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Introduction: Regenerative braking control technology has been widely
implemented in electric vehicles (EVs) to enhance energy recuperation
efficiency. However, the distribution of braking force, particularly for the front
axle motor, often fails to achieve an optimal balance between high energy
recovery and vehicle stability.

Methods: To address this challenge, a model-based simulation framework
integrating Type-2 fuzzy logic and Particle Swarm Optimization (PSO) was
developed. The proposed strategy employs a Type-2 fuzzy controller to
manage braking force allocation dynamically, while PSO optimizes the fuzzy
rule parameters to improve overall system performance.

Results: Simulation under New European Driving Cycle (NEDC) conditions
demonstrated that the optimized control strategy increases the driving range
to 396 km on a single battery charge—an improvement of approximately 15.8%.
The regenerative braking ratio coefficient exhibited a dynamic range of
0.08–0.63 during a 600-second operational period, indicating a responsive
and adaptable control mechanism.

Discussion: The experimental results confirm that the proposed fuzzy-PSO-
based strategy effectively balances braking safety with energy recovery. This
approach offers a practical and scalable solution for enhancing the braking
performance of EVs and contributes to the broader goal of reducing energy
consumption and emissions. The study provides new insights into optimizing EV
braking systems for improved environmental and economic outcomes.
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1 Introduction

With the increasing global demands for energy conservation and emission reduction,
the electric vehicle industry is rapidly emerging. Regenerative braking systems, as an
important technology to improve energy recovery efficiency, play a crucial role in the entire
industry (Chen et al., 2024). In recent years, considerable attention has been devoted within
the industry to the investigation of braking energy recovery technologies, utilizing advanced
methods such as digital simulation and control algorithms to optimize vehicle energy
management and braking safety (Sandrini et al., 2023). Nevertheless, current approaches
continue to encounter difficulties in achieving an optimal balance between energy
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recuperation and braking safety during the distribution of braking
force to the front axle motor. Moreover, the control system often
lacks sufficient robustness when subjected to complex operating
conditions, which becomes a key bottleneck restricting overall
performance improvement. Among many methods, Simulink co-
simulation can accurately construct the vehicle dynamics and
braking process models (Tempone et al., 2024). Type-2 fuzzy
control shows higher robustness in handling environmental
disturbances and parameter uncertainties (Precup et al., 2023).
Additionally, the Particle Swarm Optimization (PSO) allows for
global optimization of fuzzy controller parameters and rule weights,
providing precise regulation for electric motor braking energy
distribution (Senapati et al., 2024). Based on this, the study
introduces Type-2 fuzzy control and PSO, among other advanced
technologies, and uses the Simulink platform to build a vehicle
motion model and braking distribution model. A dynamic balance
equation including rolling resistance, air resistance, and slope
resistance is established, leading to the design of a regenerative
braking strategy based on PSO-Fuzzy control. This research aims to
provide theoretical and practical support for solving the issues of
insufficient energy recovery and unbalanced safety protection in the
actual braking process of electric vehicles. Its innovation lies in
achieving a control strategy that maximizes energy recovery while
ensuring vehicle braking safety, which is significant for improving
the overall economy and environmental performance of
electric vehicles.

2 Related works

In recent years, methods for optimizing the structure of electric
vehicles have gained significant attention, particularly co-simulation
and fuzzy control, due to their advantages in handling complex
uncertainties and global parameter tuning. Tristano et al.
addressed the lack of real vehicle verification for vehicle stability
control and proposed a vehicle stability controller based on individual
wheel torque distribution. This method was first verified in an offline
environment usingMatlab-Simulink and Amesim co-simulation with
a 15-degree-of-freedom Siemens SimRod electric vehicle model, and a
hardware-in-the-loop testing platform was constructed. The
effectiveness of this controller was ultimately verified (Tristano
et al., 2024). Shen et al. proposed a hybrid strategy based on fuzzy
logic control to address the rapid aging of lithium-ion batteries and
insufficient energy management performance in electric vehicle
energy storage systems. Experimental results demonstrated that the
proposed method effectively mitigates the peak discharge current of
the lithium battery while preserving the charge equilibrium of the
supercapacitor across diverse operating conditions (Shen et al., 2023).
Agcal et al. put forward a closed-loop frequency regulation algorithm
founded on a magnetically coupled series resonant circuit topology,
which employs zero-current switching technology to efficiently
minimize switching losses. Results showed that the system could
achieve efficient energy transfer when the air gap is below the critical
value, as verified byMATLAB/Simulink numerical simulations (Agcal
et al., 2023). Other fuzzy control-based approaches have also been
widely applied in automated transportation systems. For example,
Turan et al. addressed the integrated longitudinal and lateral control
problem of cooperative vehicles in automated highway systems and

proposed a rule-based upper-level control algorithm. Experimental
results demonstrated that the control strategy could effectively enable
fully automated vehicle operations across various driving scenarios,
validating its performance under different operational modes (Turan
et al., 2012). In addition, Hentout et al. tackled the issue of inefficient
path planning and motion control for mobile robots in indoor static
and dynamic environments by proposing a comprehensive navigation
system that integrates shortest path planning with efficient fuzzy
control. Simulation results on multiple complex maps and validation
using the V-REP platform confirmed that the system enables stable
and reliable navigation in dynamic environments (Hentout
et al., 2024).

Meanwhile, the swift advancement of electric vehicle technology
has positioned regenerative braking and energy recovery systems as
pivotal components and primary areas of focus for extending driving
range and decreasing energy consumption. Gupta et al. proposed a
regenerative braking system based on intelligent control algorithms to
balance energy recovery, range, and environmental protection for
hybrid electric vehicles. Comparing different strategies, the adaptive
neuro-fuzzy inference system improved fuel economy by
approximately 0.282%, 0.437%, and 0.345% compared to lookup
table methods (Gupta et al., 2024). Pasupuleti et al. proposed a
method combining wireless charging, regenerative braking, and
hybrid energy storage systems to address issues such as battery life
degradation caused by long charging times and frequent discharges in
electric vehicles. Simulation results with MATLAB showed that the
system performed well under rapid braking, high-speed, and hilly
road conditions in low-voltage electric vehicles (Pasupuleti et al.,
2023). Kumar et al. addressed the flaws of solar power supply in light
electric vehicles and proposed an improved direct torque control
strategy, integrating a regenerative braking strategy to feed kinetic
energy back into the battery. Experimental results showed that this
scheme significantly reduced torque fluctuations and achieved
efficient energy recovery on a 12/8 Supplier Relationship
Management Prototype System (Kumar et al., 2023).

In summary, co-simulation enables efficient integration and
dynamic interaction of multi-physical domain models, while fuzzy
control could handle uncertainties and fuzzy information, making it
suitable for adaptive control requirements under complex conditions
in electric vehicle regenerative braking. Currently, the main issue in
electric vehicle regenerative braking is the difficulty in balancing
energy recovery efficiency and braking stability. Therefore, this
research designs a multi-input single-output Type-2 fuzzy
controller and utilizes PSO to optimize the fuzzy membership
function parameters and rule weights offline. Finally, co-simulation
verification is achieved through the Simulink platform.

3 Design of PSO-optimized Type-2
fuzzy controller and regenerative
braking strategy

3.1 Braking force analysis and fuzzy
controller design

Regenerative braking is the core process of braking energy
recovery in electric vehicles. It not only maximizes the use of
vehicle kinetic energy while ensuring vehicle braking safety, but
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also plays a key role in extending the driving range and improving
energy efficiency (Soltani, 2024). The principle of braking energy
recovery is shown in Figure 1.

As shown in Figure 1, during the entire process, the drive motor
acts as a generator unit, efficiently recovering vehicle kinetic energy
and converting it into electrical energy. This improves overall
vehicle efficiency and extends the driving range. During the
process of braking energy recovery, the motor is required to
dynamically switch modes and finely regulate power output
under complex operating conditions, with its control being
affected by multiple factors such as vehicle speed, battery state,
and braking force intensity. Therefore, the study first designs a fuzzy
controller and defines membership functions to achieve adaptive
control of the regenerative braking ratio under multiple input
variables. A vehicle dynamics model is constructed to
characterize the effects of multiple resistance forces on vehicle
motion during braking, and the critical components influencing
energy recuperation in regenerative braking are also systematically
modeled. The power balance expression for the vehicle is shown in
Equation 1.

m · a � Fbraking − Fresistance (1)

In Equation 1, m represents the vehicle’s curb weight, a is the
vehicle’s acceleration. Fbraking and Fresistance represent the total
braking force applied by the vehicle and the total resistance
encountered by the vehicle, respectively. It should be noted that
both the braking force and the total resistance are defined as acting
in the direction opposite to the vehicle’s motion; therefore, when
Fbraking >Fresistance, the vehicle undergoes deceleration. The
expression for total resistance is shown in Equation 2.

Fresistance � Frolling + Fdrag + Fgrade

Frolling � m · g · f
Fdrag � 0.5 · ρ · A · Cd · v2
Fgrade � m · g · sin θ( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (2)

In Equation 2, Frolling, Fdrag, and Fgrade represent rolling
resistance, air resistance, and grade resistance, respectively. f is
the rolling resistance coefficient, ρ is the air density,A is the vehicle’s
frontal area, Cd is the air resistance coefficient, v is the vehicle speed,

θ is the road gradient angle. The study further constructs a battery
charge and discharge model, as shown in Figure 2.

From Figure 2, during regenerative braking, the motor converts
the braking energy into electrical energy to charge the battery. The
battery’s state of charge (SOC) is updated using the integration
method, with the specific expression shown in Equation 3.

SOC t( ) � SOC 0( ) − 1
Q

( )∫
0t
Ich τ( ) · ηch · dτ (3)

In Equation 3, SOC(t) represents the battery’s SOC at time t,
within a range of [0, 1], SOC(0) is the initial SOC. Q is the battery
capacity, Ich(τ) is the charging current during regenerative braking,
ηch is the charging efficiency. The powertrain transmits the motor’s
output torque to the wheels, and its efficiency affects energy
conversion. During motor braking, the approximate relationship
between the motor’s output torque and the generated regenerative
braking force is shown in Equation 4.

Treg �
Freg · R( )
ηm

(4)

In Equation 4, Treg and Freg represent the motor braking
torque and regenerative braking force, respectively, R is the wheel
radius, ηm is the efficiency of the motor and powertrain. To
ensure braking safety, the distribution of braking force between
the front and rear axles is crucial. Based on the vehicle’s center of
gravity, the ideal braking force for the front axle is expressed in
Equation 5.

Fbf � G · a
L

(5)

In Equation 5, G represents the vehicle’s gravity, a is the
horizontal distance from the vehicle’s center of gravity to the
front axle, L is the vehicle’s wheelbase. The braking force for the
rear axle is expressed in Equation 6.

Fbr � G − Fbf (6)

In Equation 6, Fbr represents the braking force at the rear
axle. To achieve proper distribution of braking force between

FIGURE 1
Schematic diagram of braking energy recovery.
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motor braking and mechanical braking on the front axle, a
fuzzy controller is designed. To ensure accurate evaluation of
the objective function and effective braking force distribution,
the controller design incorporates a longitudinal vehicle
dynamics model. This model integrates mass-related inertial
force, aerodynamic drag, rolling resistance, and grade
resistance, forming a comprehensive dynamical
representation that governs vehicle deceleration behavior
under braking input. The input and output variables are
shown in Table 1.

In Table 1, the definitions of these input and output variables
provide the foundation for the fuzzy controller’s design. The
controller aims to adjust the regenerative braking ratio in real-
time based on the vehicle’s actual operating conditions, maximizing
energy recovery and ensuring smooth braking. The variables in the
controller are set and described, and to help the fuzzy controller
adapt to complex conditions like vehicle speed, braking intensity,
and battery SOC, a Type-2 Gaussian membership function is used to
finely describe the input. The advantage of Type-2 is that it can
accurately describe the precision of input variables under
uncertainty and noise interference. Therefore, Type-2 is adopted
to help the fuzzy controller adapt to complex conditions, and the
form of the Type-2 Gaussian membership function is shown in
Equation 7.

μ x( ) � exp − x − c( )2( )
2σ2

[ ] (7)
In Equation 7, x represents the input variable, c is the center

value of the membership function, σ is the standard deviation that
determines the width of the function. Considering measurement and

FIGURE 2
Schematic diagram of battery charging and discharging structure.

TABLE 1 Controller input and output variables.

Variables Definition Defining intervals

x1 Battery SOC [0, 1]

x2 Braking intensity Z, estimated from vehicle deceleration [0, 1]

x3 Speed v (km/h) [0, 120]

K Regenerative braking ratio K, representing the proportion of front axle motor braking force [0, 1]

TABLE 2 Specific parameter settings.

Variables Detailed configuration

Battery SOC Low c � 0.3, σ � 0.1,Δ � 0.05

Medium c � 0.5, σ � 0.1,Δ � 0.05

High c � 0.7, σ � 0.1,Δ � 0.05

Braking intensity Z Tight c � 0.3, σ � 0.1,Δ � 0.05

Medium c � 0.5, σ � 0.1,Δ � 0.05

Heavy c � 0.7, σ � 0.1,Δ � 0.05

Speed v Low speed c � 30, σ � 10,Δ � 5

Medium speed c � 60, σ � 10,Δ � 5

High speed c � 90, σ � 10,Δ � 5

Output K Very low (NB) c � 0.1, σ � 0.05,Δ � 0.02

Low (NS) c � 0.3, σ � 0.05,Δ � 0.02

Medium (Z) c � 0.5, σ � 0.05,Δ � 0.02

High (PS) c � 0.7, σ � 0.05,Δ � 0.02

Very high(PB) c � 0.9, σ � 0.05,Δ � 0.02
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environmental uncertainties, friction optimization uses parameter Δ
to construct upper and lower membership functions, expressed in
Equation 8.

μ− x( ) � exp − x − c + Δ( )( )2
2σ2

[ ]
μ− x( ) � exp − x − c − Δ( )( )2

2σ2
[ ]

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(8)

In Equation 8, μ−(x) and μ−(x) represent the lower and upper
membership functions, respectively, Δ is the uncertainty range of the
membership function’s center position. The parameter settings are
detailed in Table 2.

In Table 2, based on variables under different conditions, the
study constructs 27 rules in the form of “if . . . then . . .”. The braking
intensity is classified into three levels: Z≤ 0.3 is light braking,
0.3<Z< 0.6 is moderate braking, Z≥ 0.6 is emergency braking.
For Rule i, the activation degree of the Type-2 membership degree
interval is expressed in Equation 9.

αi � min μ~SOCi SOC( ), μ~Zi Z( ), μ~vi v( ){ } (9)

In Equation 9, μ~ represents the uncertain Type-2 membership
degree with upper and lower bounds, αi is the activation degree
range of the i-th rule, and the final value can be obtained through the
Karnik-Mendel algorithm. The defuzzification process uses the
centroid method to determine the final output, as shown in
Equation 10.

K � ∑iαi · Ki∑iαi
(10)

In Equation 10, Ki represents the center value of the output
membership function corresponding to Rule i, and K is the final
control output.

3.2 Improved control algorithm and
regenerative braking strategy based on PSO

After selecting the input and output variables and designing the
Type-2 fuzzy membership functions, the study further constructs a
specific fuzzy rule base. However, relying solely on manually set
membership function parameters and rule weights often cannot
adapt to the complex and changing real-world conditions. PSO can
search for the optimal parameter combination globally, thus
improving the overall performance of the fuzzy control system.
Therefore, to enhance the generalization ability and output accuracy
of the fuzzy controller, the study introduces PSO for offline
optimization of the controller’s parameters. The fuzzy controller
output is used for front axle braking force distribution. First, the
total front axle braking force Fbf is determined based on the
vehicle’s operating conditions. Then, the front axle braking force
is divided into motor braking andmechanical braking portions, with
the motor braking force expression shown in Equation 11.

Freg � K · Fbf (11)

In Equation 11, Freg represents the regenerative braking force
generated by the motor. The mechanical braking force is expressed
in Equation 12.

Fmech � 1 −K( ) · Fbf (12)

In Equation 12, Fmech represents the braking force generated by
the hydraulic mechanical brake. Furthermore, to obtain the optimal
fuzzy controller parameters, the study uses PSO for offline search.
PSO is tightly coupled with the Simulink simulation environment,
where each particle update is evaluated through simulation-based
fitness assessment, enabling a real-time feedback loop for parameter
adjustment and control performance optimization. The fuzzy
controller with PSO is shown in Figure 3.

In Figure 3, after each particle swarm update during the
optimization process, a simulation verification is performed using
the Simulink model. Through this process, Simulink and the particle
swarm optimization algorithm are tightly integrated, ensuring that
each optimization iteration adjusts the control strategy based on
simulation data, ultimately achieving optimal system control. Each
particle represents a parameter vector, which is encoded as
X � [c1, σ1,Δ1, ..., cN, σN,ΔN,w1, ..., wR]. c, σ, and c represent the
center, width, and uncertainty range of each membership function,
respectively. GG represents the weights corresponding to the rules.
Considering both energy recovery and braking safety, the objective
function is designed as shown in Equation 13.

J � w1 · Erec,ideal − Erec( ) + w2 · Dideal −D( )
Erec � ∫Freg t( ) · v t( ) · dt
D � ∫

0T
v t( ) · dt

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (13)

In Equation 13, Δ represents the theoretically maximum
recoverable energy, Erec is the actual recoverable energy, Dideal

and D are the ideal and actual braking distances, respectively.
Each particle is encoded as a parameter vector that includes the
center values c, widths σ, and uncertainty ranges of the membership
functions Δ, as well as the weights of the fuzzy rules w; these
parameters collectively determine the performance of the fuzzy
controller. For each particle, the velocity and position update
formulas are shown in Equation 14.

vi t + 1( ) � w · vi t( ) + c1 · r1 · pbest,i − xi t( )( ) + c2 · r2 · gbest − xi t( )( )
xi t + 1( ) � xi t( ) + vi t + 1( ){

(14)
In Equation 14, vi(t) represents the velocity of particle i at time t,

xi(t) is the parameter vector of particle i, c1 and c2 are learning
factors, r1 and r2 are random numbers in the range of 0–1.pbest,i is the
historical optimal position of particle i, gbest is the global optimal
position. Combining fuzzy inference with PSO, the final expression
for the regenerative braking ratio coefficient is shown in Equation 15.

K � ffuzzy SOC, Z, v( ) � ∑iαi · Kfinal,i∑iαi
(15)

In Equation 15, Kfinal,i represents the output value
corresponding to the i-th rule, determined by PSO. To
quantitatively evaluate the regenerative braking strategy, energy
recovery efficiency is defined as shown in Equation 16.

μrec �
Erec

Ekin
× 100%

Ekin � 1
2
·m · v02

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (16)
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In Equation 16, Ekin represents the vehicle’s initial kinetic
energy, with v0 being the initial vehicle speed. Leveraging the
PSO process, the controller’s final output function ensures an
optimal distribution of front axle braking force, with the
interaction between motor braking and mechanical braking
governed by the braking distribution formula. The diagram
illustrating the regenerative braking fuzzy control strategy is
presented in Figure 4.

In Figure 4, first, based on the total vehicle braking demand, the
braking force distribution plan for the front and rear axles is
calculated according to ECE regulations. Then, the input
variables are processed by the PSO-optimized Type-2 fuzzy
controller. Type-2 fuzzy logic is used, and the membership
function is optimized using the particle swarm algorithm to
output the regenerative braking ratio K. This ratio K is then

used to distribute the front axle braking force, determining the
ratio of motor braking to mechanical braking for the front axle.
Finally, the front axle regenerative braking controller and hydraulic
brake controller output the regenerative braking force and
mechanical braking force for the front axle, respectively. In the
second distribution stage, the rear axle’s braking controller adjusts
according to the total braking demand, achieving overall vehicle
braking control.

In order to enhance the generality of the proposed method, the
fuzzy controller design and PSO-based optimization are developed
in a modular and scalable framework, which can be adapted to other
vehicle configurations or control targets. The selected
parameters—membership functions, uncertainty bounds, and rule
weights—are not specific to the studied vehicle model but represent
universal fuzzy logic components that can be generalized across

FIGURE 3
PSO process of fuzzy controller.

FIGURE 4
Workflow of regenerative braking fuzzy control strategy.
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similar nonlinear control problems. Furthermore, the PSO
optimization process is integrated with the Simulink simulation
platform in a closed-loop structure, making it applicable to a broad
range of model-based control design tasks beyond
regenerative braking.

4 Simulation results of PSO-Fuzzy
control strategy

4.1 Performance verification of braking
strategy under different braking intensities

To verify the feasibility of the proposed strategy, a series of
experimental setups were performed. The simulation platform used
was MATLAB/Simulink, and the computer hardware configuration
included an Intel Core i9-13900K processor, 64 GB DDR5 memory,
NVIDIAGeForce RTX 4090 graphics card, a 1 TBNVMe SSD, and a
2 TB HDD for data storage. The system ran Windows 11, with an
efficient cooling system and stable power supply to meet the high-
performance requirements of MATLAB/Simulink co-simulation,
complex model computation, and large-scale data processing. A
full vehicle motion model was built in Simulink, along with a co-
simulation system including a Type-2 fuzzy controller and PSO
module. The specific parameters for the working conditions are
shown in Table 3. It is worth noting that co-simulation refers to the
integrated modeling of multiple subsystems—such as the vehicle
dynamics model, energy management module, and braking control
module—within the Simulink environment, enabling real-time
coupling and interaction between the fuzzy control system and
the PSO algorithm, thereby providing a more realistic simulation of
system responses under actual operating conditions.

As seen in Table 3, the New York City Cycle (NYCC) and the
New European Driving Cycle (NEDC) were selected as typical
driving cycles. The energy recovery efficiency, braking
performance, and control strategy indicators of the proposed
strategy were validated. The PSO-Fuzzy control strategy was
tested for braking times and distances under braking intensities
of 0.2, 0.5, and 0.7, with results shown in Figure 5.

In Figure 5a, it can be seen that the higher the braking intensity,
the faster the vehicle speed decreases and the shorter the braking
time. For example, with a braking intensity of 0.7, the PSO-Fuzzy

control strategy was able to reduce the speed from 40 km/h to
0 within 1.6s, responding quickly. In contrast, braking with
intensities of 0.5 and 0.2 took 3.7s and 7.1s, respectively, to reach
the same speed, showing a significant time disadvantage. The PSO-
Fuzzy control strategy achieved quick deceleration at high speeds by
dynamically adjusting the braking intensity, reducing braking time
while maintaining a smooth braking process, making it especially
suitable for urban emergency deceleration or mid-to-high speed
scenarios. In Figure 5b, the strategy’s advantages were further
validated from the perspective of braking distance. Under the
same initial speed, the PSO-Fuzzy control strategy with an
intensity of 0.7 allowed the vehicle to decelerate within 4.3 m,
while the braking distances for intensities of 0.5 and 0.2 were
7.8 m and 35.1 m, respectively. Compared to fixed intensity
braking, this strategy offered better braking accuracy and energy
efficiency. These results demonstrate that the PSO-Fuzzy control
strategy has the ability to dynamically adjust braking intensity
according to actual conditions, ensuring safety, response speed,
and energy recovery. Next, the SOC values and recovered energy
were tested for braking intensities of 0.2 and 0.5, comparing the
traditional braking strategy and the PSO-Fuzzy control strategy. The
results are shown in Figure 6.

As shown in Figure 6a, there was little difference between the
two strategies within the first second of braking. However, as time
progressed, the PSO-Fuzzy control strategy showed a superior SOC
improvement rate. When the braking intensity was 0.2, the strategy
increased the SOC from 60.000% to 60.0016% within 2.4s, whereas
the traditional strategy only increased it to 60.0012%. In Figure 6b,
over time, the PSO-Fuzzy control strategy at z = 0.2 performed
significantly better in energy recovery, accumulating 32 KJ of
recovered energy within 8s, while the traditional strategy at the
same intensity only recovered 27 KJ. Under the condition of z = 0.5,
the PSO-Fuzzy control strategy also outperformed the traditional
control. Overall, the results indicate that the PSO-Fuzzy control
strategy achieved higher energy recovery efficiency and SOC
improvement across different braking intensities, validating its
comprehensive advantages in dynamic regenerative braking
control. The different braking strategies were then introduced
into the NYCC and NEDC driving cycles for comparison, as
shown in Figure 7.

In Figure 7a, under the NYCC driving cycle, the SOC value for
the traditional strategy continued to decrease, eventually dropping
to 2.1%. In contrast, the proposed PSO-Fuzzy control strategy
effectively suppressed SOC decline throughout the entire cycle,
maintaining a smoother SOC curve, and at the end of the 12-h
operation period, the SOC remained at 57.8%. This demonstrates
that the strategy has higher energy recovery capacity and control
stability in urban driving conditions with frequent stops, low speeds,
and high-intensity braking. In Figure 7b, the NEDC cycle, which
includes medium and high-speed driving with different acceleration
and deceleration stages, showed a greater variation in SOC than the
NYCC. Under the traditional strategy, the SOC dropped rapidly to
11.2% within 4 h, while the fuzzy control strategy was more stable,
although the decline was still relatively fast. In contrast, the PSO-
Fuzzy control strategy significantly delayed SOC decay, maintaining
47.6% throughout the entire simulation period, demonstrating its
robustness and optimized control performance under complex,
multi-stage conditions. In summary, although the control strategy

TABLE 3 NYCC and NEDC working conditions parameter table.

Parameter NYCC NEDC

Running time (h) 12 4

Mileage (km) 460.80 134.72

Maximum acceleration (m/s2) 2.68 1.05

Maximum deceleration (m/s2) −2.64 −1.39

Maximum speed (km/h) 68.37 120

Average speed (km/h) 38.4 33.68

Acceleration time ratio (%) 29.60 26.06

Deceleration time ratio (%) 27.90 23.87
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exhibits good stability and convergence trends in simulation, future
research will incorporate theoretical stability analysis of the closed-
loop system to further enhance its robustness and convergence
reliability under complex and dynamic operating conditions.

Additionally, by adopting a co-simulation architecture and
separating the control algorithm from vehicle dynamics
modeling, the proposed control strategy demonstrates potential
applicability to different electric vehicle platforms and energy

FIGURE 5
Braking time and braking distance under different braking intensities. (a) Braking time under different braking intensities (b) Braking distance under
different braking intensities.

FIGURE 6
SOC value and regenerative energy under different braking intensities. (a) Battery state of charge status (b) Regenerative energy recovery status.
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recovery systems. This modular structure ensures that the
methodology can be extended to various intelligent vehicle
control applications that involve nonlinear multi-objective
optimization and uncertainty handling.

4.2 Braking performance analysis under
NEDC conditions

Since the NEDC driving cycle combines various driving
states, including urban and suburban driving, it realistically
reflects vehicle braking response and energy recovery
performance under complex conditions. Therefore, the
braking performance of the control strategy under the NEDC

cycle was analyzed separately in the simulation to evaluate the
stability and robustness of the control strategy in low-speed
steady-state and frequent acceleration-deceleration scenarios.
The braking speed and braking intensity over a short period of
time in the NEDC cycle were verified, with results shown
in Figure 8.

In Figure 8a, the vehicle speed and braking speed under the
PSO-Fuzzy control strategy were compared over time. In the
multi-stage acceleration-deceleration interval from 0.4s to 0.8s,
the two curves were relatively close, indicating that the strategy
could quickly sense vehicle speed fluctuations and output precise
braking intensity in real-time, bringing the vehicle to a complete
stop at 1.2s, with a smooth deceleration process and no noticeable
shocks. In Figure 8b, the PSO-Fuzzy control strategy made
frequent adjustments between 0.1s and 0.6s, with more
significant adjustments between 0.2s and 0.4s during the high-
frequency braking phase. This shows that the strategy could
adaptively adjust braking intensity according to vehicle speed,
road conditions, and desired deceleration, avoiding excessive
braking that would lead to energy waste while ensuring smooth
and safe deceleration. Overall, the PSO-Fuzzy control strategy
demonstrated precise and smooth braking process control through
adaptive speed and braking intensity adjustments in the NEDC
cycle. Finally, the research compared the driving range and K value
optimization before and after the strategy optimization, as shown
in Figure 9.

In Figure 9a, the driving range performance under the
optimized strategy in the NEDC cycle was compared. Under
the same energy consumption conditions, the vehicle under the
optimized strategy was able to travel for a longer time and with
more stable speed control. The final driving range increased
from 342 km before optimization to 396 km, a 15.8% increase. In
Figure 9b, the traditional strategy showed relatively stable but
lower K values, mostly concentrated between 0.08 and 0.47,
making it difficult to quickly adjust energy recovery intensity for
different conditions. In contrast, the optimized PSO-Fuzzy
control strategy showed frequent fluctuations, with a dynamic
range covering from 0.08 to 0.63. In typical segments such as
from 100s to 300s, where frequent acceleration and deceleration

FIGURE 7
SOC changes under two working conditions. (a) SOC variation
under NYCC cycle (b) SOC variation under NEDC cycle.

FIGURE 8
Braking speed and braking intensity in a short period of time. (a) Braking speed under NEDCdriving cycle (b) Braking intensity under NEDCdriving cycle.
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alternated, the strategy demonstrated significant adaptive
adjustment ability. This strategy increased K values under
conditions with high energy recovery potential to enhance
energy recovery and appropriately reduced K values during
stages when the SOC was higher or stability was more
critical, effectively ensuring the balance between braking
smoothness and energy management.

5 Conclusion

Although various advanced methods have been widely
adopted, the current regenerative braking technology for electric
vehicles still requires a balance between improving energy recovery
efficiency and ensuring braking safety. Based on this, the study
proposes a Type-2 fuzzy control strategy optimized by PSO to
achieve optimal distribution of front axle braking force. At a
braking intensity of 0.2, the PSO-Fuzzy control strategy
required 7.1s to bring the vehicle, traveling at 40 km/h, to a
stop. In 8s, it recovered 32 KJ of energy. In comparison, the
traditional strategy increased the SOC value to 60.0012% in
2.4s, while the PSO-Fuzzy control strategy achieved a slightly
higher increase to 60.0016%. Experimental results showed that
the proposed control strategy successfully realized a dual
optimization of energy recovery and braking safety. However,
the current model is still sensitive to uncertainties under
complex and extreme driving conditions, which need further
reduction. Future work will introduce an online adaptive
mechanism and real-vehicle testing to verify the strategy,
aiming to achieve higher robustness and energy efficiency
optimization under a wider range of driving conditions.
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FIGURE 9
Optimization of driving range and K value. (a) Driving range under NEDC driving cycle (b) Regenerative braking ratio.
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