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With the advancement of Industry 4.0, there has been a growing demand for the
automation and digitalization of manufacturing processes, including machining.
One of the core elements of this evolution is tool wear monitoring. In automated
production systems, the condition of tools greatly influences production
efficiency, cutting stability, and the quality of machined surfaces. The present
study proposes an effective tool condition monitoring system based on cutting
sound signature analysis and a machine learning model for milling processes. In
the proposed system, the correlation between the sound signal and the tool flank
wear under various cutting conditions is investigated. First, the measured sound
signals in the milling process are extracted into a series of intrinsic mode
functions (IMFs) using the ensemble empirical mode decomposition (EEMD).
Hilbert transform (HT) is then applied to each IMF to generate the respective
instantaneous frequencies, and the most significant statistic features correlated
to the tool wear are selected using the collinearity diagnostics. Finally, an artificial
neural network (ANN) model is designed to estimate tool wear levels.
Experimental results confirm that the developed approach maintains excellent
accuracy in tool wear prediction across of various cutting conditions. Moreover,
the proposed approach has the potential to be implemented in practical
applications as a cost-effective method for tool condition monitoring.
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1 Introduction

The manufacturing sector is one of the core industries that supports the sustainable
development of the global industry. Recently, collecting and utilizing of data in
manufacturing processes has proven beneficial for improving manufacturing efficiency
(Buggineni et al., 2024; Tao et al., 2018). Moreover, with the development of Industry 4.0,
demand for automation and digitalization of manufacturing processes such as machining
has increased to meet the needs of intelligent manufacturing, cloud-based monitoring, and
smart factories (Imad and Kishawy, 2022; Mourtzis et al., 2019; Rudel et al., 2022; Vu et al.,
2023). In machining, tool condition monitoring systems play a crucial role because tool
wear is a common and inevitable phenomenon due to friction during metal cutting
operations (Alphonse et al., 2024; Liu G. et al., 2024). It is a critical problem in
machining due to its negative effects on the precision of products, production costs,
and tool life (Wang et al., 2024; Zhou Y. et al., 2022). Furthermore, severe wear and tool
failures can significantly disrupt cutting processes. Therefore, tool wear monitoring is
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essential for enhancing product quality and productivity by reducing
downtime and preventing premature tool replacements. Tool wear
monitoring methods are typically categorized as direct and indirect.
Direct tool wear monitoring, which includes microscopic
examination, optical and laser measurement techniques, has the
advantages of providing high accuracy and reliability in assessing
wear, but its drawback is not being able to achieve real-time
monitoring because the measurement is easily disrupted by
cooling fluids, chips, and other environmental interferences
during machining (Akkoyun et al., 2021; Antsev et al., 2019;
Kasiviswanathan et al., 2024; Rehman et al., 2024). By contrast,
indirect methods employ various sensor signals such as vibration,
cutting forces, and acoustic emission (AE). These methods offer the
advantage of continuous real-time monitoring. Therefore,
researchers have extensively explored their viability. In refs.
(Sánchez Hernández et al., 2019; Xiaoli et al., 2004), a strong
correlation between the cutting force signal and the degree of
tool wear is found, particularly in the feed direction. Force and
torque signals have been utilized to capture the changes of the
micro-end mill geometry caused by the tool wear (Hong et al., 2016;
Mamedov et al., 2025). Vibration signature analysis is also known as
an efficient method for the identification and monitoring of tool
wear. Changes in the accelerometer spectrum were clearly reflected
in the magnitude corresponding to different levels of tool wear, as
reported by Rmili (Rmili et al., 2006). The peak period of spindle
vibration time-domain response was used to identify the tool
chipping. In addition, the spindle vibration signal demonstrated
better performance than the spindle current signal for monitoring
the tool chipping (Kang et al., 2019). Another method for tool
condition monitoring, acoustic emission (AE). Since AE signals are
extracted directly from the cutting region, they are highly sensitive to
changes during the machining processes (Hundt et al., 1994; Kon
et al., 2024). Moreover, the wide bandwidth of acoustic emission
provides a significant advantage in monitoring tool conditions as
compared to other signals (Chen and Li, 2007). Although indirect
tool wear monitoring methods based on vibration, cutting forces,
and acoustic emission (AE, 100 kHz to 1 MHz) have proved to be
effective, they still face problems of sensor costs and installation
complexity (Bagga et al., 2022; Lara de Leon et al., 2024; Schueller
and Saldaña, 2022). Force, vibration, and AE signals are obtained
from a dynamometer, an accelerometer, and an AE sensor,
respectively. Their mounting requires a couplant between the
sensor and the workpiece. Additionally, the high cost of these
sensors and inconsistent signal results under different operating
conditions are significant drawbacks of these approaches (Shokrani
et al., 2024). Recently, audible sound signal (20 Hz–20 kHz) analysis
has emerged as a compelling alternative for indirect tool wear
monitoring, offering advantages such as low cost, simple
installation, and real-time monitoring capability, which can be a
potential method for practical applications (Catalán et al., 2022;
Kothuru et al., 2017; Kothuru et al., 2018; Li et al., 2025). By
investigating the correlation between the audible sound signal
and the corresponding tool conditions, from the break-in state to
the failure state, tool wear can be classified into different wear
categories (Kothuru et al., 2018).

A real-time tool condition monitoring system typically consists
of five components: sensor integration, signal collection, signal
processing, model prediction, and decision-making (Anas et al.,

2022; Kaliyannan et al., 2024; Liu Z. et al., 2024; Mohamed et al.,
2022; Pimenov et al., 2023; T et al., 2024; Turšič and Klančnik, 2024).
Signal processing aims to extract a sufficient number of signal
features that can effectively the reveal the cutting tool conditions.
This step plays a crucial role in improving tool condition monitoring
systems. In previous studies, signal features have been generated
from the time-domain signals, frequency spectra, and time-
frequency responses (Jirapipattanaporn et al., 2023; Katamba
Mpoyi et al., 2024; Maia et al., 2024; Navarro-Devia et al., 2023;
Yuan et al., 2020). In order to analyze the measured time-domain
signals, root mean square (RMS) has been identified as a simple and
useful indicator for tool wear monitoring. The RMS voltage can be
used to observe the increase in flank wear (Pai and Rao, 2002).
However, signal features extracted from the time domain have a low
identification rate due to disturbances in the signals. To overcome
these limitations, frequency spectrum and time-frequency domain
have been employed. The correlation between cutting harmonic
frequency and cutting tool wear has been studied using fast Fourier
transform (Heitz et al., 2023). However, its assumption of
stationarity in the signal limits its effectiveness in the dynamic
and noisy environment of machining, and while it is effective in
identifying wear-related frequency peaks in the early stages, it
struggled with resolution at later stages or under high-speed
cutting conditions (Dosko et al., 2023). The wavelet multi-
resolution analysis has been used as a criterion for the tool wear
monitoring. Discrete wavelet transform and wavelet packet
transform of raw signals have been utilized to capture the
significant wear features to successfully estimate the degree of
tool wear (Jemielniak, 2010). For further enhancement signal
processing, the Hilbert-Huang transform (HHT) has been used
for studying nonlinear and non-stationary signals, such as
cutting, vibration, and sound-emitted signals (Dosko et al., 2023;
Gasca et al., 2018; Olalere and Olanrewaju, 2023). HHT consists of
the ensemble empirical mode decomposition (EEMD) and the
Hilbert transform (HT). EEMD is applied to extract the signal
into a set of intrinsic mode functions (IMFs) (Dosko et al.,
2023). Then, each IMF is transformed into the instantaneous
frequency with local energy using HT. Changes in cutting
geometry due to a worn cutter can be identified based on local
property from the Hilbert-Huang spectrum. A decision-making
algorithm based on the generated signal features is the last step
for the tool condition prediction. Machine learning techniques have
been a preferred choice thanks to their advantages, such as superior
learning capabilities and noise suppression (T et al., 2024). In ref.
(Kothuru et al., 2018), a support vector machine (SVM) model is
used as the decision-making algorithm to monitor tool wear and
failure based on audible sound signals during end milling. SVM
algorithm is also chosen to determine tool wear conditions and
workpiece hardness based on audible sound signals in gear milling.
In Ref. (Ravikumar and Ramachandran, 2018), a random forest
algorithm is employed to predict tool wear by analyzing audible
sound signals collected during the milling of aluminum alloys.
Neural network models have demonstrated good performance in
tool wear prediction in terms of classification accuracy (Chen and
Lin, 2022). Although various machine learning decision-making
algorithms have proved to provide good performance in tool wear
prediction, Kothuru et al. (Kothuru et al., 2018) claimed that tool
wear monitoring systems can be improved by introducing effective
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pre-processing techniques to filter noise and enhance signal features,
ensuring that the selected features are closely linked to the cutting
tool conditions.

This study proposes an audible sound-based tool wear
monitoring system with an effective feature selection method to
improve signal feature accuracy. In this study, the audible sound
signals are collected using a microphone during milling experiments
and analyzed using EEMD and HT. The most sensitive IMF of the
sound signal to the tool wear is identified and used for extracting
wear features. Various statistical features generated from the time
domain, frequency spectrum, and time-frequency domain are
optimized using collinearity diagnostics. Finally, an ANN
machine learning model is used to estimate tool wear under
various cutting conditions. The low-cost and simple installation
audible sound-based tool wear monitoring system proposed in this
study can be beneficial for future smart factories with intelligent
manufacturing systems.

2 Research methodology

2.1 Tool wear monitoring procedure

Figure 1 illustrates the proposed analysis procedure for the tool
condition monitoring system. It includes six steps: sound and tool
wear signal measurement, sound signal preprocessing, signal

processing, feature generation, feature selection, and model
prediction. Audible sound was chosen as the input signal to the
tool wear monitoring system because the measurement device
(microphone) is low cost, easy to install, and can be placed at a
distance from the cutting zone, avoiding interference with the
machining process or tool path. EEMD and Hilbert transform
were used for pre-processing input signals, as they are well-suited
for handling non-stationary and nonlinear characteristics ofsound
generated during milling. In data processing step, time spectrum,
frequency spectrum, and time-frequency spectrum, which capture
comprehensive correlation between sound and tool condition, were
generated by EEMD and Hilbert transform. Since feature extraction
generated large number of statistical features which can be highly
correlated, carry redundant information, and reduce
interpretability, feature selection called Variance inflation factor
(VIF) was then applied to filter irrelevant features. Finally, the
ANN, an effective machine learning model for solving complex
decision boundary problems that include multiple variables was
used to predict tool wear. The details of this procedure are discussed
in the following sections.

2.2 Hilbert–huang transform

Asmentioned in the literature, HHT is an effective technique for
analyzing cutting signals that exhibit nonlinear and non-stationary

FIGURE 1
Flow chart of tool wear monitoring.
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characteristics. Thus, it is used in this work to analyze cutting sound
signals for tool wear monitoring. First, the measured audio signals
are decomposed into a set of mono-element called IMF by applying
the EEMD, as shown in Equation 1. Each IMF represents a simple
oscillatory mode.

x t( ) � ∑n
j�1
cj t( ) + rn t( ) (1)

where cj(t) presents the jth intrinsic mode function, which is
considered as a mono-element signal, while the residual rn(t), as
a monotonic function, represents either a constant or the
mean trend.

Figure 2 shows the detailed procedure of EEMD, where the
shifting process is used to extract the original measured sound signal
into several IMFs. The shifting process stops when the residual
signal reaches a monotonic function or a constant, and the residual
signal could not be further decomposed.

Once the EEMD process is completed, the IMFs are extracted.
HT is then used to transform each of the disintegrated IMF using
Equation 2 below.

yj t( ) � H cj t( )[ ] � P

π
∫∞
−∞

cj τ( )
t − τ

dτ (2)

in which P presents the Cauchy principal value of the integral, t is the
time, and τ is the shift parameter. The analytic signal is constructed
using the Hilbert Transform, as defined in Equations 3, 4 below.

zj t( ) � cj t( ) + iH cj t( )[ ] � Aje
iϕj t( ) (3)

Aj �
�����������
c2j t( ) + y2

j t( )
√

(4)

whereAj presents the amplitude of instantaneous frequency fj, which
is calculated by Equation 5. It represents the time and frequency
domain of the jth IMF, and it can be described in terms of the
instantaneous phase angle ϕj(t) determined by Equation 6:

fj � 1
2π

dϕj t( )
dt

(5)

ϕj t( ) � tan−1
yj t( )
cj t( )[ ] (6)

The local energy of instantaneous frequency and the mean
instantaneous frequency of IMFs are considered as the cutting
signal features to estimate the degree of tool wear.

Since instantaneous frequency varies with time, the center
frequency fcj of the jth IMF is defined as the average of the
instantaneous frequency over time, weighted by the amplitude
(or energy) of the IMF. This is the energy-weighted mean
frequency and the center frequency is defined as follow.

fcj �
∫fj t( ).A2

j t( )dt∫A2
j t( )dt (7)

where Aj is the amplitude of the instantaneous frequency fj of
the jth IMF.

The Hilbert-Huang spectrum, which represents the
time–frequency distribution of the amplitude, is then defined by
Equation 8 below.

x t( ) � ∑N
n�1

An t( )ei ∫2πfn t( )dt( )
(8)

2.3 Feature selection

The feature selection method aims to eliminate the weak and
irrelevant features, thereby improving the performance of the
proposed prediction model. In this work, multiple statistical
features were generated from the dominant IMFs across different
domains, including the time domain, frequency domain, and time-
frequency domain, which may exhibit strong correlations.
Collinearity diagnostics is ussually used to address collinearity or
multi-collinearity in feature selection for tool wear prediction,
ensuring the reliability and stability of machine learning models.
In machining signal analysis, extracted features, such as energy
ratios and statistical indicators, often exhibit strong correlations due
to their shared physical origins. High multicollinearity among these
features can inflate variance in regression coefficients, reduce model
interpretability, and lead to overfitting. There have been many
feature selection methods proposed to deal with collinearity.
Correlation coefficients and mutual information, which rank
features based on their relevance to the target variable (Zhou H.
et al., 2022). These are often used in the early stages of model
development due to their simplicity. Wrapper methods like
recursive feature elimination (RFE) provide higher accuracy by
evaluating feature subsets through iterative model training, but
they are computationally intensive (Bulut et al., 2025). Variance
inflation factor (VIF) is a technique that specifically targets

FIGURE 2
Block diagram of ensemble empirical mode decomposition (EEMD).
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multicollinearity among features (Kyriazos and Poga, 2023), which
is well-suited to remove highly correlated features in the time
domain, frequency domain, and time-frequency domain in this
study. The VIF quantifies the degree of multi-collinearity
between the self-variable xi and other independent variables, as
described in Equation 9. The tolerance Rxi is determined using
Equation 10.

VIF � 1
1 − R2

xi

(9)

Rxi �
∑n

i,k�1 xi − �xi( ) xk − �xk( )�����������������������∑n
i�1 xi − �xi( )2∑n

k1 xk − �xk( )2
√ (10)

The VIF for each feature indicates the degree to which the
variance of its estimated regression coefficient is inflated due to its
correlation with other predictors. Based on widely accepted
guidelines (James et al., 2023), VIF values are interpreted as follows:

• VIF = 1: Indicates complete independence (no
multicollinearity).

• VIF <5: Suggests low multicollinearity; features are generally
safe to retain.

• VIF between 5 and 10: Indicates moderate multicollinearity;
may be acceptable depending on the model and context.

• VIF >10: Indicates strong multicollinearity; such features
should typically be removed to improve model stability and
interpretability.

In this study, any feature with a VIF value greater than 10 was
considered to exhibit strong multicollinearity and was eliminated.

2.4 Artificial neural network

Once the important features are identified, they serve as the
inputs to an artificial neural network (ANN) model for estimating
tool wear. By learning from the training data, the ANNmodel offers
the advantage of mapping signal features to flank wear (Ghosh et al.,
2007). An ANN consists of interconnected nodes called neurons,
and is a strong candidate for solving classification problems.
Particularly, ANNs are well suited for handling complex decision
boundary problems involving multiple variables. A single neuron in
the ANN model, which represents the relationship between inputs
and outputs, is described in Equations 11,12, .

ŷi � f ∑n
i�1
wi*xi − θ⎡⎣ ⎤⎦ (11)

f x( ) � 1
1 + e−x

(12)

where wi describes the weight between neurons, θ presents the
threshold, and f(x) represents the sigmoid function.

The Back-propagation Neural Network (BPNN), which consists
of a forward pass and a backward pass, is a multi-layer network with
excellent learning capabilities. In this process, the backward pass
aims to use the last objective function (loss/cost function) to update
the parameters (Asiltürk and Cunkas, 2011). Typically, the mean
square error (MSE), described in Equation 13, is used as the

objective function. If the error value is large, it indicates that the
model parameters are not well learned. In such cases, training must
continue until the parameters or error values converge.

MSE � 1
n
∑m
i�1

yi − ŷi( )2 (13)

This study used the Levenberg-Marquardt algorithm to optimize
the internal structure of the nonlinear multi-layer network and
update the weights and bias values in the ANN model. This training
method offers the advantages of fast convergence, and is suitable for
small to medium-sized datasets (Bano et al., 2024). The weights of
the training model in this study were optimized and updated
according to Equations 14–16.

wk+1 � wk − JTJ + μI( )−1JTe (14)
where μ is the adaptive damping factor adjusted depending on the
weight error, I is identify matrix, e is the error calculated during the
forward pass and is backpropagated to the previous layers to update
their weights, J is Jacobian matrix calculated during the backward pass.

ei � yi − ŷi (15)
Jij � ∂ei

∂wi
(16)

The biases were also optimized and updated in the same way and
alongside the weights using Levenberg-Marquardt algorithm. The
structure of the proposed ANN model optimized using the
Levenberg–Marquardt algorithm consists of eight input nodes, a
hidden layer with twelve nodes, and a single output node. To ensure
stable and efficient training, an initial damping rate of 0.01 was
selected and adjusted by factors of 10 and 0.1 based on the loss. The
data set has been randomly divided into training and testing
datasets, with 70% used for training and the remaining 30%
for testing.

3 Experimental setup and
measurement

To conduct the tool wear experiments, a 3-axis precision milling
machine (M350-CNCMTT) with a maximum spindle speed of
24,000 rpm was used in this paper.

A 2-flutes HSS-Cobalt end mill cutter with a diameter of 6 mm
was used in all experiments to machine a block of S45C, which was
made by casting. The cutting tool and dimensions of the workpiece
are illustrated in Figures 3a,b, respectively. The details of the
experimental setup are shown in Figure 4.

The audio signals were collected using an ECM-800 microphone,
which has a bandwidth of 15 Hz–20 kHz. A data acquisition module
(model NI-9234) was used to transmit the collected data at a sampling
rate of 51.2k samples/sec. As shown in Figure 4, the microphone was
fixed to the CNCmachine usingmagnetic attraction, with its receiving
end positioned close to the cutting region. A two-dimensional image
measurement instrument (model of EVM-2515) was used to record
the degree of tool wear after each cut.

In this research, nine down-milling experiments were conducted
under dry cutting conditions. All experiments were performed in the
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stable cutting environment, where the cutting depth was 0.5 mm and
the cutting width was 2.5 mm. The cutting conditions for the tool
wear experiment, including various spindle speeds and feed rates,
are listed in Table 1. The cutting distance per cut was 103 mm. After
each cut, the flank wear was measured until the end of the tool life.
The international standard ISO 8688 was used to determine the tool
life (ISO, 1989).

A LabVIEW program was developed to capture audio signals
during machining. The LabVIEW interface and the corresponding
tool wear under the cutting condition of 4,000 rpm and 100mm/min
are shown in Figure 5. The tool wear progression for each cutting
tool was captured using the EVM-2515 instrument and is illustrated
in Figure 6.

4 Analysis results and discussions

The measured audio signals were decomposed into eight
Intrinsic Mode Functions (IMFs) using Ensemble Empirical

FIGURE 3
(a) HSS milling cutter and (b) workpiece.

FIGURE 4
Setup in a three-axis precision milling machine.

TABLE 1 Tool wear experiment under various cutting conditions.

Test no. Cutting speed (rpm) Feed rate (mm/min) Cutting depth (mm) Cutting width (mm)

1 3,000 80 0.5 2.5

2 3,000 100 0.5 2.5

3 3,000 120 0.5 2.5

4 3,500 80 0.5 2.5

5 3,500 100 0.5 2.5

6 3,500 120 0.5 2.5

7 4,000 80 0.5 2.5

8 4,000 100 0.5 2.5

9 4,000 120 0.5 2.5
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Mode Decomposition (EEMD), as described in Equation 1. Figure 7
shows the first eight IMFs obtained from the worn audio signal
recorded at a spindle speed of 3,000 rpm and a feed rate of 80 mm/
min. Subsequently, the Hilbert Transform (HT) was applied to each
IMF. To evaluate the significance of each IMF, their energy ratios
were computed according to Equation 17, with the results presented
in Figure 8.

rj �
∫+∞
−∞ cj ω( )∣∣∣∣ ∣∣∣∣2dω∫+∞
−∞ x ω( )| |2dω (17)

where, rj is the energy ratio of the jth IMF, cj(ω) is spectral
representation of the jth IMF, x(ω) is spectral representation of

the original signal, |cj(ω)|2 is spectral energy density of the IMF,
|x(ω)|2 is spectral energy density of the full signal.

Among all IMFs, IMF1 consistently exhibited the highest energy
ratio across all tool wear conditions, indicating that it captures well
the primary vibration components related to the cutting process.

Additionally, the center frequencies of IMF1, calculated using
Equation 7, are summarized in Table 2, clearly showing that these
frequencies lie within the energy bandwidth range of 6,100
Hz–6,500 Hz. To validate the mechanical relevance of this
frequency range, a sweeping test was performed by gradually
increasing the spindle speed under non-cutting conditions to
identify the resonant frequencies of the tool–spindle holder. The
recorded sound signals from this test were transformed into a

FIGURE 5
(a) LabVIEW Interface and (b) flank wear measurement.

FIGURE 6
Measured flank wear curves under various cutting conditions.
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frequency spectrum using the Fast Fourier Transform (FFT),
generating the 3D multiplot frequency spectrum presented in
Figure 9. It was observed that the center frequencies of IMF1
(6,100–6,500 Hz) closely overlapped with the machine’s
structural resonant frequency.

The overlap between IMF1’s center frequencies and the
machine’s resonant frequency is particularly significant because
signals near the structural resonance are typically amplified and
highly sensitive to changes in mechanical conditions like tool wear,
chatter, or other dynamic instabilities. This frequency alignment
ensures that IMF1 reliably captures the mechanical interactions and
vibration behaviors directly linked to the cutting process. Therefore,
IMF1 was selected for extracting statistical features that characterize
the local properties the signal, such as peaks, symmetry, and spread,
in both the time domain and time–frequency domain. In addition,
the energy ratios of all IMFs (r_IMF1 to r_IMF8 were used as
energy-based features, capturing the global energy distribution of
the signal across frequency bands in the frequency domain. In this

study, various statistical features were generated from the IMF1 in
time domain and time-frequency domain. These features are the
most common used in signal-based tool wear monitoring, which
include kurtosis (KU), skewness (SK), standard deviation (SD), root
mean square (RMS), maximum value (MAX), variance (VAR),
mean (ME), and crest factor (CF) (Abubakr et al., 2021; Lara de
Leon et al., 2024; Mohamed et al., 2022). KUmeasures the tailedness
of the signal distribution. A high KU implies more extreme values or
spikes in the signal, indicating sudden impacts from tool chipping or
cracking, often caused by worn tools. SK measures the asymmetry of
the signal’s amplitude distribution. Changes in SK reflect
misalignment or material accumulation on one side of the tool,
indicating asymmetric wear. SD quantifies the spread of signal
values around the mean. A high SD indicates increased vibration
variability or cutting force fluctuations due to tool wear or chipping.
RMS measures the effective amplitude or power content of a signal.
An increase in RMS reflects greater energy from friction and
rubbing, implying progressing tool wear. MAX is the highest

FIGURE 7
The results of the first eight IMFs of the cutting sound signals.
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amplitude observed in the signal. Spikes in MAX are signs of sudden
impact events, which may occur due to severely worn or damaged
tools. VAR is the square of SD, representing the signal’s dispersion.
A higher VAR indicates greater signal variability due to intensified
tool material interactions as wear progresses. ME is the arithmetic
average of all signal values. Shifts in ME reflect changes in the
baseline force or vibration level, typically associated with progressive
tool wear. CF is the ratio of peak amplitude to RMS. A high CF
suggests localized, sudden signal events amid steady cutting, such as
severe wear or the initiation of cracks. All of these statistical features
extracted from IMF1 were calculated and are presented in Table 3.

Moreover, the energy-based features for all IMFs were computed
using Equation 17. As a result, a total of 22 features were generated
across the time domain, frequency domain, and time–frequency
domain, as detailed in Table 4.

To improve the performance and reliability of the developed tool
wear monitoring system, it is essential to eliminate irrelevant and
redundant features from the extracted feature set. A key issue that
negatively impacts model accuracy is multicollinearity, which occurs
when two or more features are highly linearly correlated. To address
this, the VIF was employed as a quantitative measure of
multicollinearity among features. In this study, VIF values were

FIGURE 8
The energy ratio of the first eight IMFs.

TABLE 2 Center frequencies, defined by Equation 7, of IMF1 of Test No. 1.

Tool wear (μm) 81 120 163 198 226

Frequency (Hz) 6,173 6,372 6,352 6,501 6,481

FIGURE 9
3D multi-plot frequency spectrum obtained from under non-cutting conditions.
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computed using Equations 9,10, , and any feature with a VIF greater
than 10 was considered to exhibit serious multicollinearity. These
features were excluded to prevent model instability, inflated standard
errors, and reduced clarity in interpreting feature importance. By
applying this threshold, eight features with acceptable VIF values
(≤10) were selected for the final analysis, as presented in Table 5. This
subset includes four time-domain features extracted from IMF1 and
four energy-ratio features representing the energy distribution across
selected IMFs in the frequency domain.

Once the feature selection procedure was completed, the selected
featured were fed into the ANN model to predict tool wear. In the
developed system, the ANN model used Levenberg-Marquardt
optimization with eight input nodes, twelve hidden nodes, and
one output node. The data set has been randomly divided into
training and testing datasets, with 70% used for training and the
remaining 30% for testing. Figure 10 presents the results of tool wear
prediction using the ANN model with feature selection (ANN + FS)
and without feature selection (ANN) under multiple cutting

conditions. The results indicate that the ANN model without
feature selection performed the worst. However, the prediction
accuracy was significantly improved when feature selection was
applied. Their performances are compared and presented in
Table 6. The prediction accuracy of the developed method aligns
well with the measured tool wear across different cutting conditions,
with an average prediction accuracy of approximately 90.03%.

The significant improvement in tool wear prediction when feature
selection is applied in this study highlights the critical importance of
preprocessing raw audible sound signals and selecting the most
informative and meaningful features for input into the ANN
machine learning model. Machining environments often introduce
various noise sources unrelated to the cutting process, such as
coolant sprays or sounds from other machine components, which
can introduce irrelevant features that degrade model performance and
reliability. Furthermore, tool wear generates complex, nonlinear, and
nonstationary sound signals with time-varying frequency content. In
this study, signal preprocessing using Ensemble Empirical Mode
Decomposition (EEMD) and the Hilbert Transform effectively
isolated meaningful signal components and extracted features that
accurately reflect tool wear, rather than environmental interference.
This process yielded relevant features across multiple domains (time,
frequency, and time-frequency domains). However, these features may
exhibit multicollinearity, which can lead to overfitting and model
instability. Therefore, a Variance Inflation Factor (VIF)-based feature
selection technique was further employed in this study to identify and
remove highly correlated features to stablize and improve the prediction
accuracy from 84.29% (ANN without FS) to 90.03% (ANN with FS).

In Ref. (Kothuru et al., 2017), the authors so emphasize the critical
importance of applying preprocessing techniques to extract physical
parameters that closely correlate with actual tool wear. In their study,

TABLE 3 The statistical features.

KU � 1
n∑n

i�1(xi−�x)4(1
n∑n

i�1(xi−�x)2)2 SK � 1
n∑n

i�1(xi−�x)3(1
n∑n

i�1(xi−�x)2) 3
2

RMS �
�����
1
n∑n
i�1
x2
i

√
MAX � max(x)

VAR � 1
n∑n
i�1
(xi − �x)2 ME � 1

n∑n
i�1
xi

SD �
�����������
1
n∑n
i�1
(xi − �x)2

√
CF � max(x)������

1
n∑n

i�1x
2
i

√
Where x presents the mean value of the data and n presents the number of data points.

TABLE 4 Extracted statistical and energy-based features from multiple signal domains.

Statistical
features

Time domain
(IMF1)

Time-frequency domain
(IMF1)

Energy-based features (energy
ratios)

Frequency
domain

VAR 162.2 608.7 r_IMF1 8.2

RMS 266.5 802.8 r_IMF2 58.7

ME 4.2 22.5 r_IMF3 6.4

SD 358.2 1,033.4 r_IMF4 28.4

MAX 80.4 327.3 r_IMF5 25.1

KU 7.4 176.7 r_IMF6 42.2

SK 6.5 408.3 r_IMF7 9.1

CF 8.3 210.6 r_IMF8 3.3

TABLE 5 Selected wear features based on the VIF criterion.

Time-domain of IMF1 Frequency domain (energy ratio) Time-frequency domain of IMF1

ME 4.2 r_IMF1 8.2 -

KU 7.4 r_IMF3 6.4 -

SK 6.5 r_IMF7 9.1 -

CF 8.3 r_IMF8 3.3 -
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audible sound signals were transformed into the frequency domain
using the Short-Time Fourier Transform (STFT). From this
transformation, the amplitudes at each data point and their average
values were extracted as features. These features were then used as
inputs to a Support Vector Machine (SVM) model for predicting tool
wear conditions. The prediction accuracy achieved ranged from 85.3%
to 98.5%, depending on the wear class. The authors concluded that the
lower accuracy observed in certain wear classes may be attributed to the
limitations of the applied preprocessing methods, which may not have
been sufficient to filter out noise. Consequently, they suggested that
more effective preprocessing techniques with feature selection are

necessary to enhance signal quality and improve prediction
performance. Similarly, (Li et al., 2019), demonstrated the
effectiveness of advanced signal processing and feature selection
techniques in enhancing the prediction accuracy of machine
learning models for tool wear. In their study, the authors applied
Extended Convolutive Bounded Component Analysis (ECBCA) to
separate source audible sound signals from wavelet sub-band signals
obtained during milling tests. The separated source signals were then
further denoised using a Multivariate Synchrosqueezing Transform
(MSST), which decomposed them into time-varying oscillatory
components. Several statistical features were subsequently extracted
from the time-frequency domain and used as inputs to variousmachine
learning models, including Classification and Regression Tree (CART),
Random Forest (RF), k-Nearest Neighbors (KNN), and Support Vector
Machine (SVM), to predict tool wear conditions. The results showed
that without ECBCA preprocessing, the prediction accuracy ranged
from 83.34% to 98.19%, depending on the wear class and the chosen
model. With the employment of ECBCA, the accuracy improved

FIGURE 10
Tool wear prediction across various cutting conditions: (a) 3000 rpm – 80mm/min, (b) 3000 rpm – 100 mm/min, (c) 3000 rpm – 120 mm/min, (d)
3500 rpm – 80 mm/min, (e) 3500 rpm – 100 mm/min, (f) 3500 rpm – 120 mm/min, (g) 4000 rpm – 80 mm/min, (h) 4000 rpm – 100 mm/min, (i) 4000
rpm – 120 mm/min.

TABLE 6 Comparison of prediction errors.

Model ANN without feature
selection

ANN with feature
selection

Errors % 15.71% 9.07%
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further, reaching a range of 86.14%–100%, thereby underscoring the
importance of effective signal preprocessing for accurate and robust tool
wear prediction. While these studies consistently report high prediction
accuracies when effective preprocessing and feature selection techniques
are used, the actual performance varies across studies due to differences
in data processing, feature selection methods, and machine learning
models. For instance, (Ravikumar and Ramachandran, 2018), evaluated
tool wear prediction using a decision tree J48model with different input
feature sets: basic statistical features (e.g., mean, kurtosis, standard
deviation, variance, and maximum), Haar wavelet energy features,
and a small subset of those energy features. Their results showed
that statistical features yielded the lowest accuracy (82.41%), while
full Haar wavelet energy features and the selected subset produced
higher accuracies of 93.15% and 93.7%, respectively. In the work of (Li
et al., 2019), using the same data preprocessing and feature extraction
methods, SVM consistently outperformed CART, RF, and KNN.
Similarly, (Catalán et al., 2022), demonstrated the strong potential of
deep learning using a VGG16 neural network architecture for accurate
tool wear prediction.Moreover, external factors such as themicrophone
placement during sound signal acquisition can significantly impact
prediction performance. (Kothuru et al., 2018). investigated the effect of
microphone positioning by conducting experiments with multiple
microphones placed at varying distances from the cutting zone. The
resulting sound features were used with an SVM model, yielding
prediction accuracies ranging from 89.1% to 97% depending on
microphone location. Interestingly, the dataset collected from the
farthest microphone achieved higher accuracy, likely due to reduced
noise interference and fewer obstructions between the microphone and
cutting zone.

From the above discussion, it is evident that although the
prediction accuracies reported across different sound-based tool
wear monitoring studies vary due to factors such as data acquisition
setup, feature selection strategies, and machine learning model
choices, substantial improvements can be consistently achieved
through the application of robust signal preprocessing and
advanced feature selection techniques. The approach proposed in
this study, combining EEMD, Hilbert Transform, and VIF-based
feature selection, demonstrates strong potential for practical
implementation in real-time tool condition monitoring systems.

5 Conclusion

Tool wear monitoring is essential for improving productivity and
preventing severe wear or tool breakage. Most previous studies on the
tool wear monitoring used signals measured by various sensors, such as
dynamometers, accelerometers, andAE sensors. However, these sensors
are challenging to use in manufacturing environments due to their high
costs and complex installation requirements. In contrast, microphones
offer a cost-effective alternative for practical tool wear monitoring
applications. This paper proposed a novel approach to indirect
online tool wear monitoring in the milling process by investigating
the correlation between audio signals and cutting tool wear. The
measured data signals were analyzed using EEMD and HT, allowing
tool wear features to be generated from the time domain, frequency
spectrum, and time-frequency domain. Since the performance of the
tool wear monitoring system was affected by weak wear features, the
multi-collinearity between features was evaluated using the VIF tests to

determine the significant features that can improve the wear prediction
accuracy. An ANN model was developed to learn the wear features
from the datasets to estimate the degree of tool wear. The proposed tool
wear prediction method, which integrates the ANNmodel with feature
selection, achieved high prediction accuracy, exceeding 90% on average
under various cutting conditions. The study also highlighted that,
although various machine learning models can be employed and
may yield high prediction accuracy, effective data preprocessing and
feature selection remain the most critical factors for achieving reliable,
meaningful, and accurate results, particularly in audible sound signal-
based tool wear condition monitoring systems. The proposed approach
demonstrates strong potential for practical implementation and offers a
low-cost, efficient solution for real-time tool wear monitoring in
manufacturing environments.
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