches incorporating data-driven, model-
based, and knowledge-based approaches, a necessity increasingly
felt in contemporary industrial systems.

The present review aims to bridge these gaps while offering a
comprehensive account of FDD techniques’ applicability for
several industrial sectors. Unlike previous studies that looked
into isolated methodologies or sector-specific applications, this
study comparatively evaluates data-driven, knowledge-based, and
model-based approaches with a systematic assessment of their
underlying efficacy in various operational environments.
Furthermore, case studies from the real world are also
integrated into this analysis to validate the applicability of
various FDD methods practically. This will keep our
conclusions benefiting theoretical and practical relevance for
researchers and practitioners who develop adaptive FDD in
Industry 4.0 scenarios.

The main contributions of the current work are as follows:

FIGURE 2
Fault detection and diagnosis publications trends.
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• It provides an in-depth analysis of three FDD strategies: data-
driven, model-based, and knowledge-based. These strategies
address the issues in FDD in several ways.

• It contrasts various FDD approaches, comparing their
performance level, degree of complexity, and
computational needs. It is meant to guide researchers and
practitioners experimenting with feature detection in their
specific cases.

• It presents evaluation metrics to confirm the process of FDD
techniques for researchers and practitioners who want to
compare different FDD methods.

• It addresses the utilization of FDD procedures in several
industries. It argues that FDD is the best way to
significantly increase the industry’s security, dependability,
and productivity.

• Unlike previous studies focusing on single methodologies or
industry-specific applications, our review integrates a cross-
industry perspective, allowing for broader applicability of
FDD techniques in diverse production environments.

• “By incorporating empirical case studies and performance
evaluations, this work ensures the practical relevance of
FDD methods, addressing the real-world deployment
challenges overlooked in prior research.

This work contributes to the field by providing a broader
framework encompassing data-driven, model-driven, and
knowledge-driven FDD methods. While previous studies have
focused mainly on individual approaches, our work
systematically compares these techniques, highlighting their
relative advantages and limitations. To substantiate the
effectiveness of these methods, empirical studies and real-world
case studies have been integrated throughout the manuscript. In
particular, Section 3.4 presents a comparative analysis of different
signal analysis techniques applied to fault detection,
demonstrating their performance in various industrial scenarios.
Additionally, Section 5 provides empirical evidence of how data-
driven, model-based, and knowledge-based methods have been
implemented in practical applications, showcasing key
performance indicators such as detection accuracy, false alarm
rates, and computational efficiency. These contributions ensure a
comprehensive evaluation of FDD methods, reinforcing their
practical relevance in industrial applications.

1.4 Paper structure

This research review provides valuable insights into FDD,
covering the latest automation and Industry 4.0 techniques. It is
an essential introduction to FDD systems, including the
industry’s most used methods and elements. Figure 3
illustrates the typical steps involved in FDD development,
which this paper discusses as follows. Section 2 explores the
development of FDD, while Section 3 discusses signal acquisition
and analysis procedures. Section 4 discusses some industrial
applications of FDD. Section 5 categorizes faults and discusses
techniques for identifying and resolving them. Section 6
highlights some directions for future work, and finally, chapter
eight concludes the paper.

2 Fault detection and diagnosis
development

2.1 System structure and
redundancy methods

The methods for detecting and diagnosing faults in a system
depend on how the system is modelled and represented; for instance,
an empirical model (Patel, 2020) or a mathematical function
(Bighamian et al., 2015) can clearly understand the system’s
dynamics. In other cases, visual representations of system activity
(Collins and Woodruff, 2018) or implicit knowledge
representations, such as a knowledgebase, ANN, or expert
system, can be used to guide output decisions based on rules and
heuristics (Zhang and Zhao, 2017; Mostafa et al., 2018; Wu and
Zhao, 2020). Figure 4 illustrates various system structure techniques
that can be utilized in FDD development.

Redundancy is an essential aspect of the functionality of FDD
systems as it plays a crucial role in enhancing their reliability and
availability. Redundancy types like physical redundancy, analytical
redundancy, software redundancy, and structural redundancy have
different approaches to achieving this. All types involve duplicating
several components from the system and incorporating backup
components to support these original components in case of
failure. Planning and implementing redundancy strategies
properly ensures that FDD systems have dependability and
resilience (Kizza, 2020). Physical redundancy consists of
duplicating physical system components, whether in the form of
server, actuator or sensor duplication, which can operate in parallel
to provide a backup capability at the hardware level (Ahmed and
Amorim, 2025). Analytical redundancy uses mathematical modeling
and algorithms to detect errors by analyzing and comparing
expected output and actual output. It is mainly used in control
systems and mercennial behaving of processes for information
checking for consistency between real and expected behaviors of
the system. Software redundancy duplicates software components or
processes, usually through hot standby or load-balancing
techniques. Structural redundancy involves the adding of
components to a system to increase its strength or capacity.

This is common in engineering structures, but can also apply to
software systems with multiple modules or subsystems, to ensure
that not all the modules fail for the same set of input data (Kizza,
2020). By increasing the complexity and diversity of the system,
structural redundancy can protect against catastrophic failure
caused by a homogenous set of incoming data. The effectiveness
of each type of redundancy depends on the specific system and the
types of failures it is designed to tolerate. Physical redundancy is
often more expensive as compared to software redundancy. On the
other hand, implementing and managing analytical redundancy can
be complex due to the need for sophisticated algorithms andmodels.
An effective system must exhibit trade-offs between redundancy,
performance, and cost.

2.2 Feature extraction

Feature extraction is a crucial step in the FDD process. It
involves transforming raw equipment/process data into a set of
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meaningful features that can be used to differentiate between normal
and faulty system conditions. Fault detection in a system involves
analyzing various features extracted from the system signals, which
convey valuable information regarding the system condition. In

different fault detection and diagnosis studies, features such as
mean, standard deviation, variance, and so on were extracted by
denoting time domain signal processing. The kurtosis provided by
(Wang and Hu, 2024) affords applicability in bearing fault detection

FIGURE 3
Main FDD development steps.

Frontiers in Mechanical Engineering frontiersin.org07

Seid Ahmed et al. 10.3389/fmech.2025.1564846

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1564846


and insensitivity to load variations. Other highlights which show
potential for help in indicating fault occurrence in a system include
entropy, homogeneity (recommended by (Benmoussa and Djeziri,
2017), energy kurtosis (proposed by (Wang and Lee, 2013), and
power efficiency (Chen and Kamara, 2011). Several models and
approaches are brought into play for estimating attributes that
characterize faults as discussed throughout the literature, such as
autoregressive system modeling (Yan et al., 2014), nonlinear
regression (Zheng et al., 2016), and parameter estimation
(Bouchikhi et al., 2015). Some proposed using Park’s
transformation for feature extraction in machine diagnosis (Kwak
et al., 2015). The broad, dominant harmonic amplitude and phase
may be computed analytically without employing auxiliary tools and
inferences from spectral characteristics (Shah and Patel, 2014;
Boudinar et al., 2015). The spectral means, crest factor, and
spectral entropy reveal worth and meaning in the frequency
domain statistically (Yang et al., 2024).

Chen, Rhee and Liu, 2019stated that using vibration data,
envelope analysis and parametric spectral estimation have
traditionally been applied to detect defects in bearings and rotors.
Spectral domains provide helpful information for specific causes of
defects, but tend to be ineffective in identifying minor defects. Abid
et al. (2020) developed a combined time-frequency feature
extraction strategy for analyzing non-stationary events to
overcome shortcomings of the traditional methods. The most
common time-frequency analysis techniques include Short-Time
Fourier Transform, Empirical Mode Decomposition (Camarena-
Martinez et al., 2015) and Wavelet Transform (Abad et al., 2016).
These techniques have provided appropriate ways of extracting a
complementary set of perspectives from the data to characterise
variation under different operational scenarios (Han et al., 2018;
Abid et al., 2020). Further, feature dimensionality reduction and
selective techniques included principal component analysis (PCA)
and independent component analysis (ICA) (Huang et al., 2015). On
the other hand, other methods, namely, variance analysis, feature
pruning, and deep feature selection (Abid et al., 2020), can further
improve fault detection.

2.3 Fault type analysis

After describing the system model and fault redundancy, the
type of fault present within a system is among the major
considerations in selecting the appropriate type of FDD system.
Figure 5 provides a summary of various faults afflicting an industrial
system. It is crucial to have some knowledge of the various fault
types to properly select the FDD system to be well-equipped to
combat possible problems. Faults are classified based on their nature
and dynamics. A transient fault appears due to a sudden change or
transient effect within the system for a short period and goes away
(Wu et al., 2023). However, damage caused by permanent faults
cannot be reset unless the faulty component has been repaired or
replaced. Intermittent faults are only active for short periods (Abid
et al., 2015). These four generalized faults are hardware faults,
software faults, network faults, and communication failures. They
can all compromise the working of a system and lead to either
performance degradation or system failure. According to many
different systems, these four combined can build a really tough
problem for FDD in the real world. A good FDD system should
consider multiple fault types and mixed methods to detect and
diagnose the problem efficiently. Hardware faults include sensor,
actuator, process and structural faults (Kumar et al., 2022).

Some hardware failures involve physical component failures and
more often lead to system crashes, data loss, or poorly working over
time. As a result, it usually needs physical inspection, diagnostic
tools, or replacement of the faulty components. Software fault comes
from software, code, or logic errors and have effects like wrong
outputs, infection of systems by instability, and security
vulnerabilities. Corrective actions involving debugging, code
analysis, and testing may also remedy possible software faults
such as bit flips, runtime errors, bugs, or design flaws (Abaei
et al., 2013). Network faults arise mainly due to issues of
network connectivity or performance; for example, the use of
incompatible protocols, unacknowledged packets, congestion, or
irretrievable data loss (Kizza, 2020). Network faults can interfere
with communication from one system component to another with a
resultant reduction of performance and possibly system failure
during engineering operations. To identify network faults, there
is a need for monitoring utilities, protocol analyzers, and metrics for
network performance. Communication faults occur due to the
incorrect transmission of messages or interpretation between
system components; examples include protocol errors and data
corruption (Kizza, 2020). Communication faults may be
examined by analyzing the communication protocol, error
detection mechanisms, and data integrity.

3 Signal acquisition and analysis

3.1 Data acquisition

The decision to use an FDD scheme is influenced by the amount
of readily accessible system/process data. FDD systems rely heavily
on data acquisition (DAQ), which mainly involves capturing real-
world signals, converting them into digital format, and storing them
for analysis (Cho et al., 2018). DAQ tools are crucial for gathering
the raw data necessary for fault detection and diagnosis systems.

FIGURE 4
Fault diagnostic techniques cover a wide range of system
architectures.
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DAQ systems consist of various hardware and software tools,
including sensors, signal conditioning modules, analog-to-digital
converters (ADCs), software, databases, programmable logic or
microcontrollers (PLCs), network interfaces and DAQ boards
(Cho et al., 2018). Sensors convert physical parameters
(temperature, pressure, vibration, etc.) into electrical signals.
DAQ boards are specialized hardware devices that connect to a
computer and provide various input/output channels for analog and
digital signals. Signal conditioners or sensor modules are devices
that prepare the raw sensor signals for acquisition by amplifying,
filtering, or converting them to suitable levels compatible with DAQ
systems. DAQ tool libraries developed with general-purpose
programming languages, such as PyDAQmx (Python), DAQmx
C API (C/C++), Raspberry/Arduino Uno, NI LabVIEW, and
MATLAB/Simulink, can all be used to collect custom data for
FDD systems. For storing and managing large volumes of
acquired data, databases like MySQL, PostgreSQL, or SQL Server
are often used. When selecting DAQ tools for an FDD system, it is
essential to consider factors such as sensor types and compatibility,
sampling rate and resolution, data storage and transfer media,
synchronization of multiple data sources, and data preprocessing.
Even though extensive data is needed for accurate FDD analysis,
online system health monitoring can be effectively carried out using
a small amount of data by incorporating a priori knowledge, such as
a threshold value (Salehifar et al., 2014; Sadeghkhani et al., 2018; Su
and Chen, 2019), or fault decision indicators (Bouchikhi et al., 2015).
The threshold or fault indicators can pinpoint anomalies in any

system or engineering operation. As a result, the availability of vast
amounts of historical process data and the widespread adoption of
sensor networks for monitoring and assessing process variables have
resulted in increased transparency and efficiency in industrial
settings (Cheng et al., 2019).

3.2 Signals analysis

Multiple sensors detect a wide range of physical quantities in
an FDD system. These sensors provide essential information about
the system’s normal and faulty states. Signal processing and
analysis tools are necessary for extracting meaningful
information from raw sensor data in fault detection and
diagnosis systems. These tools help to identify anomalies,
trends, and patterns that indicate potential equipment failures.
Different methods of monitoring machine tools/equipment for
malfunction detection exist. Figure 6 shows the signals commonly
used for FDD, further discussed below. The analysis of vibration
and current signals are two of the most prevalent approaches.
However, acoustic emission and image data also provide useful
information for FDD analysis.

3.2.1 Vibration
Whenever a fault happens in a machine, the dynamic behaviour

of the machine will change and vibrational signals directly capture
this. Cheng et al. (2019b) utilized vibration signal analysis to develop

FIGURE 5
Fault classifications.
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gearbox fault diagnosis methods. Several fault-characterizing
models based on vibration signals, including those proposed in
(Wang and Hu, 2024) were designed for diagnosing different types
of bearing faults. As shown in Figure 6, time-based, frequency-
based, and time-frequency-based features can be extracted from
vibration signals, which are usually captured using vibration
sensors (e.g., accelerometers) and specialized signal processing
software (e.g., MATLAB/Simulink, Simcenter Testlab, Brüel and
Kjær PULSE, etc.), making vibration signal analysis a mature area
for fault diagnosis. Common signal processing algorithms/
techniques used for vibration data filtering and analysis include
Fast Fourier transform (FFT), wavelet transform, Hilbert
transform, envelope analysis, statistical analysis (e.g., kurtosis,
crest factor, etc.), and machine learning (e.g., SVM, neural
networks, etc.). Although vibration signal-based fault diagnosis
methods exhibit high accuracy in most cases, they require
empirical knowledge to select fault features. Recent
advancements in DL led to the development of fault diagnosis
methods that automatically choose features from a set of pre-
established features (Xia et al., 2018; Abid et al., 2020). Many
researchers devised techniques for bearing fault diagnosis, and
Case Western Reserve University (CWRU) established a vibration
signal dataset library for bearing defects. Fault classification
accuracy for the CWRU dataset was excellent in comparative
studies on bearing fault diagnosis (Boudiaf et al., 2016; Abid
et al., 2020).

3.2.2 Current
Recent works show that faulty drives (Salehifar et al., 2014),

winding flaws (Abbasi et al., 2018), contactor defects (Lin and Du,
2018),insulation damage, and transients (Sadeghkhani et al., 2018)
can all be identified swiftly and precisely by analyzing current
signals. Classifying current-based fault detection strategies as
residual- or feature-based is possible. Residual-based fault
detection methods rely on system models such as analytical
models (Benmoussa and Djeziri, 2017), analytical redundancy
relationships, Kalman filters, regression models (Yan et al., 2014),
system identification models (Salehifar et al., 2014), and diagnostic
observers. Other research focuses on the modeling and widespread
application of fault-characterizing attributes in machine fault
diagnosis (Ardali et al., 2024). Signal feature extraction methods
are also used to create fault diagnosis schemes, including time-
domain features (Abid and Khan, 2017), frequency-domain features,
and time-frequency features (Seid Ahmed et al., 2020). Although
motor current signature analysis (MCSA) (Haddad and Strangas,
2016) is the most used method due to its ease of use, it requires
precise knowledge of motor slip and a suitable frequency resolution
to detect and diagnose faults accurately. As a result, other
techniques, including Parks transform, Root-MUSIC and DL,
have recently been utilized to analyze current signals containing
FDD fingerprints (Figure 6). The common software tools used for
FDD analysis with current signals include MATLAB, LabVIEW,
Python libraries and other libraries for power system analysis tools.

FIGURE 6
Fault diagnosis signals and features.
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Furthermore (Salehifar et al., 2014), propose a flexible and load-
independent current-signal-based fault diagnosis scheme for five-
phase motor drives. Some research. Cheng et al. (2018) use current
and voltage measurements for fault detection.

3.2.3 Audio
Industrial FDD techniques primarily focus on vibration and

current signal analysis. Nonetheless, research on using auditory
signals and acoustic machine fingerprints remains ongoing
(Rubhini and Ranjan, 2017). Audio fault diagnosis techniques
face a significant obstacle in noisy industrial environments due to
sound signal contamination, which results in a low signal-to-
noise ratio (SNR) (Kemalkar and Bairagi, 2017). To address this,
denoising preprocessing methods have been developed and are
practical for use in the field. Recent advances in separating and
cleaning up audio have been presented by Yoshida et al. (2023).
Obtaining a signal with the maximum SNR is crucial to achieve
effective feature extraction (e.g., Mel-Frequency Cepstral
Coefficients (MFCCs)). Unlike other sensors, audio-based
techniques do not require physical modification to the
machine and can be used when other sensors are not
applicable (Yoshida et al., 2023). Moreover, algorithms for
spectral analysis, time-frequency analysis and data
classification/clustering have recently been used to identify
faults in machines/equipment using acoustic data. Software
tools used for audio signal processing include: Audacity,
MATLAB, and Python libraries (e.g., LibROSA, TensorFlow,
PyTorch, and Scikit-learn).

3.2.4 Image processing
The human sense of sight is crucial for identifying objects,

with an image being the most fundamental visual representation.
Advances in convolutional (CV) neural networks have led to its
widespread use in image processing (Zhang, 2013; Yaman et al.,
2015). A system’s health status can be detailed by processing an
image with metadata. Image processing techniques have been
employed for detecting and characterizing structural
abnormalities (Yaman et al., 2015). Common techniques
involving image segmentation, feature extraction, object
detection and recognition and CV neural networks are heavily
used to detect anomalies in equipment/process data. Yaman et al.
(2015) propose an edge detection and segmentation technique
using image processing to identify flaws in rail surfaces. Infrared
images are used for fault diagnosis based on temperature changes
(Liu et al., 2017). Image processing is also being explored as an
alternative diagnostic method for machine vibration signals. The
two-dimensional computing approach provides automatic
feature extraction, which is superior to manual feature
selection but limited by the one-dimensional signal analysis
approaches (Abad et al., 2016).present an image processing
method for feature extraction from wavelet time-frequency
spectra images obtained from motor vibration signals. An
alternative method for fault diagnosis is proposed by (Wang
and Cheng, 2016), who suggest demodulating the vibration
signal with a Hilbert transform and then using the resulting
bispectrum image to describe its properties. Experiments showed
that image processing techniques are effective for fault analysis
based on vibration signals.

3.3 Reconciliation techniques

Automatic adjustments to measurements can be made using
system data and mathematical models with the help of methods for
data validation and reconciliation (DVR). There will always be
some degree of error in the measured system data because
measurements are obtained using imperfect instruments with
different degrees of accuracy. Furthermore, errors can occur
during data transmission due to runtime issues like mapping
failures, transformation logic failures, and more. Inaccurate
readings can also result from miscalibration, faulty instrument
installation, and power fluctuations. Failure to reconcile faulty
measurements can lead to data outages, incorrect values,
duplicated records, or erroneous information, severely
compromising data quality and leading to incorrect insights and
diagnoses that go unnoticed by system users. The following is a
brief discussion of the various data reconciliation methods
described in the literature in the context of FDD. Wavelet
transform-based (WT) vibration signal denoising techniques
were presented to locate tooth faults in gearboxes and
alternator faults (Abad et al., 2016). With the help of empirical
mode decomposition and Fast Fourier Transform (FFT), Chen
et al. (2019) applied a denoising technique to the vibration signal.
For wind turbine fault detection, the autoencoder denoising
approach was implemented; this method cancels out
measurement noise and accounts for unexpected disturbances
(Kumar et al., 2022). Harmonic error in position estimation is
minimized in synchronous motor drives by employing a
quadrature phase-locked loop (PLL) tracking reckoner in
conjunction with an adaptive filter based on a recursive least
squares method (Wang et al., 2014). Researchers traditionally
proposed model-based methods for dealing with the difficulty
of multiple source separation in audio signal processing (Wang
et al. (2012) investigated maximum likelihood estimation for
missing data in mixed signals as another way of source
separation. In (Huang et al., 2015), a blind source isolation
method known as Fast ICA is applied to vibration signals
generated by a faulty ball screw.

On the other hand, various industrial systems, such as fish
processing machines (Han et al., 2018), mobile robots (Abid et al.,
2015) and transportation industry equipment (Nguyen et al., 2018),
are now using multiple sensor fusion methods to enhance data
quality. Information fusion techniques employing the Dempster-
Shafer evidence theory](Jiang and Cao, 2016) and weighted average
of sensor confidence levels (Abid et al., 2015) were also introduced.
Majumder and Pratihar (2018) have presented a fuzzy sensor fusion
approach to tackle sensor drift and intermittent failures. However,
determining which sensors are accurate and which are not poses an
extra challenge for data reconciliation. In the literature, several
methods, such as the sensor confidence value and the fuzzy
membership function, were suggested for identifying and
avoiding incorrect sensor data. In the context of fault diagnosis, a
method employing multiple separate extreme learning machines
(ELMs) with a majority (Jiang and Cao, 2016) voting system was
developed for oil-filled transformer fault diagnosis (Zhang and Zhai,
2019) Another hybrid strategy for bearing fault diagnosis was
proposed by (Zhou et al. (2018) which used a cloud similarity
measurement algorithm with weighted voting.
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3.4 Comparison of signal analysis methods
for specific failures

This section highlights a detailed comparison of the various
signal analysis methods used for FDD concerning detection
performance on specific failure types, such as faults in bearings,
gears, and motors. Through qualitative insights and quantitative
performance parameters, such as accuracy of identification of faults,
false alarm rates, and computational needs, guidance in selecting a
method most suitable for a given application will be provided.
However, detailed quantitative results and case studies supporting
these comparisons will be presented in Chapter 4.

3.4.1 Vibration-based methods
Among other options, many researchers refer to vibration

analysis for FDD, particularly for bearing faults. Vibration
signals are captured by accelerometers and processed according
to techniques such as FFT, wavelet transform, or Hilbert
transform. It has been reported that these vibration-based
methods have the potential to detect with over 90% accuracy
under controlled conditions (Pan et al., 2019). For instance,
Tabrizi et al. (2015)used wavelet packet decomposition to
enhance the detection of early-stage bearing defects by isolating
fault-specific frequency bands. Yet, this approach suffers from
manual selection of features based on empirical knowledge and
also passes through the extremely noisy environment, which hurts
the overall performance. Advancements in recent advanced
techniques that involve deep learning (Mumuni and Mumuni,
2024) are beginning to automate the extraction of various features,
thus mitigating the dependence on manual identification of tuning
parameters.

3.4.2 Current-based methods
Current signal diagnosis is one of the most efficient ways to

diagnose motor faults. Anomalies associated with motor fault types
are detected via analysis of electrical current waveforms, using
methodologies such as the Motor Current Signature Analysis
(MCSA) and residual-based methods. It has been emphasized in
the research by (Milles et al., 2024) that current-based methods
could, in fact, more rapidly identify burning-out windings, contactor
defects, and many other failure types. Furthermore, Guan et al.
(2024) reported that the new ways of extracting featured from the
current signals result in a better rate of fault detection for motors.
Nevertheless, the performance of these techniques relies heavily on
precision calibration, i.e., determination of motor slip and frequency
resolution. It may be susceptible to increasing false alarm
mechanisms in varying loads.

3.4.3 Audio-based techniques
When conventional sensor modalities become challenging to

implement, audio-based FDD methods provide an alternative. They
stake the machinery’s acoustic emissions and analyze the signals
with algorithms capable of extracting some features, including
MFCCs. Hu et al. (2025) showed that with sophisticated
denoising algorithms, it is possible to improve the SNR in a
noisy industrial environment dramatically. Yet, audio-based
techniques tend to show less detection accuracy because isolating
fault-specific acoustic signatures from the ambient background

noise is intrinsically more challenging, as (Harandi et al., 2025)
pointed out.

3.4.4 Image processing methods
Since image processing techniques engaged with convolutional

neural networks (CNNs) have effectively detected gear and
structural faults, fantastic information in the form of visual
inputs in regular cameras or infrared always aids in depicting the
details of features to explain anomalies. For example, Haroon et al.
(2024) segmented the rail surfaces and used edge detection to detect
surface defects. (Liu et al. (2012) showed that the time-frequency
spectra images synthesized from motor vibration signals could be
analyzed for fault detection. Though these techniques provide high
interpretability and diagnosis, they usually demand significant
computational resources and hefty preprocessing, hampering
their utilization in real-time applications.

3.4.5 Quantitative comparative analysis
The comparative performance summary of these approaches

can be seen in Table 1. The table includes primary metrics that
express performance, such as detection accuracy, false alarm rates,
calculation complexity, and more practical considerations such as
data quality and noise robustness. This evaluation, while affirming
that vibration-based methods perform best for the detection of
bearing faults, indicates that for motor faults, current analysis is
ideal; in addition, image processing techniques provide the best
diagnostic detail for gear faults. Evaluation of the trade-offs
between computational cost and detection sensitivity is done
critically, emphasizing the importance of deciding the most
suitable technique depending on the type of failure and
operating conditions.

The comparison study illustrated in detail in Chapter 4 shows
that all applied signal analysis tools exhibit specific benefits and
shortcomings. There is no method which can be considered
acceptable in general; instead, by the characteristics of the fault
of interest, e.g., bearing, gear, or motor, and by taking into
consideration practical aspects like data quality, computational
cost, and other environmental factors, the correct choice will be
made by the user. Therefore, such an insight into the actual
performance provides a real opportunity for design among
practitioners of sufficient robust FDD systems, which are not
around the corner but are generally required by modern industry.

4 Applications of fault detection and
diagnosis in industry

Fault detection and diagnosis (FDD) has a broad array of
benefits in industries for sustaining operational efficiency by
identifying and understanding system and equipment failures
(Khireddine et al., 2014; Lin and Ghoneim, 2016). Advanced
FDD systems of today, with the use of technologies such as
machine learning, data analytics, and sensor networks, monitor
performance on a real-time basis to identify deviations in
performance, pinpoint root causes, and predict impending
failures. The proactive approach views this action as one that
extends the life of the equipment, optimizes the production
process, reduces operation costs, and maintains safety levels. That

Frontiers in Mechanical Engineering frontiersin.org12

Seid Ahmed et al. 10.3389/fmech.2025.1564846

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1564846


is the philosophy of Smart Manufacturing and Industry 4.0. (Bilbao-
Ubillos et al., 2024; Miah et al., 2024).

4.1 Rotating machinery

Implementing modern FDD methods in industry has been
widely acknowledged as essential for monitoring industrial
processes and enhancing key performance indicators (Kankar
et al., 2011; Kusiak and Verma, 2012; Liu, 2012). Specifically, the
rotating machinery industry requires process and quality control
tools and increased automation to enhance the throughput rate.
Mechanical FDD is important because detecting early-stage faults
would support maintenance scheduling, timely spare parts
requisition, and avoid catastrophic failures. Rolling element
bearings in rotating equipment are a leading cause of machine
failure. They are challenging to detect at early stages (I and II)
based on conventional vibration measurement and signal
analysis methods.

Recent studies have demonstrated that machine learning-based
FDD techniques significantly improve early-stage fault detection. To
detect faults in bearings, Kankar et al. (2011) tested the entire
panoply of traditional vibration analysis versus ANN and SVM
models, achieving classification accuracies which surpassed 95% in
favor of the latter. Also, in real-world cases, Liu et al. (2022)
performed a study on industrial pump monitoring, producing
about a 35% reduction in false alarms and a 28% increase in
efficiency of maintenance scheduling when using SVM-based
methods. Kankar et al. (2011) state that their suggested method
of using artificial neural networks and SVM performed better than
the traditional vibration analysis in the process of bearing fault

detection, achieving an accuracy of not less than 90%. This, in some
sense, shows the usefulness of AI-based FDD in decreasing false
positives and elevating fault detection in earlier stages. Kusiak and
Verma (2012) conducted research using data mining to discover the
root causes for failures in bearings, like insufficient lubrication or
overload using historical data received from wind turbines. The
research prepared five neural network models based on historical
data collected from wind turbines. The neural networks will help
explain how the various input factors interact with the temperature
of the generator bearings and hence predict failures. After that, two
turbine instances were utilized to train the neural network models,
and their efficiency was validated.

4.2 Process management

The advanced fault detection and diagnosis, recently discussed
in the literature, significantly optimize complex industrial processes
and ensure their efficacy. For example, inspired by their
collaboration with (Liu et al., 2012), a novel reconstruction-based
method for identifying and correcting faulty variables and blocks in
continuous annealing processes is suggested. Separately, Hu et al.
(2014) presented an adaptive fault detection and isolation method
incorporating PCA and generalized likelihood ratio tests within the
framework of the imperial smelting process. Compared with
traditional SPC approaches, the PCA-based method enhances
fault detection rates by approximately 22%. This illustrates its
effectiveness in actual manufacturing settings. In their industrial
case study on steel manufacturing (Jakubowski et al., 2024), the
integration of PCA with a real-time sensor network generated an
approximately 30% decrease in production downtime and enhanced

TABLE 1 Comparative analysis of signal analysis methods for fault detection.

Method Typical failure types Advantages Disadvantages

Vibration-
Based

Bearing, gear faults • High detection accuracy (often >90%) • Requires empirical feature selection

• Mature techniques using FFT, wavelet, and Hilbert
transforms

• Sensitive to ambient noise

• Effective feature extraction across time, frequency,
and time–frequency domains

• May need manual tuning

Current-Based Motor faults • Rapid fault detection • Highly dependent on precise parameter calibration
(e.g., motor slip)

• Effective for diagnosing electrical anomalies in
motors

• May exhibit higher false alarm rates under variable
loads

• Supports residual-based and feature-based
approaches

Audio-Based General machine faults: when physical
sensors are impractical

• Non-invasive and cost-effective • Susceptible to environmental noise

• Advanced denoising algorithms can improve SNR • Generally lower detection accuracy compared to
vibration/current analysis

• Useful in scenarios where traditional sensors are
limited

Image
Processing

Gear faults, structural anomalies • High interpretability and detailed fault
characterization

• High computational cost

• Automatic feature extraction via CNNs • Requires extensive preprocessing

• Suitable for visual inspection of defects • May not be suitable for real-time applications
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process stability, mitigating hidden anomalies. Such efforts manifest
that refined diagnostics, as a technique, may considerably impact
process reliability and performance.

4.3 Photovoltaic systems

The photovoltaic power generation systems are affected by some
weather-related abnormalities in their external environment (Pei
and Hao, 2019). Unfortunately, the nonlinear characteristics of solar
applications make it difficult to classify and identify these anomalies.
An innovative semi-supervised learning model based on graph
theory was introduced in (Zhao et al., 2015), which is capable of
effective hidden fault detection and classification in photovoltaic
arrays using a limited amount of labelled data. The model showed a
fault detection accuracy of 92.8% with a very small dataset, which is
enough to make it a recommendation for industrial-scale solar
farms. The AI-driven approach shows 30% less number of false
alarms in comparison to the conventional threshold-based
monitoring, making fault diagnosis more reliable. Combining
findings by Pei and Hao (2019), critical fault parameters were
determined, and voltage and current reference values were set for
photovoltaic systems in establishing an appropriate Pearl detection
scheme. The proposed method employed thresholds to determine a
fault based on the same criteria and some existing thresholds to
benchmark against these somewhat arbitrary reference thresholds,
pinpointing actual malfunctions. The testing of their approach on
PV arrays at an industrial scale reached a reported detection efficacy
of 94.6%, well above the conventional threshold-based average of
83%. Notably, the real-time and AI-driven observation of anomalies
reduced the panel degradation alert interval by 40%. It brought forth
improved energy efficiency and longevity for the system. The
analysis provided support to implement their proposed solution
for practical applications.

4.4 Semiconductors

Some challenges in the semiconductor industry include
formulating and implementing the high performance of FDC
systems to recognize and categorize all the faults that occur
during production. Real-time monitoring and FDD activities
support the importance of ensuring safe and consistent
production through controlling any possible departures from
normal processes (Zhou et al., 2018). The overall semiconductor
industry has accepted FDC as a key component of advanced process
control solutions. Mainly, it focuses on production throughput and
tool utilization rates, along with lowering cycle time (Wang et al.,
2012). Tobacco has used several classical techniques to improve the
processing inside the realm of FDC. That said, traditional FDD
methods may not effectively identify the type and sources of defects
during semiconductor wafer processing. Fan et al. (2020) found that
RF methods have shown 18% less error than k-NN and PCA
methods in wafer originating from semiconductor defects
classification. Additionally, implementing FD-kNN in the
industry led to 25% more isolated fault detection at
semiconductor foundries, avoiding major wafer scrap costs and
rework. AI-equipped FDD methods are said to increase

production yield by 12% across five semiconductor fabs, because
of differing characteristics that older FDD styles would find hard to
capture. The literature is full of evidence of advancements made in
advanced FDD since the semiconductor industry last 3 decades
(Susto et al., 2017).

He andWang (2007) introduced the FD-kNNmethod, based on
the k-NN approach, to address the shortcomings of existing PCA-
based FDD approaches. The technique is dedicated to fault detection
in semiconductor manufacturing processes characterized by
nonlinearities and various operating modes. Random Forest
(RF)-based methods were employed by (Shu Kai S. Fan et al.,
2020) for processing time and steps in semiconductor
manufacturing processes. Their method improved accuracy in
fault classification by 15% regarding PCA-based techniques,
showing that ensemble models capture complex fault patterns
better. K-NN and naive Bayes classifiers were used in an
ensemble model alongside the t-distributed stochastic neighbor
embedding technique to visualize the emergent FDC parameters.
Monitoring process conditions is important in systematically
managing wind turbines and farms to incur lower operating
costs. Based on an SVM-based FDI design, the wind turbine
FDD was discussed in (Laouti et al., 2011). They dealt with
windbreaks in a three-blade variable-speed horizontal-axis wind
turbine backed by a full converter. Data-driven methodologies
devoted to designing FDI for wind turbine systems regarding
nonlinearities and unknown wind perturbations were examined
in research (Li et al., 2023). Kusiak and Li (2011) proposed a
system of fault prediction in wind turbines composed of three
levels: problem identification, categorization by their criticalities,
and predictions of various defects that SCADA systems and fault
files will support.

4.5 Electric/smart vehicles

Reliability is an important feature of major components within
the EV, including the battery pack, motors and sensors. Failure of
these important components determines from which area the failure
appears, to bring the vehicle back into performance and safety. Kang
et al. (2023) have proposed an improved online multi-fault detection
and diagnosis technique in EV battery packs. This research has
focused on conceiving a capable system that behaves by
simultaneously detects and diagnoses multiple faults in the
battery system online. The proposed system is simultaneously
performing two important operations: real-time monitoring of
battery packs and deploying complex diagnostic algorithms
capable of behavior identification amid fault patterns and
prognostic modeling suited for battery health and capacity. This
suggested system further improves reliability and battery safety for
the EV systems. This new strategy in the battery pack diagnosis is
solely devoted to the ideal fault identification focused towards
understanding the operational capacity of the vehicle. This new
methodology will now facilitate the development of the faulty
signalling elements, erratic vehicle failures when there is no
warning from the battery failure itself, which could cause stresses
to the components and/or on the performance of the vehicle. Kang
et al. (2023) reported that, in their large-scale testing of the battery
health monitoring systems, their multi-fault detection model
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enhanced fault isolation accuracy by 28% and provided a 15%
reduction in premature battery replacements, signifying a major
cost-saving to fleet administrators. In addition, the implementing of
AI-centric battery diagnostic systems in the commercial pool of EVs
has conferred a 23% mitigated risk of facing sudden battery failures,
which enhances vehicle reliability and safety.

(Du, 2019)proposed fault detection of interior permanent-
magnet synchronous motors (IPMSMs) used in electric drive
applications for their interior permanent-magnet synchronous
motor (IPMSM). IPMSMs are one of the types of motors used
within electric vehicles. The in-vehicle faults of the motor caused
by the inter-turn fault in an IPMSM can somewhat lower the
performance level, leading to a total failure of the motor. High-
frequency, low-resolution signals were suggested for specific
purpose-based fault detection of an IPMSM in the case of an
inter-turn fault, with this scheme being very suitable for the
operation of electric vehicles. Byun et al., 2019) reported a
series of techniques for sensor fault detection and signal
restoration, with an eye toward performance for intelligent
vehicles in ADAS and FA applications. Regarding safe and
effective performance and operational autonomous vehicles and
technologies, reliable sensor information is paramount for both
ADAS and full autonomous driving. This present work has
developed schemes that successfully identify conditions of
sensor fault and restore output signals as closely as possible to
their original values, thereby reestablishing confidence in the
signals for the functioning of safety-critical features. Their
research addressed the sensor failure issue for the maintenance
of performance effectiveness and the overall safety of
intelligent vehicles.

4.6 Robotic systems

Fault detection and diagnosis (FDD) of robot systems is essential
to ensuring operational safety and reliability. Golombek et al. (2011)
show the need for an online data-driven FDD approach in robot
systems. Their work promotes online performance monitoring and
adaptive diagnostics to detect and rapidly diagnose faults when they
occur, which may be needed in dynamic and uncertain
environments. Experimental testing on an industrial robot arm
showed that data-driven FDD models shortened fault response
time by 45% compared to the conventional rule-based method.
Real-time adaptive diagnostic use in robotic manufacturing lines
was shown by Golombek et al. (2011) to boost uptime by 30% and
prevent unwarranted shutdowns while maximally enhancing
running efficiency. Data-driven FDD uses large datasets to
identify aberrant behavior and enable early intervention, which
can assist systems in minimizing downtime and maximizing
system overall performance.

On the other hand, Cho et al. (2018) employ a model-based
approach for fault diagnosis of robotic systems. The model-based
FDD technique can leverage pre-existing models of system
behaviour to recognize deviations and diagnostic faults. Their
approach allows comparing real system behaviours with existing
models to generate a diagnostic rationale. Model-based FDD
prioritizes formalized theoretical knowledge accompanied by
empirical knowledge to construct a strong framework of

diagnosis that bestows greater precision and dependability to
robot systems.

4.7 Building system

Fault detection and diagnosis (FDD) of a building system has
many approaches depending on the component and operational
option. Heracleous et al. (2016) researched critical infrastructure
(specifically water supply systems) with special emphasis on online
fault detection approaches to track integrity and reliability. The
authors noted how diagnostics provide real-time tracking of these
services, guaranteeing continuity of operations. Tran et al. (2015)
assessed a strong online fault detection and diagnosis method for
centrifugal chiller systems for building energy efficiency. The
authors correlated fault detection and energy management
procedures in their methodology to demonstrate how diagnostics
methods can improve efficiency in operation and sustainability. Kim
and Katipamula (2018) provide a comprehensive review of FDD
methodologies applied in building systems, detailing different
methods and applications in building components. Their review
points to the contribution of FDD methodologies to building
performance, giving an insight into future trends. Kumar et al.
(2021) describe a sensor-based building fault detection and
diagnostic system in terms of developing new types of sensor
networks and their ability to enhance diagnostics. Their research
illustrates how sensors used in compositions can enable a better
ability for diagnosis.

Kim and Lee (2021) established the establishment of virtual
sensors to detect faults in a room air conditioner, establishing a more
precise diagnostics process and an outcome of fewer maintenance
operations. This new use utilized a virtual technology process
because it considers fault detection of building systems. Lastly
et al. (2006) outlined a hierarchal rule-based approach to
assessing faults and fault diagnosis in HVAC systems. In context,
evidence emerged that a rule-based definition of faults can cope with
the complexity of HVAC diagnostic machines. Expert FDD
approaches in HVAC systems, for instance, by Schein and
Bushby (2006), enhanced the fault detection rate by 35%
compared to inspection-based manual assessment. A large-scale
deployment of a commercial building (Kumar et al., 2021)
showed 20% less energy wastage with early identification of
system poor performance, leading to enormous cost reductions.
Their rule-based method is one example of a systematic diagnosis
method for reliability to make buildings efficient.

In short, FDD is a core function to ensure manufacturing
systems are reliable, efficient, and safe in today’s sector. This
system diagnosis and fault detection through a systematic
approach enables a head start on early detection, which helps
reduce downtime and costly disturbance by an FDD system.
Advanced algorithms and data analysis run these systems to
monitor equipment performance constantly for predicting
oncoming failures and practical insights into timely maintenance.
As more sectors focus on digital and automated technologies,
integrating FDD ensures that operations remain optimized to
reduce operating expenses and extend the lifespan of main assets.
Ultimately, this pays dividends in maintaining the integrity of
manufacturing and keeps industries competitive and sustainable
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overall. Comparative evaluation of various FDD techniques across
various industries demonstrates significant trade-offs: AI
techniques (ANN, SVM, and RF) possess high accuracy
(typically >90%) but require extensive training data and
computational resources. Conversely, model-based techniques
such as PCA and k-NN are interpretable but less effective in
handling nonlinear system dynamics. Industrial case studies
demonstrate how AI-enhanced FDD systems can reduce
unplanned downtime by up to 40%, significantly improving
asset reliability and cost savings. Such results underscore the
revolutionary potential of advanced fault detection methods in
real-world applications.

5 Fault detection methods

Maintaining optimal performance in complex industrial
processes with multiple faults can be challenging. To ensure
optimal process supervision, fault detection and isolation are two
common approaches. Among these, FDD is a highly significant
technique for controlling process performance, as most industries
strive to improve their operations through increased FDD (Hu et al.,
2014). The primary objectives of FDD are to monitor the current
state of a process and identify any flaws, including their
characteristics and underlying causes (Pei and Hao, 2019).
Process monitoring serves various purposes, the most crucial
being the prevention of interruptions. Effective management of
potential issues during the process is the primary goal of process
supervision. Therefore, FDD plays a vital role in numerous
industrial processes and remains a key research focus due to its
significance in ensuring safe, productive, and effective operations
(Shu Kai S Fan et al., 2020). Figure 7 illustrates the four phases of
deploying a conventional FDD method. To ensure an accurate
diagnosis, it is crucial to correctly identify faults, which involves
determining the type of problem, its severity, location, time of

detection, and behaviour. Combining fault isolation and
identification is often known as the fault diagnostic step (Kusiak
and Li, 2011). Nonetheless, fault diagnosis typically encompasses a
broader range of tasks, including fault detection, isolation,
identification, classification, and evaluation.

Numerous FDD methods have been developed and
implemented across various industries over the past 3 decades.
Researchers and practitioners have proposed various FDD
methods, including model-based, observer-based methods
(Bouchikhi et al., 2015) and data-driven methods, such as PCA
and NN. In this regard, we will delve deeper into different
approaches to FDD.

5.1 Data-driven techniques

Data-driven FDD techniques have gained widespread attention
across various industrial sectors due to their effectiveness in
monitoring complex processes (Ardali et al., 2024). Table 2
presents a classification based on the system’s features to provide
an overview of data-driven FDD techniques.

The following sections review some of the most common and
powerful methods adopted in FDD for various industrial
applications: PCA, ICA, SVM, kNN, and NN. All these
techniques have different powers and capabilities regarding fault
identification, classification, and diagnosis, which makes them an
asset in current industrial monitoring systems.

5.1.1 Principal component analysis
Principal Component Analysis (PCA) is a statistical technique

used to reduce the dimensionality of data while maintaining its
disparity. In the context of FDD, PCA is employed to transform a
large set of process variables into a smaller set of uncorrelated
variables called principal components (PCs) (Mansouri et al., 2016).
Typically, a dataset is collected from machine sensors under normal

FIGURE 7
Methodology for using a conventional FDD method.
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operating conditions. Then, the data is scaled, and the covariance/
eigenvectors matrix is computed. The original data is projected onto
the principal components, reducing dimensionality, before applying
statistical process control techniques to the principal components to
detect deviations or anomalies in machine data and identify the
potential root causes of the fault. Figure 8 shows the fault diagnosis
process using PCA. Some advantages of PCA-based FDD methods

include dimensionality reduction, noise reduction, fault detection
sensitivity, and interpretability. While its limitations are: linearity,
sensitivity to outliers, and difficulty in handling nonlinear processes.
Despite these limitations, PCA remains a valuable tool in FDD due
to its simplicity and effectiveness in many industrial applications.
Some works in which PCA-based methods are used for FDD are
discussed as follows.

TABLE 2 Data-driven methods.

System Methods Advantages Disadvantages

Dynamic Systems HMM(Galagedarage Don and Khan, 2019), Dissimilarity-based PLS
(Harmouche et al., 2015) Dynamic NN (Sedej et al., 2022)

- Good at capturing temporal
dependencies and dynamic behavior

- Effective for online monitoring and
control

- Requires a large amount of data
- Complexity in parameter tuning and
model selection

Non-linear
Systems

Kernel PCA, Kernel ICA (Choi et al., 2005), ANN ((Seid Ahmed,
2024)), Kernel PLS (Botre et al., 2016), KNN (Guo et al., 2003)

- Capable of modelling complex, non-
linear relationships

- High flexibility in capturing system
behavior

- Computationally intensive
- Prone to overfitting with limited
data

- Interpretability can be challenging

Non-Gaussian
Systems

ICA (Fan and Wang, 2014) Gaussian Mixture Model (Tong et al.,
2018), Kernel PLS (Harmouche et al., 2015), Bayesian Estimation
(Gonzalez et al., 2015)

- Suitable for non-Gaussian data
distributions

- Good at uncovering underlying
independent components

- Sensitive to noise and outliers
- May require complex pre-processing
and tuning

Time-varying
Systems

Recursive PCA (Sun and Jia, 2019), Isolation Estimation (Park et al.,
2020)

- Adaptive to changes over time
- Effective for online updating of models

- May have difficulty with abrupt
changes

- Can be sensitive to initialization and
parameter settings

Non-Stationary
Systems

SVM (Gnanamalar et al., 2023), Hidden Semi-Markov Model
(Bighamian et al., 2014), HMM (Gonzalez et al., 2015), Monte Carlo
Simulation SVM (Gnanamalar et al., 2023)

- Capable of handling data with varying
statistical properties

- Suitable for long-term system
monitoring

- High computational cost
- Complexity in handling large-scale
data

- Model interpretability issues

FIGURE 8
Principal component analysis process for fault diagnosis.
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Sun and Jia (2019) recommend a novel FDD technique based on
PCA. They developed a new method of feature engineering to
achieve early fault prediction and lower false alarm rates
simultaneously. Implementing the proposed technique in a boiler
leak detection case proved its effectiveness in spotting the area where
the problems are. Harrou et al. (2013) showed that PCA-based
techniques effectively detect unknown faults in complex industrial
processes, among other statistical FDD approaches. Dynamic
principal component analysis and reconstruction-based
contribution techniques are two PCA types widely used in FDD
implementations. To maximize the reduction of combined index
(RCI), Liu et al. (2012) suggested a contribution plot method based
on a missing data approach. Liu et al. (2022) used a multi-level PCA.
Harrou et al. (2013) used it on data from a simulated continuously
stirred tank reactor (CSTR) to increase the reliability of fault
detection without a process model. Lau et al. (2013) presented a
framework for detecting issues in real-time manufacturing processes
using multiscale principal component analysis (MSPCA) and
ANFIS to infer fault-signal correlation from process data.

Estimating and detecting minor and random variations due to
initial faults was done using the pullback-Liebler divergence (KLD)
theory by (Harmouche et al., 2015). This penetration testing
approach suggested that the fault-to-noise ratio (FNR) should
be used as an index to compare the gravity of faults and the
surrounding noise. Dynamic principal components analysis and
the Bayesian inference (DPCA-BI) is a method for real-time
process monitoring proposed by Huang and Yan (2015), which
carries out the Jarque-Bera test to determine whether a Gaussian or
a non-Gaussian distribution exists. In a recent study by Mnassri
et al. (2015), the RBC method and RBC ratio (RBCR) have been
theorized as advancements in data-driven fault diagnostics, which
can predict and fix major multi-dimensional faults. Bakdi et al.
(2017) discussed a novel data-driven FDD method using PCA to
model the cement manufacturing process and adaptive thresholds
to assess two frequently employed multivariate statistics. They
used a modified exponentially weighted moving average (EWMA)
chart to adjust the threshold numbers dynamically. The
effectiveness of the suggested FDD scheme was verified by
testing it on some error scenarios. Several obstacles, described
in (Du, 2019), make detecting problems in actual manufacturing
processes difficult. Feature extraction is widely acknowledged as a
critical step towards effective FDD (Lau et al., 2013). Du (2019)
suggested a feature extraction method using bispectral features and
a one-class classifier to characterize process dynamics and address
class imbalance problems.

5.1.2 Independent component analysis
Independent component analysis (ICA) is a statistical

technique to identify underlying factors or components in
multivariate data. Unlike PCA, which seeks orthogonal
components, ICA seeks statistically independent components.
ICA can be a powerful tool for extracting hidden information
from sensor data to uncover underlying physical processes, fault
modes, or the root cause of the fault. The fault diagnosis process
using ICA is shown in Figure 9. ICA is useful in feature extraction,
noise reduction, and fault isolation. However, it has several
limitations, including non-Gaussianity, computational intensity,
etc. The use of FDD techniques employing PCA can quickly
identify and resolve issues. However, PCA’s ability to detect
complex linear or nonlinear relationships among process
variables may be limited because of its Gaussian distribution
assumption. To deal with non-Gaussian and nonlinear
industrial processes, Fan and Wang (2014) developed a kernel
dynamic independent component analysis method, which
leverages the auto regressive (AR) model and ICA and kernel
methods to extract dynamic characteristics. Nonlinear
contribution plots were also created to aid in fault detection.
Tong et al. (2018) proposed the double-layer ensemble
monitoring technique based on a modified version of ICA
called DEMICA to tackle non-Gaussian process monitoring
challenges. The DEMICA approach used a double-layer Bayesian
inference method for tracking indices and included all feasible MICA
models as an ensemble. Traditional FDD methods typically utilize
principal component analysis, which assumes a normal distribution of
process data and statistical independence between samples. However,
these assumptions often result in many false alarms and issues with
missing detections in process monitoring.

FIGURE 9
Independent component analysis process for fault diagnosis.
Note: 1(d) Statistic is First Independent Component Statistic, I2(e) is
Second Independent Component Statistic, and SPE is Squared
Prediction Error.
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5.1.3 Canonical Variate Analysis
Canonical variate analysis (CVA) is another statistical technique

used to find linear combinations of two sets of variables that have the
maximum correlation with each other (Jiang et al., 2015). CVA is
used to monitor the projection of new data onto the canonical
variate space and analyze the contributions of the original variables
to the canonical variates to identify the root cause of the fault. As a
result, CVA can reduce the dimensionality of the data, making it
computationally efficient, and can effectively discriminate between
different fault modes based on the signal associated with multiple
process variables. Figure 10 illustrates the fault diagnosis process
using CVA. Nevertheless, CVA assumes linear relationships
between variables, which might not be suitable for all systems.
Moreover, outliers can significantly impact the results of CVA; a
data-driven multivariate method would perform well when there are
serial correlations among process variables.

Juricek et al. (2004) proposed a subspace identification
algorithm based on the CVA approach. Russell et al. (2000) also
integrated the CVA method with dynamic principal component
analysis to realize a residual generator for fault detection systems.
Jiang et al. (2015) applied CVA to derive the retained states and
residual space and then, respectively, established fault detection and
identification schemes based on these two spaces.

5.1.4 Support vector machines
Support vector machines (SVMs) are powerful machine learning

algorithms that have recently found widespread application (Ding
et al., 2016). They excel at classification tasks, making them ideal for
distinguishing between normal and faulty system states. SVMs often
achieve high accuracy in separating different fault classes, even for
cases involving complex datasets that exhibit numerous features.

Moreover, SVMs are relatively insensitive to outliers; hence, they can
be effectively applied to classification and regression problems.
However, SVMs can be computationally expensive for large
datasets. Moreover, choosing the appropriate kernel function
(linear, polynomial, radial basis function, etc.) is crucial for SVM
performance. Support vector machines (SVMs) have been widely
utilized in process monitoring and fault diagnosis applications to
identify anomalous patterns and classify them based on fault type.
Figure 11 illustrates the fault diagnosis process using SVMs.

Widodo and Yang (2007) conducted a comprehensive survey
of SVM methods for machine health tracking and fault diagnosis,
highlighting future directions in expertise and problem-solving.
Another research (Park et al., 2011) proposed a novel fault
extraction and identification approach using cubic spline
regression and Support Vector Machines (SVMs). They used
SVMs to build a classifier and cubic spline regression to
determine transition points between discrete steps. Banerjee
et al. (2010) tackled the dynamic motor condition fault
diagnosis issue by employing SVMs and the short-time Fourier
transform to classify the fault signals. Bordoloi and Tiwari (2014)
suggested an SVM method for multi-fault classification of
machine gears based on frequency domain information, using
grid search, genetic algorithm, and artificial bee colony algorithm
to determine the SVM model’s optimal parameters. Xiao et al.
(2018) proposed a procedure to determine the optimum
parameters of the one-class SVM for multiclass classification.
Jing and Hou (2015) compared PCA and SVM for fault
categorization in a multiple-class problem.

5.1.5 K-Nearest Neighbor
K-Nearest Neighbors (KNN) is a non-parametric machine

learning algorithm that classifies new data points based on the
majority class of their k-nearest neighbours in the training
dataset. In FDD, KNN can classify system states as normal or
faulty by extracting relevant features from normal and faulty
system operation data. KNN is relatively easy to understand and
implement. It can also capture complex relationships between
features and class labels. Nevertheless, KNN can be
computationally expensive for large datasets and is usually
sensitive to noise in the data, as it relies on distance calculations;
thus, KNN outcomes might result in outcomes with bias. Figure 12
illustrates the fault diagnosis process using KNN is illustrated in
Figure 12. Various approaches based on KNN effectively detect
unique characteristics of real-world industrial processes, such as
multimode batch trajectories and non-linearity (Kong et al., 2019).
However, conventional multivariate methods can be challenging to
use in processes with non-Gaussian distributions or correlations
amongmany process factors, such as semiconductor manufacturing.
To address these issues, researchers have proposed novel techniques,
such as an adaptive Mahalanobis distance-based KNN detector
(k-NND) (Verdier and Ferreira, 2011) and a semi-supervised
version of the Fisher discriminant analysis (SFDA) model that
considers both labelled and unlabeled data. Class imbalance is
another common challenge in fault detection. Researchers have
proposed methods such as incremental clustering-based fault
detection (IC-FDM) (Kwak et al., 2015) and a hybrid fault
detection technique that combines random projection with KNN
(RPkNN) (Zhou et al., 2015). Novel distance-based fault detection

FIGURE 10
Canonical Variate Analysis process for fault diagnosis.
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methods, such as the KNN weighted distance method (Zhang et al.,
2019), have also been suggested, incorporating statistics designed to
improve fault detection.

5.1.6 Neural network
Neural networks are powerful machine-learning models

inspired by the human brain (Seid Ahmed, 2024). They are
particularly effective in handling complex patterns and nonlinear
relationships within data, making them well-suited for FDD. Neural
networks can achieve high accuracy in FDD, automatically learning
relevant features from machine data. However, training and
deploying large neural networks can be computationally
expensive. Furthermore, neural networks are prone to overfitting

and often require extensive data for training. Several methods for
FDD in manufacturing processes using intelligent systems were
discussed earlier in section 3. One such approach involves using a
neural network (NN) to detect early signs of machine failure (Seid
Ahmed, 2024).

Due to neural networks’ capabilities in converting inputs into
non-linear outputs, they can be utilized for diagnosing sensor faults.
Additionally, they can handle issues related to speculation and
memory (Ren and Lv, 2014). When implementing a neural
network for sensor fault detection, the selection of network
architecture and activation functions depends on the output
vector’s dimensionality and the number of faults to be identified.
The network is trained using data collected from fault samples to
ensure accurate fault detection and classification. The network is
fine-tuned with an inertia factor, learning rate, and other data-based
parameters to achieve highly accurate results. In Figure 13, the
flowchart of the detection procedure is depicted. The general
concepts behind most typical neural network applications have
been well-established for several years, indicating that the field is
relatively mature. Presently, research on diagnostic methods using
neural networks mainly focuses on enhancing the algorithm for
training data (Seid Ahmed, 2024).

Using neural networks in sensors to diagnose faults in complex
systems is common. Research (Ren and Lv, 2014) integrated an
artificial neural network into the combined harvester to detect
sensor failures. However, the inherent static characteristic of the
data used usually leads to extended time to isolate the fault. In
another research (Ferentinos et al., 2003), the weights were trained
with backpropagation. The authors could reduce the effects of plant
imperfections on training precision by adopting a classical training
method that eliminates characteristics of information from specific
sensors. Based on their findings, they concluded that it is possible to
achieve online fault detection with the help of neural networks. The
unmanned aerial vehicles, also known as UAVs, are a new and
rapidly evolving market. Considering the emulation of the
permanent breakdown of sensors in UAVs, Samy et al. (2011)
proposed using the EMRAN-NN to emulate the permanent
breakdown of sensors in UAVs based on the current neural
network (NN) scheme. They then tested the feasibility of this
method using collected data. However, during the Fault-Tolerant
Control System (FTCS) demonstration, they observed some above-
average Fault Activation Events (FAEs) that seemed significantly
higher than normal and should be further investigated.

A study (Habriansyah and Andani and Zainuddin, 2017) found
that maintaining strict control over the short-term storage

FIGURE 11
Support vector machine process for fault diagnosis.

FIGURE 12
KNN process for fault monitoring.
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temperature of flour is crucial. The study introduced a technique for
detecting temperature sensor faults based on online learning. This
technique utilizes a feedback artificial neural network trained with a
random sequence-learning algorithm to identify abnormal sensor
readings. Additionally, auxiliary sensors were used to replace
malfunctioning main sensors through redundant analysis, which
improved system efficiency. Previous research indicates that neural
networks are advantageous for real-time operation and direct
processing of time sequence data, making them a widely used
methodology. However, neural networks also have inherent flaws,
requiring numerous training samples and showing weak
generalization capabilities, which could pose challenges in fault
detection efforts.

5.2 Model-based techniques

Due to the limitations of traditional FDD methods, various
alternative approaches based onmodels, particularly process models
or mathematical models, have been investigated. Model-based FDD
methods utilize the interdependencies among multiple process
variables. Therefore, users must comprehend the process model
before implementing this technique. Pourbabaee et al. (2016)
discussed various model-based approaches to fault detection and
isolation (FDI) for automated systems. The aim was to enhance the
robustness of the approach to modelling errors using state
estimation and parameter identification strategies (Cho et al.,
2018). also focused on model-based approaches while discussing
fault detection and isolation techniques. In addition, statistical
residual testing techniques were discussed for detecting abrupt

faults and the methods of implementing a reconfigurable control
strategy based on a model. With their innovative combined FDI
scheme, Shahid et al. (2023) used subspace model identification
(SMI) to create a precise model by keeping tabs on the individual
stages of the process, and the authors’ proposed scheme was used to
produce useful statistics from the multivariate residual. By
implementing three commercial applications with sensor faults,
process faults, and actuator faults, they proved the efficacy of the
suggested scheme.

Azmi and Yazdizadeh (2022) developed new strategies for
detecting system faults using observer-based diagnostic
techniques. They extensively analyzed various observer-based
approaches for FDD. Wu et al. (2017) proposed an advanced
approach to FDD for nonlinear systems with multiple early-stage
sensor failures in a research paper. The strategy involves a sequential
combination of two techniques -total measurable fault information-
based residual (ToMFIR) and sliding mode server (SMO) - for
measurement repair. The original systems were divided into two
sections using a state and output transformation method to make
the fault diagnosis more accurate. Piltan and Kim (2018) introduced
a variable structure feedback linearization observer (FLO) with FDD
design in rotating machinery. Bernardi and Adam (2020) proposed
two observer types for the FDD approach, using a linear parameter-
varying system for nonlinear chemical processes.

A survey by Li et al. (2022) identified improvements in multiple
monitoring and fault diagnosis techniques that could be
incorporated. Yin et al. (2022) presented a solution to FDI by
introducing a new strategy based on the Parity Space
Optimization concept. By transposing the converted parity
relations, they created an optimum transformation matrix. They

FIGURE 13
Neural network-based sensor fault detection.
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applied the pseudo-inverse and actuator estimation methods and
tried to model the process with a cumulative sum chart, which helps
to register when the residual variance changes. The method was
tested in simulation and real fault cases of aircraft control surface
actuators to substantiate the proposed solution.

5.3 Knowledge-based techniques

FDD techniques based on multivariate statistics typically
analyze process failure or anomaly data. When creating or
employing FDD strategies for a wide range of industrial
processes, knowledge or principles should be considered in
addition to the process data. Knowledge-based approaches
were developed to address this issue, benefiting several
complex manufacturing processes (Pourbabaee et al., 2016).
Representative knowledge-based FDD techniques include the
fault-model-based cause-and-effect analysis approach and
human-reasoning-based expert systems (Khireddine et al.,
2014). Lou et al. (2022) proposed an error-detection system
for chemical processes, incorporating Multivariate Statistical
Process Monitoring (MSPM) into an existing knowledge-based
FD framework. Peng et al. (2018) employed a fuzzy neural
network approach for fault diagnosis in nuclear power
stations. Meanwhile, Gonzalez et al. (2015) utilized process
knowledge within a Bayesian network (BN) method for data
compression to enhance system clarity. Chen et al. (2022)
proposed a BN model in multiple model architectures,
considering previous process knowledge and process data, to
detect failures in HVAC systems. Don and Khan (2019)
introduced a unified FDD approach utilizing a Hidden Markov
Model (HMM) for fault detection and a Bayesian Network (BN)
for root cause analysis. This integrated method outperforms
purely data-driven approaches, leveraging the log-likelihood
method for BN conditional probabilities and the input
junction tree algorithm.

5.4 Hybrid-based techniques

Hybrid FDD approaches show great potential for practical use
both in the short and long term. The most recent studies on hybrid
methods are listed in Table 3. Table 3 summarizes the most recent

hybrid FDD techniques, illustrating the various approaches
combining model-based methods with signal processing and
machine learning techniques. The listed studies highlight the
diversity in hybrid methodologies and their potential for more
accurate and adaptive fault detection.

These approaches use a combination of model-based and signal-
processing techniques to develop more robust designs for FDD. For
instance, researchers have employed multiple model banks and
multi-stage filtering schemes (Fathi and Bolandi, 2024) that
utilize parameter and state estimation techniques. Signal
processing techniques such as statistical and spectral analysis
alongside deep learning have also been employed (Qian et al.,
2022). The development of automatic hybrid FDD schemes
presents significant challenges, such as designing a unified
framework and ensuring the smooth interaction of different
classifiers at different levels of abstraction. As the complexity of
systems increases, these issues are becoming increasingly important.
Another significant challenge in developing hybrid FDD schemes is
ensuring the seamless integration of model-based approaches with
signal-processing techniques. Data compatibility across different
levels of abstraction, ranging from low-level sensor signals to
high-level system states, must be addressed. Furthermore,
managing the computational demands of real-time FDD,
especially when deep learning models are integrated, presents a
crucial hurdle. The success of hybrid FDDwill rely on the robustness
of its interaction mechanism, which must address compatibility,
conflict resolution, and scalability.

Hybrid techniques often rely on effective fusion mechanisms to
combine the results of different models. For instance, decision fusion
can be applied where multiple classifiers’ outputs are integrated
based on a majority voting system or weighted averages. In cases
where models conflict, strategies like priority-based resolution or
consensus models may be employed to ensure accurate fault
diagnosis. As complex systems grow, these mechanisms must be
adaptable, scalable, and robust to handle varying data conditions.

5.5 Comparative analysis

Table 3 presents a comparative analysis of four Fault Detection
and Diagnosis (FDD) techniques: data-driven, model-based,
knowledge-based, and hybrid-based approaches based on the
thorough review above. It can be concluded that:

TABLE 3 Hybrid fault diagnosis techniques.

Techniques Approach 1 Approach 2

Multiple-Model Banks and Spectral Analysis
(Fathi and Bolandi, 2024)

Failure detection using Recursive Least Squares (RLS) with a
hybrid threshold that adapts in real time

Fault severity index calculation based on typical fault
frequencies

Evaluation Model and Real-Time Data
(Hekmat and Ravanmehr, 2016)

Uses analog signals like temperature, current, and voltage,
while bus network communications are digital

Wiring harness temperature assessment model for real-time
monitoring

Deep Learning and Signal Processing (Shao
et al., 2017)

Multilayer Perceptron (MLP) for domain knowledge
generation

Convolutional Neural Networks (CNN) for feature extraction
and fault classification

Machine Learning and Statistical Analysis
(Kankar et al., 2011)

Initial fault detection threshold based on permutation entropy
and Chebyshev’s theorem

Variational Mode Decomposition (VMD) with hybrid features
for fault identification and severity assessment

Data Mining and Supervised Learning (Zhao
et al., 2015)

Stacked Autoencoder for labeling unlabeled historical process
data

Clustering using t-Distributed Stochastic Neighbor
Embedding (t-SNE) for fault classification
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• Data-driven FDD leverages historical data and employs
statistical or machine-learning methods to identify patterns
and detect faults. This approach is highly adaptable and
practical in environments with extensive and high-quality
data. However, its reliance on large datasets can be a
limitation in scenarios with limited or noisy data.

• Model-based FDD relies on physical or mathematical models
of the system for normal behavior prediction and fault
reflecting deviation detection. High accuracy is provided by
this method if the system dynamics are well understood and
well modeled. The main drawback is the huge computational
effort required to develop and maintain these models,
especially for complex systems.

• Knowledge-based FDD employs expert knowledge in the form
of pre-defined rules and heuristics to detect and diagnose
faults. This approach is advantageous regarding interpretability
and speed and can be applied to applications for which expert
knowledge is readily available. Its performance is restricted by
the completeness and accuracy of the expert knowledge
embedded in the system.

• Hybrid-based FDD integrates data-driven, model-based, and
knowledge-based approaches to take advantage of their
strengths. The hybrid strategy enhances flexibility and
robustness, particularly for complex systems where a single
approach may be insufficient. Nevertheless, the integration
can be complex and challenging.

Each FDD technique offers unique benefits and limitations,
making them suitable for different industrial applications, as
detailed in Table 4. Data-driven methods excel in data-rich
environments, model-based approaches are ideal for systems with
well-defined dynamics, knowledge-based techniques provide quick
and understandable diagnostics, and hybrid methods offer a
balanced solution for complex and multifaceted systems.

This comparison underscores the importance of selecting an
FDD technique that aligns with the specific requirements and

constraints of the application. While more complex, hybrid-based
approaches often provide the most robust and versatile solutions for
sophisticated fault detection and diagnosis needs.

5.6 Implementation of fault detection and
diagnosis techniques in industrial settings

Implementing FDD methods in industrial environments
requires systematic integration of the entire chain from data
acquisition, processing, and model selection to training, real-time
observation, and continual improvement. Each of these resources
contributes essential importance to realizing that the FDD system
has to be trustworthy, reliable, accurate, and able to respond and
work in an intricate context of various industrial domains with very
few iterations on behalf of human execution (Saeed et al., 2025).

The data acquisition is the first step in implementing the FDD
system; it consists of the real-time operational data collection from
several sensors. Various sensors are deployed in industrial systems
to monitor key parameters such as temperature, pressure, vibration,
current, voltage, and flow rate. The sensor selection depends on the
fault type that must be detected. For instance, vibration sensors are
very important in rotating machinery, while thermal analysis
requires infrared sensors in electrical systems (Vishwakarma
et al., 2017). It is necessary to ensure that high-resolution and
high-frequency data acquisition systems are employed to catch
the transient fault conditions that might be unnoticed in low-
sampling-rate data. The processed raw data is generally stored in
industrial databases, such as Supervisory Control and Data
Acquisition systems, edge devices, or cloud-based infrastructures
(Surucu et al., 2023).

After data collection, preprocessing will be performed to
enhance the quality of the data. Raw data from the industry may
carry noise, missing values, and inconsistencies, which can result in
false alarms or errors in detecting faults. Common preprocessing
methods include signal denoising using wavelet transform,

TABLE 4 Comparative analysis of FDD techniques.

Aspect Data-driven FDD Model-based FDD Knowledge-based FDD Hybrid-based FDD

Methodology Utilizes historical data with
statistical and machine learning

techniques

Relies on mathematical or physics-
based models to describe system

behavior

Based on expert-defined rules,
heuristics, and domain knowledge

Integrates data-driven, model-based,
and expert knowledge approaches

Computational
Complexity

Moderate to high; complexity
increases with large datasets

High; requires complex simulations
and computations

Low to moderate; depends on rule
scope and knowledge base

High; combines models, large
datasets, and rule-based reasoning

Industry
Applications

Manufacturing, HVAC, aerospace,
automotive

Aerospace, automotive, power
systems, industrial automation

Medicine, safety-critical systems,
expert control systems

Robotics, advanced manufacturing,
cyber-physical systems

Performance Effective with high-quality data but
sensitive to noise and missing data

Highly accurate when models align
with real-world dynamics

Reliable if rule sets are complete
and well-defined

High performance, often surpassing
individual approaches when well-

optimized

Advantages Adapts to diverse datasets,
requiring minimal system

knowledge

Provides accurate fault detection
for predictable system behavior

Fast and interpretable results
based on expert-defined rules

Flexible, robust, and capable of
handling complex systems

Limitations Dependent on data quality,
struggles with sparse or noisy data

Requires expensive and time-
consuming model development

Performance is limited by expert
knowledge and predefined rules

High implementation cost and
complexity

Common
Techniques

PCA, neural networks, clustering,
deep learning

Observers, Kalman filters, and
redundancy checks

Fuzzy logic, rule-based systems,
expert systems

Bayesian networks, ensemble
methods, hybrid AI models
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normalization to standardize different sensor readings, and outlier
removal using statistical methods. Another important step in this
stage is feature extraction, which extracts relevant information from
the raw data. For example, in vibration-based fault detection, time-
domain features like root mean square and kurtosis and frequency-
domain features like fast Fourier transform (FFT) coefficients are
obtained to characterize a system’s behaviour (Seid Ahmed
et al., 2020).

The next phase is to choose and train the appropriate FDD
model. The selection of the best model depends upon the nature of
the process under consideration and the types of faults that need to
be detected. ML and DL models are often used in a data-driven
approach to the methodology. Classic ML algorithms such as
support vector machines, K-nearest neighbors, and PCA have
been around for years, used to discover deviations from the
norms imposed by stealthy failures (Lu et al., 2025). Some
advanced models can outperform in terms of fault classification,
particularly in high-dimensional datasets, and include ANN, RNN,
and CNN. Some promising results in hybrid models combine
statistical signal processing and ML techniques: variational mode
decomposition with deep autoencoders (Harrou et al., 2013). For
model-based approaches, it is primarily concerned with providing
the specifications for mathematical models that describe the
dynamics of a given system. Naming extensive deviations
through the help of mathematically represented systems is
equations like Kalman filtering, observer-based methods, and
state-space descriptions of behavior (Naya et al., 2023).

Once these models have been trained and validated, integration
into industrial systems for real-time monitoring is required. This
involves embedding of the trained FDD models into PLCs,
distributed control systems, or cloud-based platforms. Industrial
environments rely on standardized communication protocols, such
as Modbus, OPC UA, and MQTT, which provide the necessary
means of real-time data exchange between the FDD system and
existing control systems. Denoting intelligence during the
integration and deployment phase can thus be done through
maximizing some measures of computational performance. Deep
learning models may sometimes require computations of high value
for their infrastructural needs to suffice. In that connection, some of
these strategies utilize edge computing solutions, like industrial IoT
(IIoT) gateways or AI-enabled microcontrollers, to perform their
FDD algorithms with minimal latency.

After identifying a potential fault, the system shall move on to
analysis and decision-making regarding severity, location, and
impact. Various hybrid techniques are in place for rule-based
decision fusion, wherein the outputs from several models are
synthesized using logic-based reasoning methods. Alternatively,
certain other techniques use probabilistic fusion strategies,
including Bayesian inference (Bennacer et al., 2015) to moderate
uncertainty in fault classification (Wu et al., 2023). Conflict
resolution strategies are needed in multi-component systems for
industry, when different models infer fault otherwise. One method
to prevent conflicts is calculating the confidence-weighted voting,
whereby a model’s prediction is verified based on its measure of
consilience that has been historically effective (Meyen et al., 2021).
Another way is to import expert knowledge into the decision-
making context to enable validation of results before actions are
taken for making corrections (Hauashdh et al., 2024).

System validation, maintenance, and continuous learning are
the last steps of FDD implementation. The deployed FDD system
must be diligently validated with real-world industrial case studies to
gauge its accuracy and reliability. FDD performance metrics,
including precision, recall, and false alarm rates, can be applied
for evaluating the overall effectiveness of the fault detection models.
Periodic retraining of models is required to adapt to changes once an
FDD model has been deployed, particularly in dynamic
manufacturing environments that change over time. Adaptive
online learning is used in highly advanced FDD implementations,
enabling the system to self-update based on new data. Examples
include reinforcement learning-based adaptive FDD that allows the
model to make better predictions by incremental learning without
complete retraining (Botvinick et al., 2019).

A well-implemented FDD can improve industrial reliability by
detecting faults at the outset, reducing downtime, minimizing
maintenance costs, and enhancing general safety in systems.
However, several challenges still exist: the necessity for scalable
solutions that can accommodate large volumes of industrial data,
seamless integration with existing infrastructure, and the
assurance of human decision-making via understandable AI-
based models of FDD (Moosavi, 2024). Further advances in
explainable AI, edge computing, and digital twins will
significantly promote the industrial adoption of FDD methods
and further demonstrate their efficiency and adaptability across
various industries.

6 Directions for future research works

This paper provides a comprehensive overview of current
research in the field of FDD, in addition to new developments.
Fault detection and diagnosis techniques are widely used to observe
processes in industrial and academic settings. However, their
complexity makes it difficult to put them to practical industrial
procedures. Bridging the gap between the theoretical approach and
practice is necessary by accepting new hybrid methodologies and
using more than one approach to create complicated FDD models
(Xia et al., 2018). In further developing this domain, the following
research avenues may be considered for the future.

6.1 Real-time and predictive FDD

Edge computing:

• Explore implementing low-latency FDD algorithms on edge
devices for real-time decision-making.

• Investigate edge computing for data preprocessing and feature
extraction before sending data to the cloud.

Prognostic health management (PHM):

• Develop advanced models for predicting components’
remaining useful life (RUL) based on sensor data and
historical information.

• Utilize ML techniques to improve the accuracy and reliability
of RUL predictions.
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Digital twins:

• Create virtual representations of physical systems to simulate
and analyze fault scenarios.

• Use digital twins for model-based fault diagnosis and
predictive maintenance.

6.2 Multi-sensor fusion and data fusion

Sensor fusion:

• Develop algorithms for combining data from multiple sensors
to improve fault detection accuracy and robustness.

• Explore the use of sensor fusion techniques for fault
localization.

Data fusion:

• Integrate data from different sources (e.g., sensors, historical
data, expert knowledge) to enhance FDD capabilities.

• Utilize data fusion techniques to handle missing or noisy data.

6.3 Explainable AI for FDD

• Interpretable Models: Develop FDD models that clearly
explain their decisions.

• Feature Importance Analysis: Identify the most important
features for fault diagnosis.

• Model Visualization: Create visual representations of the
model’s decision-making process.

• Human-in-the-Loop Systems: Design FDD systems that allow
human experts to provide feedback and improve model
performance.

6.4 Human-in-the-Loop FDD

• Human-Machine Collaboration: Create cooperative systems
involving human and artificial intelligence in detecting and
diagnosing faults.

• Augmented Intelligence: Provide human operators with AI-
empowered tools for improved decision-making.

• User-Centered Design: Create FDD interfaces that are
intuitive and easy to operate by operators.

• Through developing these aspects, researchers and practitioners
can develop more advanced and effective FDD systems that are
compatible with the dynamics of manufacturing environments.

6.5 Process optimization

• Develop ML models to optimize manufacturing processes,
including laser surface texturing (LST), machining, additive
manufacturing, and coating applications.

• Apply ML techniques to analyze the relationship between
process parameters and key performance metrics such as

surface roughness, friction, wear resistance, and
material integrity.

• Use predictive modeling to enhance product quality,
durability, and energy efficiency in various manufacturing
applications.

• Combine ML-driven process optimization with fault detection
systems to enable predictive maintenance and reduce
unplanned downtime.

• Develop multi-sensor data fusion techniques to integrate
process data (e.g., thermal, vibration, and tribological
signals) for enhanced decision-making.

• Explore digital twins to simulate and optimize manufacturing
processes before physical implementation, improving
precision and reducing material waste.

7 Conclusion

The present paper has discussed the crucial roles of FDD
systems in maintaining the going concern status of
manufacturing systems. With a world gradually driven by
Industry 4.0, an increasing need arises to apply automated
FDD systems that can conduct swift and timely fault
identification with subsequent suggestions for preventive
measures. It systematically reviewed a total of four major FDD
strategies: data-driven, model-based, knowledge-based, and
hybrid-based-all offering different solutions to improve
production environments in respect of efficiency, safety, and
reliability. The contrasting approaches have given us
directions that researchers and practitioners could use to
navigate the maze of implementing FDD. Besides, hybrid-
based techniques that combine strengths from different FDD
strategies have great promise for overcoming limitations
identified in traditional methods and hence offer strong fault
detection and diagnosis capabilities.

The paper also highlights that evaluation metrics are used to
prove the effectiveness of the FDD technique in real-world
applications. It will be a structured approach to exploring the
various methodologies of FDD, from signal acquisition and
analysis to industrial applications and fault categorization,
thereby providing an overview of the status and future problems.
The finding has established that significant developments are
realized within this field; however, further research is required
for the intrinsic difficulties in applying real-time industrial
settings toward FDD systems. In the future, hybrids of
techniques and more sophisticated models will have to be
developed to bridge the gap between theoretical advances and
practical implementation for a safer, more efficient, and more
productive manufacturing environment.

The FDD methods presented in a structured manner, from
signal acquisition to analysis, through to industrial applications and
fault categorization, provide an overview of the current state of the
art on this subject and the challenges ahead. These results show that
while much progress has been achieved, further research is required
to overcome the innate complications of applying FDD systems to
real-time industrial applications. Hybrid integration and more
advanced model development over the coming years will thus be
necessary to bridge theoretical advances and practical applications
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toward a safer, more efficient, and productive manufacturing
environment.

Author contributions

YS: Conceptualization, Data curation, Formal Analysis,
Investigation, Methodology, Validation, Visualization, Writing –

original draft. AAA: Writing – original draft, Validation. AMA:
Writing – review and editing, Methodology, Investigation. FA-B:
Writing – review and editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This work was supported
by King Fahd University of Petroleum and Minerals, under research
project EC241015. The authors would like to acknowledge the
financial support provided by KFUPM for this project.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Abad, M. R. A. A., Moosavian, A., and Khazaee, M. (2016). Wavelet transform and
least square support vector machine for mechanical fault detection of an alternator
using vibration signal. J. Low Freq. Noise Vib. Act. Control 35 (1), 52–63. doi:10.1177/
0263092316628258

Abaei, G., and Selamat, A. (2013). A survey on software fault detection based on
different prediction approaches. Vietnam J. Comput. Sci. 2013 1 (2), 79–95. doi:10.1007/
S40595-013-0008-Z

Abbasi, A. R., Mahmoudi, M. R., and Avazzadeh, Z. (2018). Diagnosis and clustering
of power transformer winding fault types by cross-correlation and clustering analysis of
FRA results. IET Generation, Transm. and Distribution 12 (19), 4301–4309. doi:10.
1049/IET-GTD.2018.5812

Abid, A., and Khan, M. T. (2017). Multi-sensor, multi-level data fusion and behavioral
analysis based fault detection and isolation in mobile robots. 2017 8th IEEE Annu. Inf.
Technol. Electron. Mob. Commun. Conf., 40–45. doi:10.1109/IEMCON.2017.8117139

Abid, A., Khan, M. T., Lang, H., and de Silva, C. W. (2020). Adaptive system
identification and severity index-based fault diagnosis in motors. IEEE/ASME Trans.
Mechatronics 24 (4), 1628–1639. doi:10.1109/TMECH.2019.2917749

Abid, A., Khan, M. T., and Silva, C. W.De (2015). ‘Fault detection in mobile robots
using sensor fusion 10th International Conference on Computer Science and Education,
ICCSE 2015, pp. 8–13. doi:10.1109/ICCSE.2015.7250209

Ahmed, Y. S., and Amorim, F. L. (2025). Advances in computer numerical control
geometric error compensation: integrating AI and on-machine technologies for
ultra-precision manufacturing. Mach. 2025 13 (2), 140. doi:10.3390/
MACHINES13020140

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., et al.
(2021). Review of deep learning: concepts, CNN architectures, challenges, applications,
future directions. J. Big Data 2021 8 (1), 53–74. doi:10.1186/S40537-021-00444-8

Ardali, N. R., Zarghami, R., and Gharebagh, R. S. (2024). Optimized data driven fault
detection and diagnosis in chemical processes. Comput. Chem. Eng. 186, 108712. doi:10.
1016/J.COMPCHEMENG.2024.108712

Attaran, S., Attaran, M., and Celik, B. G. (2024). Digital twins and industrial internet
of Things: uncovering operational intelligence in industry 4.0.Decis. Anal. J. 10, 100398.
doi:10.1016/j.dajour.2024.100398

Azmi, H., and Yazdizadeh, A. (2022). Robust adaptive fault detection and
diagnosis observer design for a class of nonlinear systems with uncertainty and
unknown time-varying internal delay. ISA Trans. 131, 31–42. doi:10.1016/J.
ISATRA.2022.05.029

Bakdi, A., Kouadri, A., and Bensmail, A. (2017). Fault detection and diagnosis in a
cement rotary kiln using PCA with EWMA-based adaptive threshold monitoring
scheme. Control Eng. Pract. 66, 64–75. doi:10.1016/J.CONENGPRAC.2017.06.003

Banerjee, T. P., Das, S., Roychoudhury, J., and Abraham, A. (2010). Implementation
of a new hybrid methodology for Fault signal classification using short -time fourier
transform and support vector machines. Adv. Intelligent Soft Comput. 73 AISC,
219–225. doi:10.1007/978-3-642-13161-5_28

Benmoussa, S., and Djeziri, M. A. (2017). Remaining useful life estimation without
needing for prior knowledge of the degradation features. IET Sci. Meas. Technol. 11 (8),
1071–1078. doi:10.1049/IET-SMT.2017.0005

Bennacer, L., Amirat, Y., Chibani, A., Mellouk, A., and Ciavaglia, L. (2015). Self-
diagnosis technique for virtual private networks combining bayesian networks and case-
based reasoning. IEEE Trans. Automation Sci. Eng. 12 (1), 354–366. doi:10.1109/TASE.
2014.2321011

Bernardi, E., and Adam, E. J. (2020). Observer-based fault detection and diagnosis
strategy for industrial processes. J. Frankl. Inst. 357 (14), 10054–10081. doi:10.1016/J.
JFRANKLIN.2020.07.046

Bighamian, R., Mirdamadi, H. R., and Hahn, J. O. (2014). Damage identification in
collocated structural systems using structural Markov parameters. ASME 2013 Dyn.
Syst. Control Conf. DSCC 2. doi:10.1115/DSCC2013-3758

Bighamian, R., Mirdamadi, H. R., and Hahn, J. O. (2015). Damage identification in
collocated structural systems using structural Markov parameters. J. Dyn. Syst. Meas.
Control, Trans. ASME 137 (4). doi:10.1115/1.4028786

Bilbao-Ubillos, J., Camino-Beldarrain, V., Intxaurburu-Clemente, G., and Velasco-
Balmaseda, E. (2024). Industry 4.0, servitization, and reshoring: a systematic literature
review. Eur. Res. Manag. Bus. Econ. 30 (1), 100234. doi:10.1016/J.IEDEEN.2023.100234

Bordoloi, D. J., and Tiwari, R. (2014). Optimummulti-fault classification of gears with
integration of evolutionary and SVM algorithms.Mech. Mach. Theory 73, 49–60. doi:10.
1016/J.MECHMACHTHEORY.2013.10.006

Botre, C., Mansouri, M., Nounou, M., Nounou, H., and Karim, M. N. (2016). Kernel
PLS-based GLRT method for fault detection of chemical processes. J. Loss Prev. Process
Industries 43, 212–224. doi:10.1016/J.JLP.2016.05.023

Botvinick, M., Ritter, S., Wang, J. X., Kurth-Nelson, Z., Blundell, C., and Hassabis, D.
(2019). Reinforcement learning, fast and slow. Trends Cognitive Sci. 23 (5), 408–422.
doi:10.1016/J.TICS.2019.02.006

Bouchikhi, E. H.El, Choqueuse, V., and Benbouzid, M. (2015). Induction machine
faults detection using stator current parametric spectral estimation. Mech. Syst. Signal
Process. 52–53 (1), 447–464. doi:10.1016/J.YMSSP.2014.06.015

Boudiaf, A., Moussaoui, A., Dahane, A., and Atoui, I. (2016). A comparative study of
various methods of bearing faults diagnosis using the case western Reserve university
data. J. Fail. Analysis Prev. 16 (2), 271–284. doi:10.1007/S11668-016-0080-7

Boudinar, A. H., Benouzza, N., and Bendiabdellah, A. (2015). Induction motor
cracked rotor bars fault analysis using an improved Root-MUSIC method
International Conference on Control, Engineering and Information Technology 1, 6.
doi:10.1109/CEIT.2015.7233035

Byun, Y. S., Kim, B. H., and Jeong, R. G. (2019). Sensor Fault detection and signal
restoration in intelligent vehicles. Sensors 19 (15), 3306. doi:10.3390/S19153306

Camarena-Martinez, D., Osornio-Rios, R., Romero-Troncoso, R., and Garcia-Perez,
A. (2015). Fused empirical mode decomposition and MUSIC algorithms for detecting
multiple combined faults in induction motors. J. Appl. Res. Technol. 13 (1), 160–167.
doi:10.1016/S1665-6423(15)30014-6

Frontiers in Mechanical Engineering frontiersin.org26

Seid Ahmed et al. 10.3389/fmech.2025.1564846

https://doi.org/10.1177/0263092316628258
https://doi.org/10.1177/0263092316628258
https://doi.org/10.1007/S40595-013-0008-Z
https://doi.org/10.1007/S40595-013-0008-Z
https://doi.org/10.1049/IET-GTD.2018.5812
https://doi.org/10.1049/IET-GTD.2018.5812
https://doi.org/10.1109/IEMCON.2017.8117139
https://doi.org/10.1109/TMECH.2019.2917749
https://doi.org/10.1109/ICCSE.2015.7250209
https://doi.org/10.3390/MACHINES13020140
https://doi.org/10.3390/MACHINES13020140
https://doi.org/10.1186/S40537-021-00444-8
https://doi.org/10.1016/J.COMPCHEMENG.2024.108712
https://doi.org/10.1016/J.COMPCHEMENG.2024.108712
https://doi.org/10.1016/j.dajour.2024.100398
https://doi.org/10.1016/J.ISATRA.2022.05.029
https://doi.org/10.1016/J.ISATRA.2022.05.029
https://doi.org/10.1016/J.CONENGPRAC.2017.06.003
https://doi.org/10.1007/978-3-642-13161-5_28
https://doi.org/10.1049/IET-SMT.2017.0005
https://doi.org/10.1109/TASE.2014.2321011
https://doi.org/10.1109/TASE.2014.2321011
https://doi.org/10.1016/J.JFRANKLIN.2020.07.046
https://doi.org/10.1016/J.JFRANKLIN.2020.07.046
https://doi.org/10.1115/DSCC2013-3758
https://doi.org/10.1115/1.4028786
https://doi.org/10.1016/J.IEDEEN.2023.100234
https://doi.org/10.1016/J.MECHMACHTHEORY.2013.10.006
https://doi.org/10.1016/J.MECHMACHTHEORY.2013.10.006
https://doi.org/10.1016/J.JLP.2016.05.023
https://doi.org/10.1016/J.TICS.2019.02.006
https://doi.org/10.1016/J.YMSSP.2014.06.015
https://doi.org/10.1007/S11668-016-0080-7
https://doi.org/10.1109/CEIT.2015.7233035
https://doi.org/10.3390/S19153306
https://doi.org/10.1016/S1665-6423(15)30014-6
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1564846


Chen, J., Zhang, L., Li, Y., Shi, Y., Gao, X., and Hu, Y. (2022). A review of computing-
based automated fault detection and diagnosis of heating, ventilation and air
conditioning systems. Renew. Sustain. Energy Rev. 161, 112395. doi:10.1016/J.RSER.
2022.112395

Chen, Y., and Kamara, J. M. (2011). A framework for using mobile computing for
information management on construction sites. Automation Constr. 20 (7), 776–788.
doi:10.1016/J.AUTCON.2011.01.002

Chen, Z. S., Rhee, S. H., and Liu, G. L. (2019). Empirical mode decomposition based
on Fourier transform and band-pass filter. Int. J. Nav. Archit. Ocean Eng. 11 (2),
939–951. doi:10.1016/J.IJNAOE.2019.04.004

Cheng, F., He, Q. P., and Zhao, J. (2019). A novel process monitoring approach based
on variational recurrent autoencoder. Comput. Chem. Eng. 129, 106515. doi:10.1016/j.
compchemeng.2019.106515

Cheng, Y. J., Chen, M. H., Cheng, F. C., Lin, Y. S., and Yang, C. J. (2018). Developing a
decision support system (DSS) for a dental manufacturing production line based on
data mining, 638–641. doi:10.1109/ICASI.2018.8394336

Cho, S., Gao, Z., andMoan, T. (2018). Model-based fault detection, fault isolation and
fault-tolerant control of a blade pitch system in floating wind turbines. Renew. Energy
120, 306–321. doi:10.1016/J.RENENE.2017.12.102

Choi, S. W., Lee, C., Lee, J. M., Park, J. H., and Lee, I. B. (2005). Fault detection and
identification of nonlinear processes based on kernel PCA. Chemom. Intelligent
Laboratory Syst. 75 (1), 55–67. doi:10.1016/J.CHEMOLAB.2004.05.001

Collins, J. S., and Woodruff, G. W. (2018). ‘DIGITAL TWIN VOLUME
REGISTRATION FOR VOXEL-BASED CLOSED-LOOP MACHINING SYSTEMS’.

Ding, S., Shi, Z., Tao, D., and An, B. (2016). Recent advances in support vector
machines. Neurocomputing 211, 1–3. doi:10.1016/J.NEUCOM.2016.06.011

Don,M. G., and Khan, F. (2019). Dynamic process fault detection and diagnosis based
on a combined approach of hidden Markov and Bayesian network model. Chem. Eng.
Sci. 201, 82–96. doi:10.1016/J.CES.2019.01.060

Du, X. (2019). Fault detection using bispectral features and one-class classifiers.
J. Process Control 83, 1–10. doi:10.1016/J.JPROCONT.2019.08.007

ElMaraghy, H., and ElMaraghy, W. (2022). Adaptive cognitive manufacturing system
(ACMS) – a new paradigm’, Int. J. Prod. Res., 60, 7436, 7449. doi:10.1080/00207543.
2022.2078248

ElMaraghy, H., Monostori, L., 1, Schuh, G., 1, and ElMaraghy,W., 1 (2021). Evolution
and future of manufacturing systems. CIRP Ann. 70, 635–658. doi:10.1016/J.CIRP.2021.
05.008

Fan, C., Peng, Y., Shen, Y., Guo, Y., Zhao, S., Zhou, J., et al. (2024). Variable scale
multilayer perceptron for helicopter transmission system vibration data abnormity
beyond efficient recovery. Eng. Appl. Artif. Intell. 133, 108184. doi:10.1016/J.
ENGAPPAI.2024.108184

Fan, J., and Wang, Y. (2014). Fault detection and diagnosis of non-linear non-
Gaussian dynamic processes using kernel dynamic independent component analysis.
Inf. Sci. 259, 369–379. doi:10.1016/J.INS.2013.06.021

Fan, S. K. S., Hsu, C. Y., Tsai, D. M., He, F., and Cheng, C. C. (2020). Data-driven
approach for Fault Detection and diagnostic in semiconductor manufacturing. IEEE
Trans. Automation Sci. Eng. 17 (4), 1925–1936. doi:10.1109/TASE.2020.2983061

Fathi, M., and Bolandi, H. (2024). Unsupervised optimal model bank for multiple
model control systems: genetic-based automatic clustering approach. Heliyon 10 (4),
e25986. doi:10.1016/J.HELIYON.2024.E25986

Ferentinos, K. P., Albright, L. D., and Selman, B. (2003). Neural network-based
detection of mechanical, sensor and biological faults in deep-trough hydroponics.
Comput. Electron. Agric. 40 (1–3), 65–85. doi:10.1016/S0168-1699(03)00012-7

Galagedarage Don, M., and Khan, F. (2019). Dynamic process fault detection and
diagnosis based on a combined approach of hidden Markov and Bayesian network
model. Chem. Eng. Sci. 201, 82–96. doi:10.1016/J.CES.2019.01.060

Gawde, S., Patil, S., Kumar, S., Kamat, P., and Kotecha, K. (2024). An explainable
predictive maintenance strategy for multi-fault diagnosis of rotating machines using
multi-sensor data fusion. Decis. Anal. J. 10, 100425. doi:10.1016/j.dajour.2024.100425

Gnanamalar, A. J., Bhavani, R., Arulini, A. S., and Veerraju, M. S. (2023). CNN–SVM
based Fault Detection, classification and location of multi-terminal VSC–hvdc system.
J. Electr. Eng. Technol. 18 (4), 3335–3347. doi:10.1007/s42835-023-01391-5

Golombek, R., Wrede, S., Hanheide, M., and Heckmann, M. (2011). Online data-
driven fault detection for robotic systems, 3011–3016. doi:10.1109/IROS.2011.6095034

Gonzalez, R., Huang, B., and Lau, E. (2015). Process monitoring using kernel density
estimation and Bayesian networking with an industrial case study. ISA Trans. 58,
330–347. doi:10.1016/J.ISATRA.2015.04.001

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
et al. (2014). Generative adversarial networks. Sci. Robotics 3 (January), 2672–2680.
doi:10.48550/arxiv.1406.2661

Guan, B., Bao, X., Qiu, H., and Yang, D. (2024). Enhancing bearing fault diagnosis
using motor current signals: a novel approach combining time shifting and
CausalConvNets. Measurement 226, 114049. doi:10.1016/J.MEASUREMENT.2023.
114049

Guo, G., Wang, H., Bell, D., Bi, Y., and Greer, K. (2003). KNNmodel-based approach
in classification. Lect. Notes Comput. Sci. Incl. Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinforma. 2888, 986–996. doi:10.1007/978-3-540-39964-3_62

Habriansyah, I., and Andani and Zainuddin, Z. (2017). Fault detection and
replacement of a temperature sensor in wheat flour short term storage, 177–181.
doi:10.1109/ICA.2017.8068436

Haddad, R. Z., and Strangas, E. G. (2016). On the accuracy of Fault Detection and
separation in permanent magnet synchronous machines usingMCSA/MVSA and LDA.
IEEE Trans. Energy Convers. 31 (3), 924–934. doi:10.1109/TEC.2016.2558183

Han, X., Zhu, H., Nie, X., Wang, G., and Zeng, X. (2018). Investigation on selective
laser melting AlSi10Mg cellular lattice strut: molten pool morphology, surface
roughness and dimensional accuracy. Materials 11 (3), 392. doi:10.3390/MA11030392

Harandi, M. A. Z., Lin, T. Y., Li, C., Villumsen, S. L., Ghaffari, M., and Madsen, O.
(2025). ScaloAdaptAlert, a novel framework for supervised anomaly detection in
industrial acoustic data, integrating power scalograms, adaptive filter banks, and
convolutional neural networks — a case study. J. Manuf. Syst. 79, 234–254. doi:10.
1016/J.JMSY.2025.01.007

Harmouche, J., Delpha, C., and Diallo, D. (2015). Incipient fault detection and
diagnosis based on Kullback–Leibler divergence using principal component analysis:
Part II. Signal Process. 109, 334–344. doi:10.1016/J.SIGPRO.2014.06.023

Haroon, M., Khan, M. J., Cheema, H. M., Nasir, M. T., Safdar, M., and Butt, S. I. U.
(2024). An end-to-end approach to detect railway track defects based on supervised and
self-supervised learning. Results Eng. 24, 103326. doi:10.1016/J.RINENG.2024.103326

Harrou, F., Nounou, M. N., Nounou, H. N., and Madakyaru, M. (2013). Statistical
fault detection using PCA-based GLR hypothesis testing. J. Loss Prev. Process Industries
26 (1), 129–139. doi:10.1016/J.JLP.2012.10.003

Hauashdh, A., Nagapan, S., Jailani, J., and Gamil, Y. (2024). An integrated framework
for sustainable and efficient building maintenance operations aligning with climate
change, SDGs, and emerging technology. Results Eng. 21, 101822. doi:10.1016/J.
RINENG.2024.101822

He, Q. P., and Wang, J. (2007). Fault detection using the k-nearest neighbor rule for
semiconductor manufacturing processes. IEEE Trans. Semicond. Manuf. 20 (4),
345–354. doi:10.1109/TSM.2007.907607

Hekmat, S., and Ravanmehr, R. (2016). Real time Fault Detection and isolation: a
comparative study. Int. J. Comput. Appl. 134 (6), 975–1012. doi:10.5120/ijca2016907931

Heracleous, C., Miciolino, E. E., Setola, R., Pascucci, F., Eliades, D. G., Ellinas, G., et al.
(2016). Critical infrastructure online fault detection: application in water supply
systems. Lect. Notes Comput. Sci. Incl. Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinforma. 8985, 94–106. doi:10.1007/978-3-319-31664-2_11

Hu, P., Han, Y., and Pan, J. S. (2025). An improved image-denoising technique using
the whale optimization algorithm. Electronics 14 (1), 145. doi:10.3390/
ELECTRONICS14010145

Hu, Z., Chen, Z., Gui, W., and Jiang, B. (2014). Adaptive PCA based fault diagnosis
scheme in imperial smelting process. ISA Trans. 53 (5), 1446–1455. doi:10.1016/J.
ISATRA.2013.12.018

Huang, H., Ouyang, H., and Gao, H. (2015). Blind source separation and dynamic
fuzzy neural network for fault diagnosis in machines. J. Phys. Conf. Ser. 628 (1), 012070.
doi:10.1088/1742-6596/628/1/012070

Huang, J., and Yan, X. (2015). Dynamic process fault detection and diagnosis based
on dynamic principal component analysis, dynamic independent component analysis
and Bayesian inference. Chemom. Intelligent Laboratory Syst. 148, 115–127. doi:10.
1016/J.CHEMOLAB.2015.09.010

Jakubowski, J., Wojak-Strzelecka, N., Ribeiro, R. P., Pashami, S., Bobek, S., Gama, J., et al.
(2024). Artificial intelligence approaches for predictive maintenance in the steel industry: a
survey. Available online at: https://arxiv.org/abs/2405.12785v1 (Accessed April 8, 2025).

Jiang, B., Huang, D., Zhu, X., Yang, F., and Braatz, R. D. (2015). Canonical variate
analysis-based contributions for fault identification. J. Process Control 26, 17–25. doi:10.
1016/J.JPROCONT.2014.12.001

Jiang, T., Gradus, J. L., and Rosellini, A. J. (2020). Supervised machine learning: a brief
primer. Behav. Ther. 51 (5), 675–687. doi:10.1016/J.BETH.2020.05.002

Jiang, X. P., and Cao, G. Q. (2016). ‘Belt conveyor roller fault audio detection based on
the wavelet neural network Proceedings - international Conference on Natural
Computation, 2016-January, pp. 954–958. doi:10.1109/ICNC.2015.7378120

Jing, C., and Hou, J. (2015). SVM and PCA based fault classification approaches for
complicated industrial process. Neurocomputing 167, 636–642. doi:10.1016/J.
NEUCOM.2015.03.082

Juricek, B. C., Seborg, D. E., and Larimore, W. E. (2004). Fault detection using
canonical variate analysis. Industrial and Eng. Chem. Res. 43 (2), 458–474. doi:10.1021/
IE0301684

Kang, S., Kwon, M., Yoon Choi, J., and Choi, S. (2023). Full-scale fire testing of battery
electric vehicles. Appl. Energy 332, 120497. doi:10.1016/J.APENERGY.2022.120497

Kankar, P. K., Sharma, S. C., and Harsha, S. P. (2011). Fault diagnosis of ball bearings
using machine learning methods. Expert Syst. Appl. 38 (3), 1876–1886. doi:10.1016/J.
ESWA.2010.07.119

Frontiers in Mechanical Engineering frontiersin.org27

Seid Ahmed et al. 10.3389/fmech.2025.1564846

https://doi.org/10.1016/J.RSER.2022.112395
https://doi.org/10.1016/J.RSER.2022.112395
https://doi.org/10.1016/J.AUTCON.2011.01.002
https://doi.org/10.1016/J.IJNAOE.2019.04.004
https://doi.org/10.1016/j.compchemeng.2019.106515
https://doi.org/10.1016/j.compchemeng.2019.106515
https://doi.org/10.1109/ICASI.2018.8394336
https://doi.org/10.1016/J.RENENE.2017.12.102
https://doi.org/10.1016/J.CHEMOLAB.2004.05.001
https://doi.org/10.1016/J.NEUCOM.2016.06.011
https://doi.org/10.1016/J.CES.2019.01.060
https://doi.org/10.1016/J.JPROCONT.2019.08.007
https://doi.org/10.1080/00207543.2022.2078248
https://doi.org/10.1080/00207543.2022.2078248
https://doi.org/10.1016/J.CIRP.2021.05.008
https://doi.org/10.1016/J.CIRP.2021.05.008
https://doi.org/10.1016/J.ENGAPPAI.2024.108184
https://doi.org/10.1016/J.ENGAPPAI.2024.108184
https://doi.org/10.1016/J.INS.2013.06.021
https://doi.org/10.1109/TASE.2020.2983061
https://doi.org/10.1016/J.HELIYON.2024.E25986
https://doi.org/10.1016/S0168-1699(03)00012-7
https://doi.org/10.1016/J.CES.2019.01.060
https://doi.org/10.1016/j.dajour.2024.100425
https://doi.org/10.1007/s42835-023-01391-5
https://doi.org/10.1109/IROS.2011.6095034
https://doi.org/10.1016/J.ISATRA.2015.04.001
https://doi.org/10.48550/arxiv.1406.2661
https://doi.org/10.1016/J.MEASUREMENT.2023.114049
https://doi.org/10.1016/J.MEASUREMENT.2023.114049
https://doi.org/10.1007/978-3-540-39964-3_62
https://doi.org/10.1109/ICA.2017.8068436
https://doi.org/10.1109/TEC.2016.2558183
https://doi.org/10.3390/MA11030392
https://doi.org/10.1016/J.JMSY.2025.01.007
https://doi.org/10.1016/J.JMSY.2025.01.007
https://doi.org/10.1016/J.SIGPRO.2014.06.023
https://doi.org/10.1016/J.RINENG.2024.103326
https://doi.org/10.1016/J.JLP.2012.10.003
https://doi.org/10.1016/J.RINENG.2024.101822
https://doi.org/10.1016/J.RINENG.2024.101822
https://doi.org/10.1109/TSM.2007.907607
https://doi.org/10.5120/ijca2016907931
https://doi.org/10.1007/978-3-319-31664-2_11
https://doi.org/10.3390/ELECTRONICS14010145
https://doi.org/10.3390/ELECTRONICS14010145
https://doi.org/10.1016/J.ISATRA.2013.12.018
https://doi.org/10.1016/J.ISATRA.2013.12.018
https://doi.org/10.1088/1742-6596/628/1/012070
https://doi.org/10.1016/J.CHEMOLAB.2015.09.010
https://doi.org/10.1016/J.CHEMOLAB.2015.09.010
https://arxiv.org/abs/2405.12785v1
https://doi.org/10.1016/J.JPROCONT.2014.12.001
https://doi.org/10.1016/J.JPROCONT.2014.12.001
https://doi.org/10.1016/J.BETH.2020.05.002
https://doi.org/10.1109/ICNC.2015.7378120
https://doi.org/10.1016/J.NEUCOM.2015.03.082
https://doi.org/10.1016/J.NEUCOM.2015.03.082
https://doi.org/10.1021/IE0301684
https://doi.org/10.1021/IE0301684
https://doi.org/10.1016/J.APENERGY.2022.120497
https://doi.org/10.1016/J.ESWA.2010.07.119
https://doi.org/10.1016/J.ESWA.2010.07.119
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1564846


Kemalkar, A. K., and Bairagi, V. K. (2017). ‘Engine fault diagnosis using sound
analysis, 943–946. doi:10.1109/ICACDOT.2016.7877726

Khireddine, M. S., Chafaa, K., Slimane, N., and Boutarfa, A. (2014). Fault diagnosis in
robotic manipulators using artificial neural networks and fuzzy logic, 1, 6. doi:10.1109/
WCCAIS.2014.6916571

Kim, W., and Katipamula, S. (2018). A review of fault detection and diagnostics
methods for building systems. Sci. Technol. Built Environ. 24 (1), 3–21. doi:10.1080/
23744731.2017.1318008

Kim, W., and Lee, J. H. (2021). Fault detection and diagnostics analysis of air
conditioners using virtual sensors. Appl. Therm. Eng. 191, 116848. doi:10.1016/J.
APPLTHERMALENG.2021.116848

Kizza, J. M. (2020). Introduction to computer network vulnerabilities, 87–103. doi:10.
1007/978-3-030-38141-7_4

Kong, W., Luo, Y., Qin, Z., Qi, Y., and Lian, X. (2019). Comprehensive Fault diagnosis
and faultFault-Tolerant protection of in-vehicle intelligent electric power supply
network. IEEE Trans. Veh. Technol. 68 (11), 10453–10464. doi:10.1109/TVT.2019.
2921784

Kumar, D., Ding, X., Du, W., and Cerpa, A. (2021). Building sensor Fault Detection
and diagnostic system, 357, 360. doi:10.1145/3486611.3491122

Kumar, S., Kolekar, T., Patil, S., Bongale, A., Kotecha, K., Zaguia, A., et al. (2022). A
low-cost multi-sensor data acquisition system for Fault Detection in fused deposition
modelling. Sensors 22 (2), 517. doi:10.3390/S22020517

Kusiak, A., and Li, W. (2011). The prediction and diagnosis of wind turbine faults.
Renew. Energy 36 (1), 16–23. doi:10.1016/J.RENENE.2010.05.014

Kusiak, A., and Verma, A. (2012). Analyzing bearing faults in wind turbines: a data-
mining approach. Renew. Energy 48, 110–116. doi:10.1016/J.RENENE.2012.04.020

Kwak, J., Lee, T., and Kim, C. O. (2015). An incremental clustering-based Fault
Detection algorithm for class-imbalanced process data. IEEE Trans. Semicond. Manuf.
28 (3), 318–328. doi:10.1109/TSM.2015.2445380

Laouti, N., Sheibat-Othman, N., and Othman, S. (2011). Support vector machines for
Fault Detection in wind turbines. IFAC Proc. Vol. 44 (1), 7067–7072. doi:10.3182/
20110828-6-IT-1002.02560

Lau, C. K., Ghosh, K., Hussain, M., and Che Hassan, C. (2013). Fault diagnosis of
Tennessee Eastman process with multi-scale PCA and ANFIS. Chemom. Intelligent
Laboratory Syst. 120, 1–14. doi:10.1016/J.CHEMOLAB.2012.10.005

Li, J., Pei, H., Kochan, O., Wang, C., Kochan, R., and Ivanyshyn, A. (2024). Method for
correcting error due to self-heating of resistance temperature detectors suitable for
metrology in industry 4.0. Sensors 24 (24), 7991. doi:10.3390/S24247991

Li, Q., Wang, Z., Wang, S., Li, M., Lei, H., and Zou, Z. (2022). A deep learning–based
diagnosis model driven by tuyere images big data for iron-making blast furnaces. steel
Res. Int. 93 (8), 2100826. doi:10.1002/SRIN.202100826

Li, S., Peng, Y., and Bin, G. (2023). Prediction of wind turbine blades icing based on
CJBM with imbalanced data. IEEE Sensors J. 23 (17), 19726–19736. doi:10.1109/JSEN.
2023.3296086

Lin, W. C., and Du, X. (2018). Prognosis of power connector disconnect and high
resistance faults, 1, 8. doi:10.1109/ICPHM.2018.8448457

Lin, W. C., and Ghoneim, Y. A. (2016). model-based fault diagnosis and prognosis for
electric power steering systems 2016 IEEE international conference on prognostics and
health management, ICPHM 2016. doi:10.1109/ICPHM.2016.7542840

Liu, H., Wei, L., Wang, Y., Wang, J., and Li, W. (2022). Monitoring and predictive
maintenance of centrifugal pumps based on smart sensors. Sensors 22 (6), 2106. doi:10.
3390/S22062106

Liu, J. (2012). Fault diagnosis using contribution plots without smearing effect on
non-faulty variables. J. Process Control 22 (9), 1609–1623. doi:10.1016/J.JPROCONT.
2012.06.016

Liu, Q., Chai, T., and Qin, S. J. (2012). Fault diagnosis of continuous annealing
processes using a reconstruction-based method. Control Eng. Pract. 20 (5), 511–518.
doi:10.1016/J.CONENGPRAC.2012.01.005

Liu, Z., Wang, J., Duan, L., Shi, T., and Fu, Q. (2017). Infrared image combined with
CNN based fault diagnosis for rotating machinery, 137–142. doi:10.1109/SDPC.2017.35

Lou, Z., Wang, Y., and Lu, S. (2022). A novel multivariate statistical process
monitoring algorithm: orthonormal subspace analysis. Automatica 138, 110148.
doi:10.1016/J.AUTOMATICA.2021.110148

Lu, S., Zhou, S., Ding, Y., Kim, M. K., Yang, B., Tian, Z., et al. (2025). Exploring the
comprehensive integration of artificial intelligence in optimizing HVAC system
operations: a review and future outlook. Results Eng. 25, 103765. doi:10.1016/J.
RINENG.2024.103765

Majumder, S., and Pratihar, D. K. (2018). Multi-sensors data fusion through fuzzy
clustering and predictive tools. Expert Syst. Appl. 107, 165–172. doi:10.1016/J.ESWA.
2018.04.026

Mansouri, M., Nounou, M., Nounou, H., and Karim, N. (2016). Kernel PCA-based
GLRT for nonlinear fault detection of chemical processes. J. Loss Prev. Process Industries
40, 334–347. doi:10.1016/J.JLP.2016.01.011

Mercorelli, P. (2024). Recent advances in intelligent algorithms for Fault Detection
and diagnosis. Sensors 24 (8), 2656. doi:10.3390/S24082656

Meyen, S., Sigg, D. M. B., Luxburg, U. v., and Franz, V. H. (2021). Group decisions
based on confidence weighted majority voting. Cognitive Res. Princ. Implic. 6 (1), 18.
doi:10.1186/S41235-021-00279-0

Miah, M. T., Erdei-Gally, S., Dancs, A., and Fekete-Farkas, M. (2024). A systematic
review of industry 4.0 technology on workforce employability and skills: driving success
factors and challenges in south asia. Economies 12 (2), 35. doi:10.3390/
ECONOMIES12020035

Milles, A., Benbouhenni, H., Debdouche, N., Yessef, M., and Elbarbary, Z. M. S. (2024).
An innovative MRAS-based technique for online detection of short-circuit faults in three-
phase induction motor windings. Electr. Eng. Prepr. doi:10.1007/S00202-024-02826-6

Mnassri, B., Adel, E. M.El, and Ouladsine, M. (2015). Reconstruction-based
contribution approaches for improved fault diagnosis using principal component
analysis. J. Process Control 33, 60–76. doi:10.1016/J.JPROCONT.2015.06.004

Mostafa, S. A., Mustapha, A., Hazeem, A. A., Khaleefah, S. H., andMohammed, M. A.
(2018). An agent-based inference engine for efficient and reliable automated car failure
diagnosis assistance. IEEE Access 6, 8322–8331. doi:10.1109/ACCESS.2018.2803051

Mumuni, A., and Mumuni, F. (2024). Automated data processing and feature
engineering for deep learning and big data applications: a survey. J. Inf. Intell. 3,
113–153. doi:10.1016/j.jiixd.2024.01.002

Naqvi, M. R., Elmhadhbi, L., Sarkar, A., Archimede, B., and Karray, M. H. (2024).
Survey on ontology-based explainable AI in manufacturing. J. Intelligent Manuf. 35 (8),
3605–3627. doi:10.1007/s10845-023-02304-z

Naya, M. Á., Sanjurjo, E., Rodríguez, A. J., and Cuadrado, J. (2023). Kalman filters
based on multibody models: linking simulation and real world. A comprehensive
review. Multibody Syst. Dyn. 58 (3–4), 479–521. doi:10.1007/s11044-023-09893-w

Nelson, W., and Dieckert, C. (2024). Machine learning-based automated Fault
Detection and diagnostics in building systems. Energies. 17 (2), 529. doi:10.3390/
EN17020529

Nguyen, H., Kieu, L., Wen, T., and Cai, C. (2018). Deep learning methods in
transportation domain: a review. IET Intell. Transp. Syst. 12 (9), 998–1004. doi:10.
1049/IET-ITS.2018.0064

Orhan,M., and Celik, M. (2024). A literature review and future research agenda on fault
detection and diagnosis studies in marine machinery systems. Proc. Institution Mech. Eng.
Part M J. Eng. Marit. Environ. 238 (1), 3–21. doi:10.1177/14750902221149291

Pan, L., Wu, Z., Fang, L., and Song, Y. (2019). Investigation of surface damage and
roughness for nickel-based superalloy GH4169 under hard turning processing, 234(4),
679–691. doi:10.1177/0954405419885789

Park, J., Kwon, I. H., Kim, S. S., and Baek, J. G. (2011). Spline regression based feature
extraction for semiconductor process fault detection using support vector machine.
Expert Syst. Appl. 38 (5), 5711–5718. doi:10.1016/J.ESWA.2010.10.062

Park, Y. J., Fan, S. K. S., and Hsu, C. Y. (2020). A review on Fault Detection and
process diagnostics in industrial processes. Processes 8 (9), 1123. doi:10.3390/
PR8091123

Pei, T., and Hao, X. (2019). A Fault Detection method for photovoltaic systems based
on voltage and current observation and evaluation. Energies (Basel). 12, 1712. doi:10.
3390/en12091712

Peng, B. S., Xia, H., Liu, Y. K., Yang, B., Guo, D., and Zhu, S. M. (2018). Research on
intelligent fault diagnosis method for nuclear power plant based on correlation analysis
and deep belief network. Prog. Nucl. Energy 108, 419–427. doi:10.1016/J.PNUCENE.
2018.06.003

Piltan, F., and Kim, J. M. (2018). Bearing Fault diagnosis using an extended variable
structure feedback linearization observer. Sensors 18 (12), 4359. doi:10.3390/S18124359

Pourbabaee, B., Meskin, N., and Khorasani, K. (2016). Robust sensor fault detection
and isolation of gas turbine engines subjected to time-varying parameter uncertainties.
Mech. Syst. Signal Process. 76–77, 136–156. doi:10.1016/J.YMSSP.2016.02.023

Qian, C., Zhu, J., Shen, Y., Jiang, Q., and Zhang, Q. (2022). Deep transfer learning in
mechanical intelligent fault diagnosis: application and challenge.Neural Process. Lett. 54
(3), 2509–2531. doi:10.1007/S11063-021-10719-Z

Ren, L., and Lv, W. (2014). Fault detection via sparse representation for
semiconductor manufacturing processes. IEEE Trans. Semicond. Manuf. 27 (2),
252–259. doi:10.1109/TSM.2014.2302011

Rubhini, B., and Ranjan, P. V. (2017). Machine condition monitoring using audio
signature analysis 2017 4th International Conference on Signal Processing,
Communication and Networking, ICSCN, 1, 6. doi:10.1109/ICSCN.2017.8085717

Russell, E. L., Chiang, L. H., and Braatz, R. D. (2000). Fault detection in industrial
processes using canonical variate analysis and dynamic principal component analysis.
Chemom. Intelligent Laboratory Syst. 51 (1), 81–93. doi:10.1016/S0169-7439(00)00058-7

Sadeghkhani, I., Hamedani Golshan,M. E.,Mehrizi-Sani, A., Guerrero, J.M., andKetabi,
A. (2018). Transient monitoring function-based Fault Detection for inverter-interfaced
microgrids. IEEE Trans. Smart Grid 9 (3), 1–2107. doi:10.1109/TSG.2016.2606519

Saeed, A., A. Khan, M., Akram, U., J. Obidallah, W., Jawed, S., and Ahmad, A. (2025).
Deep learning based approaches for intelligent industrial machinery health

Frontiers in Mechanical Engineering frontiersin.org28

Seid Ahmed et al. 10.3389/fmech.2025.1564846

https://doi.org/10.1109/ICACDOT.2016.7877726
https://doi.org/10.1109/WCCAIS.2014.6916571
https://doi.org/10.1109/WCCAIS.2014.6916571
https://doi.org/10.1080/23744731.2017.1318008
https://doi.org/10.1080/23744731.2017.1318008
https://doi.org/10.1016/J.APPLTHERMALENG.2021.116848
https://doi.org/10.1016/J.APPLTHERMALENG.2021.116848
https://doi.org/10.1007/978-3-030-38141-7_4
https://doi.org/10.1007/978-3-030-38141-7_4
https://doi.org/10.1109/TVT.2019.2921784
https://doi.org/10.1109/TVT.2019.2921784
https://doi.org/10.1145/3486611.3491122
https://doi.org/10.3390/S22020517
https://doi.org/10.1016/J.RENENE.2010.05.014
https://doi.org/10.1016/J.RENENE.2012.04.020
https://doi.org/10.1109/TSM.2015.2445380
https://doi.org/10.3182/20110828-6-IT-1002.02560
https://doi.org/10.3182/20110828-6-IT-1002.02560
https://doi.org/10.1016/J.CHEMOLAB.2012.10.005
https://doi.org/10.3390/S24247991
https://doi.org/10.1002/SRIN.202100826
https://doi.org/10.1109/JSEN.2023.3296086
https://doi.org/10.1109/JSEN.2023.3296086
https://doi.org/10.1109/ICPHM.2018.8448457
https://doi.org/10.1109/ICPHM.2016.7542840
https://doi.org/10.3390/S22062106
https://doi.org/10.3390/S22062106
https://doi.org/10.1016/J.JPROCONT.2012.06.016
https://doi.org/10.1016/J.JPROCONT.2012.06.016
https://doi.org/10.1016/J.CONENGPRAC.2012.01.005
https://doi.org/10.1109/SDPC.2017.35
https://doi.org/10.1016/J.AUTOMATICA.2021.110148
https://doi.org/10.1016/J.RINENG.2024.103765
https://doi.org/10.1016/J.RINENG.2024.103765
https://doi.org/10.1016/J.ESWA.2018.04.026
https://doi.org/10.1016/J.ESWA.2018.04.026
https://doi.org/10.1016/J.JLP.2016.01.011
https://doi.org/10.3390/S24082656
https://doi.org/10.1186/S41235-021-00279-0
https://doi.org/10.3390/ECONOMIES12020035
https://doi.org/10.3390/ECONOMIES12020035
https://doi.org/10.1007/S00202-024-02826-6
https://doi.org/10.1016/J.JPROCONT.2015.06.004
https://doi.org/10.1109/ACCESS.2018.2803051
https://doi.org/10.1016/j.jiixd.2024.01.002
https://doi.org/10.1007/s10845-023-02304-z
https://doi.org/10.1007/s11044-023-09893-w
https://doi.org/10.3390/EN17020529
https://doi.org/10.3390/EN17020529
https://doi.org/10.1049/IET-ITS.2018.0064
https://doi.org/10.1049/IET-ITS.2018.0064
https://doi.org/10.1177/14750902221149291
https://doi.org/10.1177/0954405419885789
https://doi.org/10.1016/J.ESWA.2010.10.062
https://doi.org/10.3390/PR8091123
https://doi.org/10.3390/PR8091123
https://doi.org/10.3390/en12091712
https://doi.org/10.3390/en12091712
https://doi.org/10.1016/J.PNUCENE.2018.06.003
https://doi.org/10.1016/J.PNUCENE.2018.06.003
https://doi.org/10.3390/S18124359
https://doi.org/10.1016/J.YMSSP.2016.02.023
https://doi.org/10.1007/S11063-021-10719-Z
https://doi.org/10.1109/TSM.2014.2302011
https://doi.org/10.1109/ICSCN.2017.8085717
https://doi.org/10.1016/S0169-7439(00)00058-7
https://doi.org/10.1109/TSG.2016.2606519
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1564846


management and fault diagnosis in resource-constrained environments. Sci. Rep. 2024
15 (1), 1114–1130. doi:10.1038/s41598-024-79151-2

Salehifar, M., Arashloo, R. S., Moreno-Equilaz, J. M., Sala, V., and Romeral, L. (2014).
Fault detection and Fault tolerant operation of a five phase PM motor drive using
adaptive model identification approach. IEEE J. Emerg. Sel. Top. Power Electron. 2 (2),
212–223. doi:10.1109/JESTPE.2013.2293518

Samy, I., Postlethwaite, I., and Gu, D. W. (2011). Survey and application of sensor
fault detection and isolation schemes. Control Eng. Pract. 19 (7), 658–674. doi:10.1016/J.
CONENGPRAC.2011.03.002

Sarker, I. H. (2021). Machine learning: algorithms, real-world applications and
research directions. SN Comput. Sci. 2 (3), 160–221. doi:10.1007/s42979-021-00592-x

Schein, J., and Bushby, S. T. (2006). A hierarchical rule-based Fault Detection and
diagnostic method for HVAC systems. Available online at: https://www.nist.gov/
publications/hierarchical-rule-based-fault-detection-and-diagnostic-method-hvac-
systems (Accessed April 8, 2025).

Sedej, O., Mbonimpa, E., Sleight, T., and Slagley, J. (2022). Artificial neural networks
and gradient boosted machines used for regression to evaluate gasification processes: a
review. J. Energy Power Technol. 4 (3), 1. doi:10.21926/jept.2203027

Seid Ahmed, Y. (2024). Optimizing femtosecond texturing process parameters
through advanced machine learning models in tribological applications. Lubricants
12 (12), 454. doi:10.3390/LUBRICANTS12120454

Seid Ahmed, Y., Arif, A. F. M., and Veldhuis, S. C. (2020). Application of the wavelet
transform to acoustic emission signals for built-up edge monitoring in stainless steel
machining.Meas. J. Int. Meas. Confed. 154, 107478. doi:10.1016/j.measurement.2020.107478

Shah, D. S., and Patel, V. N. (2014). A review of dynamic modeling and fault
identifications methods for rolling element bearing. Procedia Technol. 14, 447–456.
doi:10.1016/J.PROTCY.2014.08.057

Shahid, M. A., Ahmad, F., Nawaz, R., Khan, S. U., Wadood, A., and Albalawi, H.
(2023). A novel false measurement data detection mechanism for smart grids. Energies
16 (18), 6614. doi:10.3390/EN16186614

Shang, Y., Wang, S., Tang, N., Fu, Y., and Wang, K. (2024). Research progress in fault
detection of battery systems: a review. J. Energy Storage 98, 113079. doi:10.1016/J.EST.
2024.113079

Shao, H., Jiang, H., Zhao, H., and Wang, F. (2017). A novel deep autoencoder feature
learning method for rotating machinery fault diagnosis. Mech. Syst. Signal Process. 95,
187–204. doi:10.1016/J.YMSSP.2017.03.034

Su, J., and Chen, W. H. (2019). model-based fault diagnosis system verification using
reachability analysis. IEEE Trans. Syst. Man, Cybern. Syst. 49 (4), 742–751. doi:10.1109/
TSMC.2017.2710132

Sun, X., and Jia, X. (2019). a fault diagnosis method of industrial robot rolling bearing
based on data driven and random intuitive fuzzy decision. IEEE Access 7,
148764–148770. doi:10.1109/ACCESS.2019.2944974

Surucu, O., Gadsden, S. A., and Yawney, J. (2023). Condition monitoring using
machine learning: a review of theory, applications, and recent advances. Expert Syst.
Appl. 221, 119738. doi:10.1016/J.ESWA.2023.119738

Susto, G. A., Terzi, M., and Beghi, A. (2017). Anomaly detection approaches for
semiconductor manufacturing. Procedia Manuf. 11, 2018–2024. doi:10.1016/J.
PROMFG.2017.07.353

Tabrizi, A., Garibaldi, L., Fasana, A., and Marchesiello, S. (2015). Early damage
detection of roller bearings using wavelet packet decomposition, ensemble empirical
mode decomposition and support vector machine. Meccanica 50 (3), 865–874. doi:10.
1007/s11012-014-9968-z

Tong, Z., Li, W., Jiang, F., Zhu, Z., and Zhou, G. (2018). Bearing fault diagnosis based
on spectrum image sparse representation of vibration signal. Adv. Mech. Eng. 10 (9),
168781401879778. doi:10.1177/1687814018797788

Tran, D. A. T., Chen, Y., Chau, M. Q., and Ning, B. (2015). A robust online fault
detection and diagnosis strategy of centrifugal chiller systems for building energy
efficiency. Energy Build. 108, 441–453. doi:10.1016/J.ENBUILD.2015.09.044

Verdier, G., and Ferreira, A. (2011). Adaptive Mahalanobis distance and $k$-Nearest
neighbor rule for Fault Detection in semiconductor manufacturing. IEEE Trans.
Semicond. Manuf. 24 (1), 59–68. doi:10.1109/TSM.2010.2065531

Vishwakarma, M., Purohit, R., Harshlata, V., and Rajput, P. (2017). Vibration analysis
and condition monitoring for rotating machines: a review. Mater. Today Proc. 4 (2),
2659–2664. doi:10.1016/J.MATPR.2017.02.140

Wang, G., Li, T., Zhang, G., Gui, X., and Xu, D. (2014). Position estimation error
reduction using recursive-least-square adaptive filter for model-based sensorless
interior permanent-magnet synchronous motor drives. IEEE Trans. Industrial
Electron. 9 (61), 5115–5125. doi:10.1109/TIE.2013.2264791

Wang, J., and Biljecki, F. (2022). Unsupervised machine learning in urban studies: a
systematic review of applications. Cities 129, 103925. doi:10.1016/J.CITIES.2022.103925

Wang, W., and Lee, H. (2013). An energy kurtosis demodulation technique for signal
denoising and bearing fault detection. Meas. Sci. Technol. 24 (2), 025601. doi:10.1088/
0957-0233/24/2/025601

Wang, X., and Hu, B. (2024). Machine learning algorithms for improved product
design user experience. IEEE Access 12, 112810–112821. doi:10.1109/ACCESS.2024.
3442085

Wang, Y., and Cheng, Y. (2016). An approach to fault diagnosis for gearbox based on
image processing. Shock Vib. 2016, 1–10. doi:10.1155/2016/5898052

Wang, Y., Ren, X., Nan, G., Yang, Y., and Deng, W. (2012). Rotating machine fault
diagnosis based on denoising source separation, 1124–1127. doi:10.1109/ICACI.2012.
6463348

Widodo, A., and Yang, B. S. (2007). Support vector machine in machine condition
monitoring and fault diagnosis. Mech. Syst. Signal Process. 21 (6), 2560–2574. doi:10.
1016/J.YMSSP.2006.12.007

Wu, H., Triebe, M. J., and Sutherland, J. W. (2023). A transformer-based approach for
novel fault detection and fault classification/diagnosis in manufacturing: a rotary system
application. J. Manuf. Syst. 67, 439–452. doi:10.1016/J.JMSY.2023.02.018

Wu, H., and Zhao, J. (2020). Fault detection and diagnosis based on transfer learning
for multimode chemical processes. Comput. and Chem. Eng. 135, 106731. doi:10.1016/J.
COMPCHEMENG.2020.106731

Wu, Y., Jiang, B., Lu, N., Yang, H., and Zhou, Y. (2017). Multiple incipient sensor
faults diagnosis with application to high-speed railway traction devices. ISA Trans. 67,
183–192. doi:10.1016/J.ISATRA.2016.12.001

Xia, M., Li, T., Xu, L., Liu, L., and de Silva, C. W. (2018). Fault diagnosis for rotating
machinery using multiple sensors and convolutional neural networks. IEEE/ASME
Trans. Mechatronics 23 (1), 101–110. doi:10.1109/TMECH.2017.2728371

Xiao, B., Yin, S., and Gao, H. (2018). Reconfigurable tolerant control of uncertain
mechanical systems with actuator faults: a sliding mode observer-based approach. IEEE
Trans. Control Syst. Technol. 26 (4), 1249–1258. doi:10.1109/TCST.2017.2707333

Yaman, O., Karakose, M., Akin, E., and Aydin, I. (2015). Image processing based fault
detection approach for rail surface, 1118–1121. doi:10.1109/SIU.2015.7130031

Yamashita, R., Nishio, M., Do, R. K. G., and Togashi, K. (2018). Convolutional neural
networks: an overview and application in radiology. Insights into Imaging 9 (4),
611–629. doi:10.1007/s13244-018-0639-9

Yan, K., Shen, W., Mulumba, T., and Afshari, A. (2014). ARX model based fault
detection and diagnosis for chillers using support vector machines. Energy Build. 81,
287–295. doi:10.1016/J.ENBUILD.2014.05.049

Yang, C., Li, Y., and Chen, Q. (2024). Data-driven fault detection of heterogeneous
multi-agent systems using combined hardware and temporal redundant information.
ISA Trans. 147, 90–100. doi:10.1016/J.ISATRA.2024.02.003

Yin, Z., Hu, N., Chen, J., Yang, Y., and Shen, G. (2022). A review of fault diagnosis,
prognosis and health management for aircraft electromechanical actuators. IET Electr.
Power Appl. 16 (11), 1249–1272. doi:10.1049/ELP2.12225

Yoshida, M., Togo, R., Ogawa, T., and Haseyama, M. (2023). Off-screen sound
separation based on audio-visual pre-training using binaural audio. Sensors 23 (9), 4540.
doi:10.3390/S23094540

Zaben, M. M., Worku, M. Y., Hassan, M. A., and Abido, M. A. (2024). Machine
learning methods for Fault diagnosis in ac microgrids: a systematic review. IEEE Access
12, 20260–20298. doi:10.1109/ACCESS.2024.3360330

Zhang, C., Gao, X., Xu, T., Li, Y., Pang, Y., et al. (2019). Fault detection strategy based
on weighted distance of k nearest neighbors for semiconductor manufacturing
processes. IEEE Trans. Semicond. Manuf. 32 (1), 75–81. doi:10.1109/TSM.2018.2857818

Zhang, L., and Zhai, J. (2019). Fault diagnosis for oil-filled transformers using voting
based extreme learning machine. Clust. Comput. 22 (4), 8363–8370. doi:10.1007/
s10586-018-1804-0

Zhang, W. (2013). Image denoising algorithm of refuge chamber by combining
wavelet transform and bilateral filtering. Int. J. Min. Sci. Technol. 23 (2), 221–225.
doi:10.1016/J.IJMST.2013.04.016

Zhang, Z., and Zhao, J. (2017). A deep belief network based fault diagnosis model for
complex chemical processes. Comput. and Chem. Eng. 107, 395–407. doi:10.1016/J.
COMPCHEMENG.2017.02.041

Zhao, S., Duan, Y., Roy, N., and Zhang, B. (2024). A deep learning methodology based
on adaptive multiscale CNN and enhanced highway LSTM for industrial process fault
diagnosis. Reliab. Eng. and Syst. Saf. 249, 110208. doi:10.1016/J.RESS.2024.110208

Zhao, Y., Ball, R., Mosesian, J., de Palma, J. F., and Lehman, B. (2015). Graph-based
semi-supervised learning for fault detection and classification in solar photovoltaic
arrays. IEEE Trans. Power Electron. 30 (5), 2848–2858. doi:10.1109/TPEL.2014.2364203

Zheng, L., Wu, J., Zhang, S., Sun, S., Zhang, Z., Liang, S., et al. (2016). Bionic coupling
of hardness gradient to surface texture for improved anti-wear properties. J. Bionic Eng.
13 (3), 406–415. doi:10.1016/S1672-6529(16)60313-X

Zhou, S., Qian, S., Chang, W., Xiao, Y., and Cheng, Y. (2018). A novel bearing multi-
fault diagnosis approach based on weighted permutation entropy and an improved
SVM ensemble classifier. Sensors 18 (6), 1934. doi:10.3390/S18061934

Zhou, Z., Wen, C., and Yang, C. (2015). Fault detection using random projections and
k-nearest neighbor rule for semiconductor manufacturing processes. IEEE Trans.
Semicond. Manuf. 28 (1), 70–79. doi:10.1109/TSM.2014.2374339

Frontiers in Mechanical Engineering frontiersin.org29

Seid Ahmed et al. 10.3389/fmech.2025.1564846

https://doi.org/10.1038/s41598-024-79151-2
https://doi.org/10.1109/JESTPE.2013.2293518
https://doi.org/10.1016/J.CONENGPRAC.2011.03.002
https://doi.org/10.1016/J.CONENGPRAC.2011.03.002
https://doi.org/10.1007/s42979-021-00592-x
https://www.nist.gov/publications/hierarchical-rule-based-fault-detection-and-diagnostic-method-hvac-systems
https://www.nist.gov/publications/hierarchical-rule-based-fault-detection-and-diagnostic-method-hvac-systems
https://www.nist.gov/publications/hierarchical-rule-based-fault-detection-and-diagnostic-method-hvac-systems
https://doi.org/10.21926/jept.2203027
https://doi.org/10.3390/LUBRICANTS12120454
https://doi.org/10.1016/j.measurement.2020.107478
https://doi.org/10.1016/J.PROTCY.2014.08.057
https://doi.org/10.3390/EN16186614
https://doi.org/10.1016/J.EST.2024.113079
https://doi.org/10.1016/J.EST.2024.113079
https://doi.org/10.1016/J.YMSSP.2017.03.034
https://doi.org/10.1109/TSMC.2017.2710132
https://doi.org/10.1109/TSMC.2017.2710132
https://doi.org/10.1109/ACCESS.2019.2944974
https://doi.org/10.1016/J.ESWA.2023.119738
https://doi.org/10.1016/J.PROMFG.2017.07.353
https://doi.org/10.1016/J.PROMFG.2017.07.353
https://doi.org/10.1007/s11012-014-9968-z
https://doi.org/10.1007/s11012-014-9968-z
https://doi.org/10.1177/1687814018797788
https://doi.org/10.1016/J.ENBUILD.2015.09.044
https://doi.org/10.1109/TSM.2010.2065531
https://doi.org/10.1016/J.MATPR.2017.02.140
https://doi.org/10.1109/TIE.2013.2264791
https://doi.org/10.1016/J.CITIES.2022.103925
https://doi.org/10.1088/0957-0233/24/2/025601
https://doi.org/10.1088/0957-0233/24/2/025601
https://doi.org/10.1109/ACCESS.2024.3442085
https://doi.org/10.1109/ACCESS.2024.3442085
https://doi.org/10.1155/2016/5898052
https://doi.org/10.1109/ICACI.2012.6463348
https://doi.org/10.1109/ICACI.2012.6463348
https://doi.org/10.1016/J.YMSSP.2006.12.007
https://doi.org/10.1016/J.YMSSP.2006.12.007
https://doi.org/10.1016/J.JMSY.2023.02.018
https://doi.org/10.1016/J.COMPCHEMENG.2020.106731
https://doi.org/10.1016/J.COMPCHEMENG.2020.106731
https://doi.org/10.1016/J.ISATRA.2016.12.001
https://doi.org/10.1109/TMECH.2017.2728371
https://doi.org/10.1109/TCST.2017.2707333
https://doi.org/10.1109/SIU.2015.7130031
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1016/J.ENBUILD.2014.05.049
https://doi.org/10.1016/J.ISATRA.2024.02.003
https://doi.org/10.1049/ELP2.12225
https://doi.org/10.3390/S23094540
https://doi.org/10.1109/ACCESS.2024.3360330
https://doi.org/10.1109/TSM.2018.2857818
https://doi.org/10.1007/s10586-018-1804-0
https://doi.org/10.1007/s10586-018-1804-0
https://doi.org/10.1016/J.IJMST.2013.04.016
https://doi.org/10.1016/J.COMPCHEMENG.2017.02.041
https://doi.org/10.1016/J.COMPCHEMENG.2017.02.041
https://doi.org/10.1016/J.RESS.2024.110208
https://doi.org/10.1109/TPEL.2014.2364203
https://doi.org/10.1016/S1672-6529(16)60313-X
https://doi.org/10.3390/S18061934
https://doi.org/10.1109/TSM.2014.2374339
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1564846


Nomenclature
FDD Fault Detection and Diagnosis

FDI Fault Detection and Isolation

FDC Fault Detection and Classification

FDIR Fault Detection, Isolation, and Reconfiguration

AI Artificial Intelligence

ML Machine Learning

CPS Cyber-Physical System

CC Cloud Computing

DM Data Mining

IoT Internet of Things

VR Virtual Reality

AR Augmented Reality

BDA Big Data Analysis

RL Reinforcement Learning

DL Deep Learning

SVM Support Vector Machine

ANN Artificial Neural Network

SNR Signal-to-Noise Ratio

FNR Fault-to-Noise Ratio

DVR Data Validation and Reconciliation

PLL Phase Locked Loop

BSS Blind Source Separation

PCA Principal Component Analysis

AE Autoencoder

RBM Restricted Boltzmann Machines

CV Computer Vision

ReLU Rectified Linear

RNN Recurrent Neural Network

GRU Gated Recurrent Unit

LSTM Long Short-Term Memory

PPO Proximal Policy Optimization

A2C Advantage Actor-Critic

NN Neural Network

GAN Generative Adversarial Network

KNN K-nearest Neighbour

MCMC-PF Markov Chain Monic Carb Particle Filter

LSFIDI Least Square Frequency Invariant Data Independent

RCI Reduction of Combined Index

ANFIS Adaptive Neuro-Fuzzy Inference System

HMI Human Machine Interaction

ICA Independent Component Analysis

RBC Reconstruction Based Contribution

MVA Multivariate Analysis

CVA Canonical Variate Analysis

DWT Discrete Wavelet Transform

LPV Linear Parameter Varying

STFT Short-Term Fourier Transmission

GA Genetic Algorithm

ABCA Artificial Bee Colony Algorithm

PR Probability Ratio

BN Bayesian Network

HMM Hidden Markov Model

NOC Network on Chips

FPGA Field Programmable Gate Arrays

ELM Extreme Learning Machine

PLS Partial Least Squares

MSPCA Multiscale Principal Component Analysis

PM Process Monitoring
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