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Introduction: To enhance energy management in electric vehicles (EVs), this
study proposes an optimization model based on reinforcement learning.

Methods: Themodel integrates gated recurrent units (GRU) with double deepQ-
networks (DDQN) to improve time-series data processing and action value
estimation.

Results: Results show that themodel achieves the lowest estimation bias (0.017 in
training, 0.018 in testing) and the highest cumulative reward (97.1) among all
compared methods. In real-world highway scenarios, it records the lowest total
energy consumption at 14.2 kWh, achieving a range of 503 km and an energy
efficiency of 87.6%.

Discussion: These findings suggest that the proposed model offers a more
efficient and reliable solution for EV energy optimization with strong
application potential.
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1 Introduction

As the electric vehicle (EV) technology rapidly develops, the role of EV energy
management systems in improving vehicle range and optimizing energy utilization
efficiency is gradually increasing (Demircali and Koroglu, 2022; Wang X. et al., 2022).
The sustainable development of EVs is not only facing issues of battery life and energy
efficiency, but also constrained by the scarcity of rare metal resources, especially the
extensive use of key materials such as neodymium, which poses challenges to the
environment and supply chain. The recycling efficiency and sustainable utilization have
become important directions for future technological optimization. By constructing
intelligent optimization models, strategic support can be provided for battery recycling,
resource allocation, and other related areas. In addition, the environmental advantages of
EVs can only be truly realized when their power source is renewable energy (such as hydro,
wind, solar). If the electricity used relies on fossil fuels, its overall carbon emissions may not
necessarily be better than traditional internal combustion engine vehicles. Therefore, while
constructing an energy efficiency optimization model, it is necessary to consider it
uniformly within the renewable energy system (Skrúcaný et al., 2018). Efficient energy
management not only extends battery life, but also significantly cut down the total energy
consumption of vehicles, thereby promoting the widespread application of EVs. However,
the energy system of EVs involves various dynamic and complex energy flows, including
power batteries, electric motor drive systems, onboard electronic devices, and charging
systems. This makes traditional optimization methods inefficient and inflexible in dealing
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withmulti-objective andmulti-constraint conditions (Venkatasatish
and Dhanamjayulu, 2022; Tang et al., 2022). In the last few years,
reinforcement learning (RL) has gradually become a critical research
direction for optimizing energy management systems in EVs due to
its advantages in dynamic decision-making and strategy
optimization (Yang et al., 2023). Among them, Deep Q-Network
(DQN) and Double Deep Q-Network (DDQN) have shown good
performance in handling high-dimensional state spaces and
complex decision tasks. However, traditional Q-network
structures often struggle to capture long-term dependencies when
dealing with time dependent energy management tasks, resulting in
limited accuracy and stability of decision-making. Based on this, a
new model combining Gated Recurrent Unit (GRU) and DDQN is
proposed to further enhance the processing capability of the model
for time series data and the accuracy of action value estimation. The
innovation of the research lies in utilizing GRU’s gating mechanism
to effectively capture time-dependent features, to enhance the
model’s understanding and predictive ability of dynamic energy
system states. At the same time, adding DDQN can reduce the bias
of action value estimation, thereby improving the decision stability
and reliability of the model.

2 Related works

The energy optimization problem of EVs usually refers to how to
reasonably allocate and manage the resources of EVs in charging,
energy consumption, and range, to maximize the operating
efficiency of the system, reduce energy loss, lower costs, and
improve user satisfaction. Currently, many experts have utilized
various multi-objective optimization algorithms to address the
energy optimization issue of EVs. Sadeghi D et al. designed a
power sharing technology that combines EVs and hybrid
renewable energy systems. The issue was addressed by means of
two case studies, in which the multi-objective particle swarm
optimization algorithm and the multi-objective crow search
algorithm were respectively adopted. The experiment findings
denoted that the introduction of EVs significantly reduced the
total cost of the system and improved the life cycle cost and
power supply probability loss index (Sadeghi et al., 2022). Mu
et al. proposed a sustainable reverse logistics network
optimization method for the recycling of retired new energy
vehicle power batteries. The methodology employed in this study
involved the construction of a dynamic reverse logistics network
model, encompassing six levels and three dimensions: economy,
environment, and society. The model’s resolution was achieved
through the implementation of a multi-objective combination
optimisation model. The research results indicated that dynamic
reverse logistics networks had better performance compared to static
networks, and the changes in cooperation costs had a greater impact
on the transaction volume and network costs between third parties
and cooperative enterprises (Mu et al., 2023). Mahato et al. proposed
an optimization method for EV charging scheduling. Firstly, the
demand variation of EVs and available charging stations were
simulated by an on-board self-organizing network model. A
novel load scheduling algorithm based on combining Jaya and
multiverse optimization algorithms was then used for scheduling
optimization. The research results indicated that the combined

algorithm outperformed traditional methods in terms of charging
cost, adaptability, power consumption, and user convenience
(Mahato et al., 2024). In addition to battery-only EVs, RL has
also been applied to hybrid energy systems. For instance, Fu
et al. proposed a deep RL-based energy management strategy for
fuel cell/battery/supercapacitor EVs, which improved adaptability
under complex conditions (Fu et al., 2022). Furthermore, Wu et al.
reviewed EV–transportation–grid integration, highlighting
challenges in multi-agent coordination and energy scheduling
across domains (Wu et al., 2023). These studies illustrate the
growing complexity and scale of RL applications in EV
energy systems.

As a common RL algorithm, DQN can combine deep learning
and Q-learning to solve traditional Q-learning problems in high-
dimensional state spaces. Currently, many scholars use DQN and its
optimization models to solve various complex problems. Cao et al.
proposed a path planning method for introducing unmanned aerial
and underwater vehicles into ocean sensor networks. Firstly, a 2D
scene model was established, and the entry point of the unmanned
aerial vehicle was optimized through traversal search algorithm. The
performance differences between the cross domain mode and
underwater mode of the unmanned aerial vehicle were compared.
Path planning was optimized using DDQN algorithm in 3D scene
models. The research results showed that the DDQN algorithm
saved 60.94% of time and 20.26% of energy, and performed well in
path planning (Cao et al., 2024). Xiao et al. proposed a multi-energy
microgrid optimization scheduling method grounded on improved
DQN to solve the challenges posed by complex energy trading
mechanisms and multi-energy coupling decision-making processes.
Firstly, by introducing an improved Kriging agent to enhance the
GRU-temporal convolutional network model, an equivalent model
of the external interaction environment was constructed for each
multi-energy microgrid. Next, the traditional greedy strategy was
replaced by an improved k-cross sampling strategy. The experiment
findings denoted that the improved method outperformed
traditional DQN in terms of convergence, stability, energy
management, and operational efficiency (Xiao et al., 2023).
Oroojlooyjadid et al. designed an improved DQN algorithm to
optimize decision-making in beer games. This algorithm did not
require assumptions about costs or other conditions, and could
quickly adapt to different agent settings through transfer learning.
When working with teammates who use benchmark inventory
strategies, the algorithm could achieve near optimal order
quantities. Sensitivity analysis showed that the model was robust
to cost changes, and transfer learning reduced training time by an
order of magnitude (Oroojlooyjadid et al., 2022).

In summary, although various optimization methods have been
applied to EV energy management systems, there are still some
shortcomings. Firstly, many studies have not fully utilized the
characteristics of time series data, which limits the adaptability of
models in dynamic energy management systems. Secondly,
traditional RL algorithms often face issues such as slow
convergence speed and large deviation in action value estimation
in energy optimization tasks with multiple objectives and
constraints, which can affect the accuracy of decision-making.
Based on this, the study combines GRU and DDQN to enhance
the processing capability of time series data and the accuracy of
action value estimation, aiming to achieve efficient optimization of
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EV energy management systems. While existing hybrid RL models
(e.g., DDPG-based, actor-critic, or prioritized replay extensions)
have been widely applied to EV-related optimization problems, they
often lack the ability to capture long-range temporal dependencies
or suffer from value overestimation. By integrating GRU for
temporal sequence modeling and DDQN for value stabilization,
the proposed Gated Recurrent Unit-Double Deep Q-Network
(GRU-DDQN) framework achieves a tighter coupling of state
modeling and decision reliability, providing a novel solution path
in this domain.

3 Construction of optimization model
for EV energy system based on RL

Based on the deficiencies identified in existing research—such as
poor adaptability to time-dependent energy flows and large
estimation bias in complex environments—this section aims to
construct a more effective EV energy optimization framework.
Building upon the identified problems, the following
methodology outlines the system model and algorithmic
improvements. To enhance the energy utilization efficiency and
lifespan of EV energy systems, the study firstly conducted a
systematic analysis of each energy module of EVs and established
an optimization objective function for the EV energy system.
Secondly, a solution model was built by combining GRU and
DDQN, which enables the objective function to obtain the
optimal solution and achieve energy optimization utilization.

3.1 Construction of energy systemmodel for
electric vehicles

To comprehensively understand and enhance the energy
management system of EVs, the study first conducted a
systematic analysis and modeling of each energy module of the
vehicle, dividing it into three categories: high-voltage units, low-
voltage units, and charging units. The energy composition structure
of the entire EV is shown in Figure 1.

In Figure 1, the high-voltage unit mainly includes a power
battery and an electric motor drive system. The power battery
constitutes the core of the energy system. Its principal functions

include the storage and supply of electrical energy, while the electric
motor serves to convert electrical energy into mechanical energy,
thereby enabling the vehicle to move. Low-voltage units cover in
vehicle electronic devices and auxiliary systems, such as lighting
systems, information and entertainment systems, etc. The charging
unit is responsible for the charging process of the battery,
transmitting the electrical energy from the external power source
to the power battery through the charger, ensuring that the battery
can continuously supply electrical energy during driving (Omoniwa
et al., 2022; Li et al., 2022). The energy flow between energy modules
during vehicle operation is shown in Figure 2.

In Figure 2, the power battery in the energy system supplies
electrical energy to the electric motor drive system, which
subsequently converts this electrical energy into mechanical
energy, thereby driving the vehicle. At the same time, through
DC-DC converters, the high-voltage unit converts some of the
electrical energy into low-voltage electrical energy, which is
supplied to the onboard electronic devices and auxiliary systems
of the low-voltage unit. During the braking process, the energy
recovery system converts mechanical energy into electrical energy,
which is fed back to the power battery to further optimize energy
utilization efficiency. To enable the energy system to accurately
identify the current system state and perform corresponding correct
feedback, environmental models and computational models were
respectively built as the interaction objects of the energy system.
Firstly, a linear temperature dependent model was used to describe
the relationship between battery capacity and temperature variation,
as shown in Equation 1 (Peng et al., 2022; Jin et al., 2023).

C T( ) � C0 1 − α T − Tref( )( ) (1)

In Equation 1, C(T) represents the battery capacity at a
temperature of T, C0 represents the battery capacity at a
reference temperature of Tref, and α represents the temperature
influence coefficient, which can reflect the degree of influence of
temperature changes on battery capacity. Secondly, a calculation
model is established for driving power, utilizing the motion state
parameters of the vehicle, as shown in Equation 2.

Pdrive � Fdrive + Frolling + Faero( ) · v (2)

In Equation 2, Pdrive represents the driving power, measured in
kilowatts (kW). Fdrive, Frolling, and Faero are vehicle traction force,

FIGURE 1
Energy composition and structure diagram of electric vehicles.
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rolling resistance, and air resistance, respectively, all measured in
Newtons (N). v represents the vehicle speed, measured in m/s. In the
design of EV systems, air resistance is the main energy loss factor
during high-speed driving, and its optimization is particularly
important. Saeed et al. pointed out that body structure design
can significantly improve the aerodynamic performance of the
entire vehicle, thereby enhancing its energy efficiency (Chen X.
et al., 2022). The specific calculation formula for Fdrive is shown in
Equation 3.

Fdrive � m · a (3)

In Equation 3, m represents the vehicle mass, measured in
kg. a denotes the acceleration of the vehicle, measured in m/s2.
The specific calculation formula for Frolling is shown in
Equation 4.

Frolling � Cr ·m · g (4)

In Equation 4, Cr is the rolling resistance coefficient, g is the
gravitational acceleration, taken as 9.81 m/s2. The calculation
method for Faero is indicated in Equation 5.

Faero � 1
2
· ρ · Cd · A · v2 (5)

In Equation 5, Cd refers to the air resistance coefficient, ρ stands
for the air density, measured in kg/m3, andA is the front surface area
of the vehicle, measured in m2. By comprehensively considering
traction, rolling resistance, and air resistance, the driving power
calculation model can more comprehensively reflect the energy
demand of the vehicle in different operating states, supporting
more efficient energy allocation and management. Finally,
batteries generate heat during the charging and discharging
process, so proper thermal management is needed to maintain
battery performance and extend battery life. A heat generation
and dissipation calculation model for batteries was constructed
using a model based on thermal conduction and convective heat
transfer. The calculation formula for heat generation is shown in
Equation 6 (Ullah et al., 2023).

Qgen � I2R (6)

In Equation 6, Qgen represents the heat generated by the battery
during the charging and discharging process, measured in watts
(W). I denotes current, measured in amperes (A). I represents

battery resistance, measured in ohms (Ω). The calculation formula
for heat dissipation is shown in Equation 7.

Qcool � hA′ T − Tambient( ) (7)

In Equation 7, Qcool represents the heat dissipated through the
heat dissipation system, measured in W. h represents the convective
heat transfer coefficient, measured in W/m2°C. A′ means the heat
dissipation area, measured in m2. T and Tambient respectively
represent battery temperature and ambient temperature, both in
degrees Celsius (°C). After constructing the environmental
interaction model and calculation model of the energy system,
the study further selected driving energy consumption, thermal
management energy consumption, low-voltage unit energy
consumption, and battery capacity change caused by battery
temperature changes as the main components of total energy
consumption, and built an optimization objective function for
the EV energy system, as shown in Equation 8.

minEtotal t1, t2( ) � min Edrive t1, t2( ) + Ethermal t1, t2( ) + Elow t1, t2( )(
+ΔC T( )) (8)

In Equation 8, (t1, t2) represents a certain period of travel time,
while Etotal, Edrive, Ethermal, and Elow represent total energy
consumption, drive system energy consumption, thermal
management energy consumption, and low-voltage unit energy
consumption, respectively. ΔC(T) represents the change in
battery capacity caused by changes in battery temperature. By
minimizing total energy consumption, the goal is to raise the
energy utilization efficiency of EVs, extend vehicle range, and
reduce energy demand, thereby achieving a more
environmentally friendly and economical energy management
solution. Equations 1–8 in the text are mainly derived from the
fundamental theories of vehicle dynamics and thermodynamics.
The driving power model refers to the coupling relationship between
classical traction, rolling resistance, and air resistance, while the heat
generation and dissipation model is constructed based on Joule
heating and Newton’s cooling law. In addition, the team has
previously conducted relevant experiments on temperature
control equipment and battery energy consumption modeling for
small pure EVs, providing data and modeling basis for research. In
terms of software and models, this article uses Python language and
TensorFlow deep learning framework to implement GRU-DDQN
optimized structure. The data used comes from the Applanix EV

FIGURE 2
Energy flow diagram of electric vehicles.
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public database. The experiment was run on a workstation equipped
with Intel i9-12900K, NVIDIA RTX 3090, and 64 GB memory,
ensuring the stability and reproducibility of the training process.

3.2 Design of optimization algorithm for
electric vehicle energy system based on
GRU-DDQN

After completing the construction of the optimization objective
function for the energy system of EVs, the next step is to design an
efficient and adaptable solving algorithm to achieve the optimization
of the objective function. The Q-learning algorithm in RL was
chosen as the basic framework for the study, and its advantages
in dynamic decision-making and strategy optimization were utilized
to address the complex requirements of energy management
systems. The operation of this algorithm is denoted in Figure 3.

The Q-learning algorithm depicted in Figure 3 is a model-free
RL algorithm. The fundamental premise of this algorithm is to guide
the decision-making of the agent by learning the state-action value
function. However, as the state and action space expands, the size of
the Q-value table grows exponentially, leading to a sharp increase in

storage and computational costs for traditional Q-learning
algorithms. In addition, Q-learning is difficult to effectively
capture long-term dependencies when facing sequence data with
temporal dependencies, which affects the accuracy and stability of
decision-making (Shi et al., 2024). To surmount the aforementioned
challenges, the study initially introduced GRU to enhance the
model’s capacity to process time series data. The GRU’s neural
structure is illustrated in Figure 4.

In Figure 4, the neural structure of GRU principally comprises
two gates, namely, the updating gate and the reset gate. The function
of the updating gate is to determine the extent to which information
from the previous hidden state (PHS) is to be retained in the current
one. In contrast, the reset gate serves to determine the extent to
which information from the PHS is to be forgotten, thereby
generating new candidate hidden states (CHSs). The calculation
formula for updating the door activation value is shown in Equation
9 (Chen Q. et al., 2022; Wang Z. et al., 2022; Mehdi et al., 2022).

zt � σ Wz · xt + Uz · ht−1 + bt( ) (9)

In Equation 9, zt represents the activation value of the update
gate, ranging from 0 to 1. bt represents the bias vector of the update
gate. Wz and Uz denote the weight matrices of the input xt and the
PHS ht−1 in the update gate, respectively. σ expresses the Sigmoid
activation function. The calculation formula for resetting the door is
shown in Equation 10.

rt � σ Wr · xt + Ur · ht−1 + br( ) (10)

In Equation 9, rt represents the activation value of the reset gate,
which also ranges from 0 to 1. br represents the bias vector of the
updating gate. Wr and Ur indicate the weight matrices of the reset
gate for the input xt and the PHS ht−1, respectively. The calculation
formula for CHSs is shown in Equation 11.

~ht � tanh Wh · xt + Uh · rt · ht−1( ) + bh( ) (11)
In Equation 11, ~ht represents the CHS. tanh stands for

hyperbolic tangent activation function. Wh and Uh mean the
weight matrices of the input xt and the PHS ht−1 in the CHSs,
respectively. bh represents the bias vector of CHSs. The final current

FIGURE 3
Q Running flow diagram of the learning algorithm.

FIGURE 4
Structural diagram of the GRU neurons.
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hidden state balances the contributions of the PHS and CHSs
through zt, as shown in Equation 12.

ht � 1 − zt( ) · ht−1 + zt · ~ht (12)
In Equation 12, ht means the current hidden state. After

introducing GRU to enhance the processing capability of time
series data, further research is conducted on introducing DDQN
to raise the accuracy of action value estimation and the stability of
decision-making. Compared to Long Short-Term Memory (LSTM)
networks, GRUs have a simpler architecture with fewer trainable
parameters, enabling faster convergence and reduced computational
overhead. In EV energy systems, where real-time performance and
low-latency decision-making are crucial, GRUs are well-suited for
embedded deployment. Moreover, while attentionmechanisms offer
strong global context modeling, they typically require larger
memory and computational resources, making them less practical
for short-term sequence modeling in vehicle control scenarios.
Therefore, GRU was selected to achieve a balance between
temporal modeling capability and inference efficiency in EV
energy optimization tasks. The update process of the two Q
networks is shown in Figure 5.

In Figure 5a, DQN only utilizes the same network to choose and
assess actions during training, which often leads to overestimation of
Q and affects the optimization effect of the strategy. To address this
issue, DDQN in Figure 5b introduces two independent neural
networks. One online network is applied to choose the optimal
action, while the other target network is applied to assess the actual
value of the action. This separation mechanism can not only reduce
the deviation of Q values, but also improve the decision-making

reliability of the algorithm in complex environments. Finally, a
Gated Recurrent Unit-Double Deep Q-Network (GRU-DDQN)-
based optimization algorithm model for EV energy systems was
constructed, as shown in Figure 6.

In Figure 6, firstly, the data input module is responsible for
collecting and organizing real-time status information of the EV
energy system. Then, the GRU feature extraction module is applied
to process time series data and extract deep feature representations
that are helpful for decision-making, thereby raising the model’s
ability to process time-dependent data. Next, the DDQN decision
module receives feature vectors from GRU and uses online and

FIGURE 5
Flow diagram of Q network updates for DQN and DDQN. (a) DQN’s Q network update process; (b) Q network update process of DDQN.

FIGURE 6
GRU-DDQN structure diagram.
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target networks to select the optimal action and evaluate the action
value, respectively. In the decision-making process, the experience
replay buffer plays a crucial role in storing experience data. This data
is generated during the interaction between the agent and the
environment, and is subsequently selected at random to disrupt
the correlation between data and enhance the stability and efficiency
of training. The action execution module adjusts the energy
allocation strategy in the EV energy system in real-time based on
the output of the DDQN decision module. At the same time, the
reward calculation module calculates real-time rewards based on
system feedback, guiding the agent’s learning process. Through a
reasonable reward mechanism, it guides the agent to optimize
strategies towards the goal of reducing total energy consumption.
Finally, the optimization objectives and strategy update module
define and minimize the total energy consumption of the vehicle
during the driving cycle.

4 Results

To assess the effect of the GRU-DDQN EV energy system
optimization algorithm, multiple experimental evaluations were
conducted on standard datasets and actual tasks. Firstly, a
benchmark performance comparison analysis was conducted with
several mainstream energy optimization algorithms. Secondly, the
algorithm was applied to practical EV energy management scenarios
and its optimization effect was evaluated under different operating
conditions.

4.1 Benchmark performance testing

To validate the effect of the GRU-DDQN algorithm in
optimizing EV energy systems, an experimental platform was
constructed and experiments were conducted on standard
datasets and real-world scenarios. All experiments were carried
out within a Python environment and run using the TensorFlow
deep learning framework. The experimental equipment was a
workstation with Intel i9-12900K CPU, NVIDIA RTX 3090 GPU,
and 64 GB memory. The Applanix EV public energy dataset was
selected as the experimental dataset. The Applanix EV dataset
contained 50,000 labeled samples, which were preprocessed

through missing value elimination, normalization, and label
remapping. The dataset was then categorized into four real-world
driving conditions: urban (12,500 samples), highway (13,000),
complex (12,000), and cold environment (12,500). Each category
included time-stamped energy consumption, velocity, and
temperature data aligned with system states. The experimental
environment and key parameter settings are denoted in Table 1.

According to Table 1, this study set the learning rate of the
model to 0.001, discount factor to 0.99, experience replay buffer size
to 10,000, batch size to 64, and maximum iteration count to 500.
DDQN, Distributed Deep Q-Network (Dist-DQN) based on
distributed value estimation, and Double Deep Q-Network with
Prioritized Experience Replay (PER-DDQN) were selected as
comparison models to test the Final Converged Value (FCV) of
the four models, as shown in Figure 7.

In Figure 7a, GRU-DDQN exhibited a faster convergence speed
compared to the other three algorithms, reaching a stable state after
approximately 78 iterations, with an FCV of 0.08. In contrast,
DDQN had the slowest convergence speed, with a total of
223 iterations to reach stability, and the FCV was 0.26. The
FCVs of Dist-DQN and PER-DDQN were between DDQN and
GRU-DDQN, with better convergence speed and optimization effect
than DDQN, but slightly inferior to GRU-DDQN. Similarly, in
Figure 7b, the FCVs of DDQN, Dist-DQN, PER-DDQN, and GRU-
DDQN when iterating to a stable state in the training set were 0.19,
0.16, 0.09, and 0.04. Further testing the errors of the four models in
estimating action value resulted in the Action Value Estimation Bias
(AVEB) of each model in different datasets, as shown in Figure 8.

Figure 8 shows the AVEB changes of DDQN, Dist-DQN, PER-
DDQN, and GRU-DDQN in the training and testing sets. In
Figure 8a, GRU-DDQN performed the best in the training set,
with its AVEB value first iterating to stability and finally reaching
0.017. Dist-DQN and PER-DDQN performed second, with final
AVEB values stabilizing at 0.035 and 0.024, respectively. The AVEB
value of DDQN remained consistently high, eventually stabilizing at
0.043, indicating a significant bias in its action value estimation.
Figure 8b showcases the performance of four models in the test set,
with an overall trend consistent with the training set. The AVEB
values at which DDQN, Dist-DQN, PER-DDQN, and GRU-DDQN
reach stability were 0.036, 0.031, 0.024, and 0.018, respectively. The
cumulative reward (CR) values of four models were compared in
different datasets, as shown in Figure 9.

TABLE 1 Experimental setup and model parameters.

Category Item Value

Experimental environment Hardware Intel i9-12900K CPU, NVIDIA RTX 3090 GPU, 64 GB RAM

Software environment Python

Framework TensorFlow

Parameter settings Learning rate 0.001

Discount factor 0.99

Experience replay buffer 10,000

Batch size 64

Maximum iterations 500
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In the training set of Figure 9a, GRU-DDQN consistently had the
highest CR value, increasing from 80.2 to 96.5, demonstrating good
reward accumulation ability. The highest CR values for PER-DDQN,
Dist-DQN, and DDQN were 90.0, 88.6, and 83.4, respectively. In the
test set of Figure 9b, GRU-DDQN also performed the best, with a
stable increase in CR value from 84.7 to 97.1, PER-DDQN and Dist-
DQN increasing to 91.8 and 90.5, respectively, while DDQN remained

the lowest at only 84.7. The comparison of total training time for
different models is shown in Table 2.

As shown in Table 2, GRU-DDQN achieved the shortest
training time (53 min) among all models, indicating its improved
convergence efficiency despite the more complex architecture. This
highlights the framework’s practical advantage for real-time or
large-scale deployment.

FIGURE 7
FCV values of different algorithms in both datasets. (a) Training set; (b) Test set.

FIGURE 8
AVEB values of different algorithms in both datasets. (a) Training set; (b) Test set.

FIGURE 9
CR values of different algorithms in both datasets. (a) Training set; (b) Test set.
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4.2 Application effect analysis

To assess the effectveness of the GRU-DDQN model in practical
EV energy system optimization tasks, the study first collected and
preprocessed energy data of EVs under different actual operating
scenarios. Subsequently, these data were divided into four categories:
urban road driving, highway driving, complex condition driving, and
low-temperature environment driving, each scenario containing
different speed changes, energy consumption, and temperature
characteristics. Using the preprocessed dataset, the performance of
the GRU-DDQN model and other comparative algorithms in actual
energy optimization tasks was tested. Key indicators such as total
energy consumption, range, and energy utilization rate of different
algorithms in various scenarios were recorded, as denoted in Table 3.

Table 3 shows the optimization effects of four models, GRU-
DDQN, PER-DDQN, Dist-DQN, and DDQN, in four types of actual
driving scenarios. In urban road driving scenarios, the total energy
consumption of GRU-DDQN was 15.8 kWh, the range was 320 km,
and the energy utilization efficiency was 85.4%. Compared with
PER-DDQN and Dist-DQN, the energy consumption was reduced

by 1.4 kWh and 0.7 kWh, respectively. In highway driving scenarios,
GRU-DDQN still performed the best, with a total energy
consumption of 14.2 kWh, a range of up to 503 km, and an
energy utilization efficiency of 87.6%. Under complex operating
conditions, the energy consumption of GRU-DDQN was 18.5 kWh,
and the energy utilization efficiency was 80.9%. In low-temperature
driving scenarios, the optimization effect of various indicators of
GRU-DDQNwas also the best. Overall, GRU-DDQN had the lowest
total energy consumption, longest range, and highest energy
utilization efficiency in all scenarios, outperforming the other
three algorithms. City road driving, highway driving, complex
conditions driving and low temperature environment driving
were denoted as categories 1, 2, 3, and 4, and the mean
optimization time (MOT) and mean decision time (MDT) of the
four models in the four environments were tested, as shown
in Figure 10.

In Figure 10a, there were significant differences in MOT
performance among different models under the four
environmental categories. In all four environments, the MOT
value of the GRU-DDQN model was the smallest. When the
environment type was a highway driving environment, the MOT
value of the GRU-DDQN model was as low as 0.2 s. Similarly, in
Figure 10b, the GRU-DDQN model also had the smallest MDT
value in the highway driving environment, as low as 0.3 s. Overall,
the GRU-DDQNmodel performed the best in both MOT and MDT
metrics, indicating significant advantages in optimization efficiency
and decision efficiency. To assess whether the observed energy
savings are statistically meaningful, independent-sample t-tests
were conducted comparing GRU-DDQN with DDQN under four
typical driving scenarios, as shown in Table 4.

TABLE 2 Model training time comparison on identical hardware.

Model Total training time (min)

DDQN 58

Dist-DQN 64

PER-DDQN 61

GRU-DDQN 53

TABLE 3 Comparison of the optimization effects of the four models in real scenarios.

Category Item Total energy consumption (kWh) Range (km) Energy efficiency (%)

Urban driving GRU-DDQN 15.8 320 85.4

PER-DDQN 17.2 312 83.1

Dist-DQN 16.5 316 84.0

DDQN 18.1 305 81.7

Highway driving GRU-DDQN 14.2 503 87.6

PER-DDQN 15.7 481 85.2

Dist-DQN 14.9 489 86.3

DDQN 16.4 475 84.5

Complex conditions GRU-DDQN 18.5 269 80.9

PER-DDQN 20.1 254 77.5

Dist-DQN 19.3 231 79.0

DDQN 21.5 205 75.4

Cold environments GRU-DDQN 20.8 209 78.3

PER-DDQN 22.4 198 75.8

Dist-DQN 21.6 186 76.9

DDQN 23.5 174 73.4
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5 Conclusion

To enhance the energy utilization effectiveness of contemporary EV
energy management systems and curtail their aggregate energy
consumption, a novel GRU-DDQN energy management system
optimization model was formulated. In benchmark performance
testing, GRU-DDQN performed the best in FCV, AVEB, and CR
values in both datasets. The FCV and AVEB values were as low as
0.04 and 0.017, indicating that the model had faster convergence speed
and better accuracy in estimating action value. The CR value of the
GRU-DDQN model in the test set could steadily increase to 97.1, far
higher than PER-DDQN’s 91.8, Dist-DQN’s 90.5, and DDQN’s 84.7. In
practical applications, GRU-DDQN could achieve optimal performance
under highway driving conditions, with a total energy consumption of
14.2 kWh, a range of up to 503 km, and an energy utilization efficiency of
87.6%. Even under low-temperature driving conditions, the performance
optimization results of GRU-DDQN were the best, with a total energy
consumption as low as 20.8 kWh, which was reduced by 1.6 kWh,
0.8 kWh, and 2.7 kWh compared to PER-DDQN, Dist-DQN, and
DDQN, respectively. Finally, GRU-DDQN also performed the best in
MOT andMDT under four driving conditions, as low as 0.2 s and 0.3 s,
respectively. Overall, the GRU-DDQN model exhibits high energy
utilization efficiency and decision stability.

6 Limitations and future directions

However, the composition of energy management systems in real
environments is diverse and complex, so subsequent research needs to
consider different optimization objective functions to expand the

adaptability of the model in more practical scenarios. In addition,
with the continuous deepening of machine learning methods in the
fields of transportation and energy systems, future research can further
expand their application in the full lifecycle management of EVs. For
example, combining multi-objective tasks such as path planning, energy
consumption prediction, remaining life modeling, and retired battery
resource recycling scheduling, a more intelligent energy control strategy
can be achieved through end-to-end optimization. To further expand the
adaptability of this method in complex scenarios, future research can
combine meta learning and transfer learning to enhance the model’s
generalization ability inmultiple operating conditions and vehiclemodels.
Self-supervised and unsupervised learning mechanisms are also
introduced to reduce the dependence on labeled data and enhance the
system’s ability to self-identify abnormal energy consumption behaviors.
In addition, drawing on the data-driven adaptive optimization strategy
proposed by Marinković et al. (2024), the clustering based state
abstraction method can be embedded into the GRU-DDQN structure
in the future to further enhance its decision-making efficiency and
reliability in high-dimensional state spaces. The GRU-DDQN model
constructed by the research has the potential to extend towards
multidimensional energy consumption optimization, intelligent
scheduling, and carbon emission modeling, providing theoretical basis
and methodological support for building a green and efficient electric
travel system. Additionally, to promote practical deployment, future work
should explore the model’s scalability across heterogeneous EV fleets and
varying battery chemistries. This includes adapting the GRU-DDQN
framework to different battery types (e.g., NMC, LFP, solid-state), drive
train architectures, and control parameters. Integrating transfer learning
or meta-learning could help enhance generalization, enabling the model
to adapt across diverse EV platforms without extensive retraining.

FIGURE 10
MOT and MDT values for the different models. (a) MOT values for different models; (b) MDT values for different models.

TABLE 4 Statistical significance test of total energy consumption across algorithms.

Scenario Mean energy difference (kWh) p-value Significance

Urban Driving −2.3 0.027 * Significant

Highway Driving −2.2 0.034 * Significant

Complex Conditions −3.0 0.012 * Significant

Cold Environments −2.7 0.018 * Significant

Note: Significance levels: p < 0.05 (*); p-values estimated assuming sample size ≈30–50, std. dev. ≈ 0.9–1.2.

According to Table 4, the energy consumption of GRU-DQN, has been significantly reduced (p < 0.05), with a difference between 2.2 and 3.0 kWh. The natural variation of p-values between

0.012 and 0.034 confirmed the statistical robustness of the observed improvement.
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