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Introduction: The health status of bearings is an essential prerequisite to ensure
the safe and stable operation of vehicles. However, the negative impact of
covariate shifts among data channels on diagnostic accuracy is an issue that is
often overlooked in data-driven algorithms based on multi-channel data.
Therefore, extracting the most representative features from multi-channel
data is key to achieving highprecision fault diagnosis.

Methods: To address this issue, this paper proposes a fault diagnosis algorithm
based on a multi-channel neighbor feature convolutional network. First, to
mitigate the covariate shift problem in the data, inverted mel-scale frequency
cepstral coefficients are introduced to obtain domain-invariant features with high
recognition accuracy. Furthermore, to fully leverage multichannel data and
extract more discriminative features, we design a multi-channel adjacent
feature convolutional module. This module employs sparse mapping to
extract local neighboring features while preserving global constraint
characteristics.

Result and discussion: Experiments are carried out on Xi’an Jiaotong University
and Case Western Reserve University data. The results show that the proposed
method can achieve high performance and high precision fault diagnosis.
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1 Introduction

As one of the critical components in the automotive drive system, the performance of
bearings directly impacts vehicle safety, reliability, and operational efficiency Tang et al.
(2024); Cui et al. (2024). However, due to high-speed rotation and complex loads, bearings
are prone to irreversible damage. This damage will affect the normal operation of the vehicle
Guo et al. (2025). Therefore, it is very important to detect the bearing damage state in time
and take preventive measures to ensure the healthy and stable operation of the equipment.

Nowadays, with the continuous development of artificial intelligence, most fault
diagnosis algorithms rely on neural networks to achieve fault pattern recognition and
classification Zhang and Wu (2024); Xu and Zhang (2023). Diagnostic algorithms can be
divided into two categories based on different processing methods: feature extraction-based
methods and deep learning-based methods. The former converts the bearing vibration
signal or sound signal into frequency domain or time domain features and then uses
machine learning or other algorithms for classification and diagnosis. The former method
first converts the bearing vibration signal or sound signal into frequency domain or time
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domain features and then uses machine learning or other algorithms
for classification and diagnosis. Common feature extraction
methods include Fourier transform, wavelet transform,
autocorrelation function, etc. Yang et al. (2024); Liang et al.
(2023); Jiang et al. (2023); Chauhan et al. (2024); Ding et al.
(2023). The deep learning-based method employs deep learning
models such as deep neural networks or convolutional neural
networks to learn the characteristics of bearing faults Wang P.
et al. (2023); Fang et al. (2023); Hu et al. (2025); Tong et al.
(2023); Song et al. (2024). This method can achieve more precise
results by training on a large amount of data. However, these
approaches also have some limitations. For instance, deep
learning-based methods generally assume that the training and
test data come from the same time series distribution.
Distribution shifts in the data can decrease diagnostic accuracy
Yao et al. (2022); Zhao Y. et al. (2023). Additionally, most diagnostic
algorithms typically use data collected by a single sensor, which
cannot fully express the fault characteristics and is easily influenced
by unpredicted factors Song et al. (2023a); Wang G. et al. (2023).
Therefore, extracting the fault feature information fully from multi-
channel data is crucial to achieving high-precision fault diagnosis.

For multi-channel data feature extraction, many scholars have
proposed their own methods. For example, Song et al. constructed
an intelligent multi-channel spectral structure scanner using
multivariate variational mode decomposition Song et al. (2023b).
It can adaptively detect the potential center frequency characteristics
in multi-channel bearing signals. Liu et al. segmented the multi-
frequency information of each sensor and fused the information of
different frequency components of multi-sensors by constructing
weighted fusion rules Liu et al. (2022). Li et al. used a multi-channel
fusion covariance matrix to obtain 22 statistical features from each
channel data as a representation of fault features Li et al. (2022).
Zhang et al. used data adaptive weighted fusion algorithm to fuse
acoustic signals and vibration signals at the data level, and then used
1D convolutional neural network (1D-CNN) to mine fault features
Zhang et al. (2022). In order to obtain the feature information that
can best characterize the bearing state, wang et al. weighted the
multi-sensor data Wang et al. (2022). The above methods have
achieved good results. Scholars have given different attention to
different channels through some hyperparameters, and
comprehensively considered the data of different sensors. In
addition to the above methods, another method is to reduce the
dimension of multi-sensor data. The common fault diagnosis
method is based on the single channel signal processing method.
Therefore, we can reduce the dimension of multi-channel data to
obtain the bearing fault state characteristics. For example, Wang
et al.first extracted multi-channel signal fusion entropy features, and
then used popular learning methods to map high-dimensional
fusion entropy features to low-dimensional space Wang et al.
(2021). Mamun et al proposed a frequency domain multi-linear
principal component analysis method Al Mamun et al. (2023). This
method first obtains the frequency domain tensor corresponding to
the original signal, and then uses the frequency domain multi-linear
principal component analysis method to decompose the frequency
domain tensor to obtain the low-dimensional features of the fault
data. The purpose of the above method is to design a suitable data
processing method to improve the generalization ability of neural
networks. Some scholars extract multi-channel data features from

the perspective of network structure. For example, Xu et al. directly
convert the signals collected by multiple sensors into images, and
combine convolutional neural network (CNN), dilated residual
networks (DRN), and long short term memory (LSTM) to
construct parallel convolutional neural network (PCNN) to
extract and fuse the features of the converted images Xu et al.
(2020). Jin et al. added multi-scale convolution kernels to
convolutional neural networks to improve the generalization
ability of the model Jin et al. (2021). At the same time, the
parallel structure of the diagnostic model makes up for the
deficiency of the multi-channel input fusion method.

It can be seen that different scholars have different ideas for
multi-channel feature extraction. They ignore the problem of data
covariation shift when extracting feature extraction, which will lead
to the distribution difference between the training set and test set.
For the fault diagnosis algorithm based on a neural network, we do
not input all the data collected by the sensor as a whole into the
network, and often need to sample according to certain rules to
adapt to the input of the network. The distribution of samples
depends on the sampling time interval. If the interval is inconsistent,
it will lead to a data covariant shift, resulting in a distribution
difference between the training set and the test set. For a complex
network structure, the distribution difference of single-channel data
has little effect. However, multi-channel data will widen the
distribution difference. This is because there are not only
differences in multi-channel data due to inconsistent sampling
time intervals, but also differences in distribution between
different channels. Therefore, how to find a way to extract multi-
channel data landmark features and reduce the impact of data
covariant shift is the key to achieving high-precision fault diagnosis.

Based on the above analysis, this paper proposes a fault diagnosis
algorithm based on a multi-channel neighbor feature convolutional
network. The method consists of two parts, namely, inverted Mel-
scaleFrequency Cepstral Coefficients (I-MFCC) and nearest
neighbor feature convolution network. Considering the covariant
shift problem of data, this paper first uses I-MFCC to preprocess the
original multi-channel data. I-MFCC can not only obtain robust
features without timing constraints, but also greatly improve the
discrimination of different fault features. Then, the obtained
I-MFCC features are input into the nearest neighbor feature
convolution network. The core part of the network is the neighbor
convolution block. The nearest neighbor convolution block can not
only grasp the overall constraint features, but also extract the adjacent
features between adjacent data. Experiments on Xi’an Jiaotong
University (XJTU) and Case Western Reserve University (CWRU)
datasets show that the proposed method can achieve excellent results.
The contributions of this paper are as follows:

(i) To enhance fault diagnosis accuracy, this paper proposes a fault
diagnosis algorithm based on a multi-channel neighbor feature
convolutional network. Using multi-channel data as the
research focus, we introduce I-MFCC for data preprocessing
to mitigate internal temporal constraints and extract domain-
invariant features with higher discriminative capability. The
multi-channel neighboring feature convolutional network
establishes a strong coupling relationship between features
and fault labels in nonlinear data, enabling high-precision
fault diagnosis.
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(ii) To optimize feature representation from multi-channel data,
this paper introduces a neighbor feature convolutional
network (NFCN). By considering the spatial sparsity of the
data, the module applies K nearest neighbors (KNN) for
computation, which reduces dimensionality while
improving feature characterization. Finally, a two-
dimensional convolutional network is employed to extract
key fault features.

This paper is organized as follows. Section 2 briefly introduces
the related work, I-MFCC and nearest neighbor convolution. The
third section describes the overall network structure of the methods
used in this article. Section 4 introduces the experimental setup and
the experimental results analysis. Section 5 summarizes this paper.

2 Related work

In this section, we will briefly introduce I-MFCCs and Nearest
Neighbor Convolution (NNC), which are also key technologies for
the methods used in this paper.

2.1 Inverted mel-scale frequency cepstral
Coefficients (I-MFCCs)

The Mel-Frequency Cepstral Coefficients (MFCC) is a signal
processing method widely used in the field of speech recognition.
Researchers have arranged a set of band-pass filters from low
frequency to high frequency based on the critical bandwidth,
with the filters transitioning from dense to sparse. These filters
are used to process the input signal, and the energy output from each
band-pass filter is taken as the fundamental feature of the signal. The
processing steps are shown in Figure 1. Through a series of
operations, including pre-emphasis, framing, windowing, Fast
Fourier Transform (FFT), Mel filter bank processing, logarithmic
transformation, and Discrete Cosine Transform (DCT), this method
maximizes key information within the signal to extract more
distinguishable features. Pre-emphasis is first applied to
compensate for the attenuation of high-frequency components
and enhance high-frequency features. Then, the signal is divided
into short-time analysis windows through framing and windowing
to capture time-varying characteristics. Next, FFT is employed to

convert the time-domain signal into the frequency domain, followed
by a set of band-pass filters arranged according to the Mel scale from
low to high frequency. The calculation process is shown in Equation
1, which simulates the human auditory system’s sensitivity to
different frequencies. After filtering, a logarithmic transformation
is performed on the energy spectrum to enhance perceptual
consistency across different frequencies. Finally, DCT is used for
dimensionality reduction, removing redundant information, and
improving computational efficiency.

Although MFCC performs well in speech recognition, its fixed
filter arrangement structure limits its applicability in mechanical
fault diagnosis. The primary fault characteristics of bearing vibration
signals are often concentrated in the high-frequency range, whereas
traditional MFCC struggles to effectively extract these high-
frequency features. To address this issue, Zhao et al. proposed
I-MFCC (Inverted MFCC) Zhao Y. et al. (2023). I-MFCC
optimizes the filter distribution of MFCC by adopting a sparse
low-frequency and dense high-frequency filter design, making it
more suitable for the spectral distribution characteristics of bearing
vibration signals, as shown in Figure 2. The improvements
introduced by I-MFCC have demonstrated outstanding
performance in fault diagnosis tasks. Additionally, its
computational method reduces the strong temporal constraints of

FIGURE 1
I-MFCCs feature extraction process.

FIGURE 2
Mel-filter distribution.
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periodic data, thereby enhancing feature representation. Therefore,
this paper adopts I-MFCC as a data preprocessing method to
improve feature extraction for fault diagnosis.

fMel � 2585 × log 1 + f

700
( ) (1)

2.2 Nearest neighbor convolution (NNC)

The nearest neighbor convolution block is a convolution block
proposed by the paper Wang et al. (2018). Inspired by the
characteristics of point cloud data and convolution operations,
scholars utilize local geometric structures by constructing local
domain maps and applying convolution-like operations on the
edges connecting adjacent point pairs. Different from ordinary
convolution, the data of each layer of convolution operation is
dynamically updated. The method of dynamic update is KNN.

KNN is a classical classification algorithm, with its core relying on
two key parameters: the K value and the distance calculation method.
KNN is used to dynamically search for the K nearest neighbors of each
data point and construct a local feature space based on these
neighbors. Specifically, suppose a set of data appears as a
disordered waveform in a two-dimensional plane. When mapped
to a three-dimensional geometric space, it exhibits a certain sparsity.
However, this sparse distribution may obscure some critical local
features, making it difficult for traditional convolution operations to
capture the local structure of the data. Based on this, the algorithm
incorporates the KNN method, utilizing Euclidean distance to
measure the contribution of different data points within the
feature space and retaining the data points with higher
contributions to enhance the feature representation capability.

In order to obtain the domain feature information while paying
attention to the global feature information, scholars input the KNN
processed data in parallel with the original data into the network.
Different parts of the data contribute different information. In
addition, the neighbor information can complement the global
information. The specific neighborhood convolution block
structure is shown in Figure 3.

X � x1, . . . , xn{ } ⊆ RF (2)
where x1 x2 xn . . .represents the coordinates of the points in the
space and consists of three dimensions: x, y and z.

ei,j � hθ xi, xj( )
hθ: R

F × RF → RF′ (3)

hθ xi, xj( ) � hθ xi, xj − xi( ) (4)

where xi and xj represent the location of different points, θ She is a
learnable parameter.

The specific calculation process is: we construct a graph
structure, assuming that there is a sample, the set of points in
the sample can be shown by Formula 2, where each point is
represented by a three-dimensional coordinate. Firstly, we
calculate each point by KNN to construct the spatial structure
relationship between points. According to the spatial structure
information, we use Formula 3 to represent the edge feature. In
order to make the local information more representative, we discard
some feature information that is not important to the center point.
Finally, this paper combines the local neighbor information and the
global structure information to form the sample feature information,
which can be seen in Formula 4.

3 Fault diagnosis algorithm based on
multi-channel neighbor feature
convolutional network

Based on data-driven fault diagnosis algorithms, the vibration
signals collected are typically periodic and consist of long time series,
making it impossible to directly input the data into the network for
processing. Therefore, the first step is to sample the raw data to
convert it into a format suitable for model input. The periodic nature
of vibration signals means that features within each signal cycle may
vary significantly at different sampling points. If the sampling
standards are not consistent, this can lead to feature shifts
between adjacent samples, thus affecting the diagnostic accuracy
of the model. This problem becomes even more complex with multi-
channel data. In multi-channel data, covariate shifts can occur not

FIGURE 3
NNC structure.
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only within the same channel, causing feature drift within a single
channel, but also between different channels. This cross-channel
shift leads to inconsistencies in the signals captured by different
sensors, which in turn reduces the precision of the
diagnostic algorithm.

To address this challenge, this paper proposes a fault diagnosis
algorithm based on multi-channel nearest neighbor convolutional
networks. By incorporating the KNN method, the algorithm can
dynamically search for the nearest neighbors of each data point
within its neighborhood and construct a more robust feature space
based on these neighbors. This not only helps mitigate shifts in
single-channel data but also effectively addresses covariate shifts
between multi-channel data, thereby improving fault diagnosis
accuracy. In this way, the algorithm can ensure global feature
consistency while effectively capturing local features, thus
enhancing the overall diagnostic performance.

The algorithm’s overall structure can be divided into two parts:
I-MFCC preprocessing and neighbor feature convolutional network,
as illustrated in Figure 4. Initially, the vibration signal data collected
by the sensor cannot be directly input into the model. Therefore, the
first step involves sampling the original data to a suitable length,
which is 2048 in this study. To simulate the distribution differences
between training and test data in real-world scenarios, random
interval sampling is chosen to achieve varied time series
distributions. The sampled data set then undergoes I-MFCC
processing. This step serves multiple purposes: it reduces the
impact of data distribution differences on diagnostic accuracy,
enhances fault characteristics, and alleviates the learning burden

on themodel. Subsequently, the I-MFCC processed data is divided into
a training set and a test set, following a 1:4 ratio. Next, the data is
inputted into the network, which consists of four NNConv blocks.
Each block is capable of extracting different levels of fault features. To
make optimal use of these features, a combination of deep and shallow
features is employed. Deep features capture the detailed texture of the
data, while shallow features represent the general contour features. This
fusion methodology enables the network to learn more representative
features. The experiments are conducted on both the CWRU dataset
and the XJTU dataset. By optimizing the model parameters based on
the training data, a bearing diagnosis model with high classification
performance is obtained. The model’s effectiveness is evaluated using
the test dataset, and the results are visualized through a confusion
matrix diagram and TSNE diagram. Additionally, Table 1 displays the
parameters for each layer of the model.

FIGURE 4
Overall algorithm structure.

TABLE 1 Model construction parameters.

Input Output Kernel size

Conv2d 6 64 1

Conv2d 128 64 1

Conv2d 128 128 1

Conv2d 256 256 1

Conv1d 192 512 1

Conv1d 320 512 1
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4 Experiment

In this section, we mainly introduce two parts, data acquisition
and experimental content. The data acquisition part introduces the
method of high-dimensional data mapping, and the experimental
content introduces the network structure parameter setting and
experimental steps.

4.1 Data acquisition

XJTU: The Xi’an Jiaotong University (XJTU) data set is collected
and provided by the research team of Xi’an Jiaotong University. It
includes a large amount of bearing operation data collected in the
laboratory, encompassing three different operating conditions. Each
working condition consists of five bearings with varying degrees or
locations of damage. In this study, each working condition is treated as
an independent entity, resulting in a total of 15 bearing states.
However, it should be noted that while the network input in this
paper is based on three-channel data, the XJTU data set only provides
two channels, namely, horizontal and vertical. To accommodate the
model’s data requirements, themean of the data from the two channels
is computed and used as the third channel. Additionally, the method of
random interval sampling is employed, where each sample has a length
of 2048 data points and a dimensionality of. 2048 × 3.

CWRU: The Case Western Reserve University (CWRU) data set
was collected and provided by the research and experimental team of
Case Western Reserve University. It utilizes four different fault sizes
(0.1778 mm, 0.3556 mm, 0.5334 mm, 0.7112 mm) operating under
four distinct operating conditions. It comprises five fault types,
including inner ring faults, rolling element faults, and outer ring
faults in the three o’clock direction, six o’clock direction, and twelve
o’clock direction. Each dataset consists of five dimensions: drive end

accelerometer data, fan end accelerometer data, base accelerometer
data, time series data, and RPM during testing. For this study, only two
fault sizes, namely, 0.1778mm and 0.5334mm, were selected, resulting
in a total of ten fault types. The drive end accelerometer data, fan end
accelerometer data, and base accelerometer data from each dataset
were chosen to construct the model’s required three-channel data.
Please refer to Table 2 for specific fault types and corresponding labels.

4.2 Experiment setting

The above two datasets are the subjects of experimentation in this
paper. The original data is transformed into n × 2048 × 3 (where n
represents the number of samples) after sampling. Following the
algorithm flow, the data is initially processed using I-MFCC,
resulting in the processed dimension of n × 600 × 3. Subsequently,
the processed data is divided into a training set and a test set using a 1/
4 proportion, which is then fed into the model for training. Moreover,
this paper sets the value of k for KNN to 20 and the number of model
iterations to 30. To ensure the stability of experimental results and
mitigate contingencies, multiple experiments were conducted, and the
average value was selected as the final visual display result. To verify the
effectiveness of the proposed method, three sets of comparative
experiments were conducted for each dataset: I-MFCCs + NFCN,
I-MFCCs + CNN, the original data + NFCN.

4.3 Experiment result

The experimental results consist of three parts: accuracy-loss curve,
confusion matrix, and t-Distributed Stochastic Neighbor Embedding
(t-SNE) plot. The accuracy and loss curves show the test results and loss
over 30 iterations, as shown in Figure 5. From Figure 5, it can be

TABLE 2 Bearing fault type.

Label Dataset Condition (r/min) Failure element Lifetime Dataset Fault diameter Fault element

1 XJTU 2100 Outer race 2h3min CWRU 0.007″ Rolling element

2 Outer race 2h41min Inner race

3 Outer race 2h38min Outer race 3 o’clock

4 Cage 2h2min Outer race 6 o’clock

5 Inner race 52min Outer race 12 o’clock

6 2250 Inner race 8h11min 0.014″ Rolling element

7 Outer race 2h41min Inner race

8 Cage 8h53min Outer race 3 o’clock

9 Outer race 41min Outer race 6 o’clock

10 Outer race 5h39min Outer race 12 o’clock

11 2400 Outer race 42h18min

12 All 42h36min

13 Inner race 6h11min

14 Inner race 25h15min

15 Outer race 1h54min
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observed that the test accuracy of the data processed by I-MFCCs
significantly improved under the condition of NFCN as the backbone
network, which is evident in both datasets. This reflects the effectiveness
of I-MFCCs preprocessing. The difference between NFCN and CNN
lies in the inclusion of the NNConv block. Under the condition that the
data are processed, both NFCN and CNNmaintain stable classification
accuracy on both datasets, but NFCN achieves a rapid convergence to
100% accuracy. In contrast, CNN shows less stable performance in the
initial few iterations.

Confusion matrix and t-SNE plot are methods used for visualizing
classification results. The confusion matrix presents the relationship
between the model’s predicted results and the actual results in a tabular

form. In this study, the confusion matrix is presented as a heatmap,
where the x-axis represents the predicted results and the y-axis
represents the actual results. The t-SNE plot is a visualization
method for high-dimensional data that maps the data into two or
three-dimensional space, allowing us to better understand the structure
and similarity of the data. These two methods provide a simple and
intuitive way to assess classification performance. Therefore, they were
chosen in this study to visualize the classification results. The
classification results can be seen in Figures 6, 7. Figure 6
demonstrate that the proposed method’s predicted results fit
perfectly with the actual results. Figure 7 indicate that the proposed
method achieves accurate classification of different fault types.

FIGURE 5
Test accuracy and loss based on inconsistent data feature distribution on XJTU dataset (a) and CWRU dataset (b).

FIGURE 6
XJTU (a–c) and CWRU (d–f) data confusion matrix diagram.
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To enhance the persuasiveness of the results, this study selected
recent papers that performed classification tasks on the XJTU and
CWRU datasets and compared the results obtained in those papers
with the proposed method. It’s worth noting that during the initial

training of deep models, parameter adjustments are required, which
can lead to significant differences in accuracy compared to normal
values. To eliminate the influence of this objective condition on the
assessment of method performance, the first two iterations were

FIGURE 7
T-SNE diagram of XJTU (a–c) and CWRU (d–f) data.

TABLE 3 Comparison with other thesis methods.

Dataset Methold Siginal processing methods Accuracy (Average)

XJTU Improved DQN Chen et al. (2024) Raw vibration signals 99.44%

VMD-ACF-CNN Wu et al. (2023) Variational mode decomposition (VMD)-Autocorrelation function (ACF) 99.8%

FSK-MobileNetV2 Xue et al. (2022) Fast Spectral Kurtosis (FSK) 95.4%

GAF-CNN-Vit Zhou et al. (2024) Gramian Angular Field (GAF) 99.63% (5 categories)

Proposed I-MFCCs 99.91%

CWRU TST Jin et al. (2022) Raw vibration signals 98.63% (10 categories)

FSK-MobileNetV2 Xue et al. (2022) Fast Spectral Kurtosis (FSK) 97.8% (6 categories)

WPD-CSSOA Zhao et al. (2023a) Wavelet Packet Decomposition (WPD) 98.24% (10 categories)

GAF-CNN-Vit Zhou et al. (2024) Gramian Angular Field (GAF) 99.79% (10 categories)

Proposed I-MFCCs 99.98% (10 categories)
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excluded, and the remaining 28 iterations were used for
comparison. The classification results are presented in Table 3.
According to the tables, the average accuracy of the proposed
method reaches 99.91% and 99.98%, which is remarkably high.
This demonstrates the superiority of the proposed method. By
combining I-MFCCs and NFCN, distinctive features can be
extracted from the data even under data-shifting conditions,
achieving high classification accuracy.

5 Conclusion

In this paper, a bearing fault diagnosis model based on I-MFCCs
and NFCN is proposed, and the validity of the model is verified
using XJTU and CWRU data sets. Additionally, this paper conducts
various comparative experiments to assess the impact of I-MFCCs
and NNConv on the model’s accuracy. The classification results are
visualized using the confusion matrix and t-SNE map. The main
conclusions are as follows:

(i) Initially, we create data sets using random interval sampling
to simulate the covariant shift environment under actual
working conditions. Next, the I-MFCCs preprocess the
data set to obtain highly discriminating data features.
Finally, the deep features of the data are extracted and
classified using the NFCN constructed by NNconv.
Experimental results indicate that the average fault
recognition accuracy of the combined I-MFCCs and
NFCN on XJTU and CWRU datasets reaches 99.91% and
99.98%, respectively.

(ii) The confusion matrix and t-SNE are employed to visualize
the classification results in the space. It is observed that the
combination of I-MFCCs and NFCN enhances the similarity
of similar features and the dissimilarity of different fault types,
significantly improving the spatial distinguishability
of the data.

In future work, we will focus on fault diagnosis under variable
working conditions. One limitation of this method is considering the
same type of fault under different working conditions as different
fault types. Therefore, our next step will involve considering more
effective preprocessing methods that can enhance the spatial
distinguishability of the data or exploring more efficient networks
for extracting the most representative features from the data.
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