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Introduction: Friction Stir Welding (FSW) is a critical industrial process in which a
rotating tool generates heat through friction, enabling the solid-state joining of
materials. This versatile method is widely applicable across numerous industries,
including marine and auto-motive sectors.

Method: Real-time tool condition monitoring is essential for businesses to
identify and address issues before they escalate into costly failures or product
defects. While traditional methods such as visual inspection and endoscopy are
used to observe tool conditions, they cannot be performed in real-time during
welding operations. As a result, specific real-time tool condition monitoring
methods are employed for continuous analysis. The real-time tool condition
monitoring process involves acquiring vibrational data and extracting statistical
features from the raw data. A feature importance study is conducted using a
decision tree algorithm, which selects only themost significant features to reduce
computational complexity.

Result: Feature classification is then performed using various machine learning
and deep learning algorithms, including Support Vector Machines (SVM), Multi-
Layer Perceptron (MLP), Cascade Correlation, GMDH Polynomial Neural
Networks, and Linear Discriminant Analysis Among these classifiers,
Probabilistic Neural Networks (PNN) consistently deliver the best results as
91.25% under 1,400 rpm.

Discussion: Based on these findings, the Probabilistic Neural Network algorithm
is identified as a robust and reliable prediction model for monitoring FSW tool
conditions.
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1 Introduction

Friction stir welding (FSW) is an advanced welding process in which a rotating tool
generates heat through frictional contact with the workpieces, softening the materials and
facilitating solid-state joining without melting them (Di Bella et al., 2023). In FSW, the
material sur-face is rough, leading to friction when brought into contact. An external
revolving tool is used in FSW to provide friction on the surface by offering a revolving
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motion. It can be concluded that FSW has more advantages than
others when compared side by side. Due to its versatility, FSW can
be used with various metals and alloys, overcoming parameters such
as shape and size (Solanki and Dhruv, 2024). FSW is not only limited
to aluminium alloys, but also used to join dissimilar materials, such
as copper alloys on one side and aluminium alloys on the other (Sun
et al., 2022). The applications of FSW span across industries,
including the marine, automotive, armor, aerospace, and railway
sectors (Thomas and Nicholas, 1997). The quality of a weld in FSW
depends on two key factors: the workpieces and the tool. However,
not all materials are suitable for FSW; only those with a lower
melting point, such as aluminium (Al), copper (Cu), and
magnesium (Mg), are ideal for this process (Devaiah et al., 2018).
Different industries require different tool materials. Commonly used
tool materials in FSW include 883 tool steel (H13), high-speed steel
(H.S.S), and high-carbon high-chromium steel (D3 or HcHcr). A
comparative study between HSS, H13 and D3 (HcHcr) found that
H13 is the most efficient and effective material for FSW tools (Khaliq
and Bharti, 2015).

Persisting with a worn-out tool during welding can lead to weld
defects, compromising the weld’s quality. To address this, we have
established a distinct vibration range for three types of defects.
During a new FSW operation, the system collects vibrational data,
which the model uses to categorize the current vibration condition.
Once a defect is identified, corrective actions are implemented. For
example, the model is trained to recognize three types of defects as
well as a “good” condition. When a new FSW operation begins, real-
time vibrational data is generated and analyzed by the model. If the
data indicates a misalignment defect, the operator is notified to
inspect and correct the alignment of the workpieces. This corrective
action enhances the weld’s quality. Without a machine learning
classification model, the weld’s quality would suffer due to defects
like misalignment, leading to tool wear, damage, and a
shortened lifespan.

Tool Condition Monitoring (TCM) systems provide real-time
feedback on the tool and welding process. This data enables
immediate adjustments and management, ensuring consistent
weld quality and tool condition throughout the operation.
Implementing TCM in FSW offers significant financial benefits
to companies by reducing tool failures, lowering scrap rates, and
extending tool lifespan. Real-time monitoring allows businesses to
identify and address issues before they escalate into costly failures or
product defects. This enhances productivity, improves quality,
reduces maintenance expenses, and minimizes rework, ultimately
contributing to increased profitability.

Vibration plays a critical role in Friction Stir Welding (FSW) as
it directly impacts weld quality. Monitoring tool vibration is
essential because it acts as an early warning system, detecting
wear and damage to the tool. Vibrations change with the tool’s
condition, providing a reliable indicator of its health. This enables
timely maintenance or re-placement, preventing tool failure and
associated weld defects. Continuous vibration monitoring
throughout the welding process ensures that any changes in tool
performance are immediately addressed, reducing the risk of
producing subpar welds. Additionally, the collected vibration data
offers valuable insights for process optimization, allowing
adjustments to maintain consistent material mixing, temperature
distribution, and pressure. These adjustments lead to improved weld

quality. By detecting changes in vibrational patterns, FSW tool
condition monitoring helps prevent catastrophic tool failure
during welding, reducing the likelihood of severe weld defects
and material expulsion. Furthermore, monitoring vibrations
extends the tool’s lifecycle, minimizes scrap and rework, and
provides real-time feedback for process control. Collectively,
these benefits enhance the overall quality and efficiency of the
welding process.

Condition monitoring is a method used to monitor a tool during
operation using sensors. In this study, researchers employ vibration
sensors to monitor the FSW tool. Vibration analysis is one of the
most effective non-destructive testing methods, providing precise
values of specific components and aiding in predicting their lifespan
(Alamelu Manghai and Jegadeeshwaran, 2019). Vibration-based
condition monitoring has proven to be the most reliable method
for assessing the state of functioning machine components. In this
study, we propose an analysis of vibrations using machine learning
and deep learning to monitor the FSW tool. This approach leverages
advanced algorithms to analyze vibration data effectively. The FSW
tool must always be maintained in a position and condition that
ensures optimal welding properties. If the tool deteriorates, weld
quality may be compromised. However, determining weld quality
during welding is challenging. Except for vibrational analysis, there
is no other method to assess the condition of the FSW tool during
the welding process.

The vibration characteristics under various fault conditions were
investigated using machine learning and deep learning for the fault
detection approach. The fault identification method consists of three
steps: feature extraction, feature selection, and feature classification.
Feature extraction is the process of extracting parametric
information from raw vibration signals. Several features, such as
Wavelets (Alamelu Manghai and Jegadeeshwaran, 2019), statistical
(Balachandar and Jegadeeshwaran, 2024), and histograms (Sakthivel
et al., 2024), can be derived from raw data. This work focuses on the
statistical features classification of fault. Feature selection is a process
used to identify the most notable features. Various methods are
available, such as Decision Tree (DT) (Balachandar and
Jegadeeshwaran, 2024), (Sakthivel et al., 2011) and Principal
Component Analysis (PCA) (Sakthivel et al., 2011). In this study,
feature selection was carried out using the effect of the number of
features study (Sun et al., 2007). The selected features were then
classified using various ML algorithms such as Support Vector
Machine (SVM) (Krishnamurthy et al., 2025), Proximal Support
Vector Machine (PSVM) (Sakthivel et al., 2010), Bayes Net (BN)
(Kumar et al., 2014), Naïve Bayes (NB) (Muralidharan and
Sugumaran, 2012), Best-First Tree (Jegadeeshwaran and
Sugumaran, 2014), Fuzzy Logic Model (Jegadeeshwaran and
Sugumaran, 2015), etc.

This paper highlights the significance of condition monitoring,
particularly through vibration analysis, in maintaining the optimal
performance of Friction Stir Welding (FSW) tools. The proposed
vibration-based condition monitoring method, incorporating
machine learning and deep learning techniques, aims to enhance
the predictive capabilities for FSW tool conditions, especially during
welding. By searching into the vibrational characteristics under
various fault conditions, this study contributes to the
understanding of FSW tool behaviour. While traditional
examination methods post-welding remains crucial for
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identifying external wear and damage, the limitations of their timing
prompted the introduction of real-time vibrational data acquisition.
The integration of machine and deep learning models, as
demonstrated in Figure 1, empowers both skilled and unskilled
labour to identify and rectify errors during the welding process
promptly. This innovative approach not only enhances quality
control but also improves efficiency, aligning with the broader
trend of utilizing artificial intelligence in the manufacturing and
materials sectors to optimize mechanical and microstructure
qualities. It also offers valuable insights into advancing the
reliability and performance of FSW tools through advanced
condition monitoring techniques.

2 Experimental studies

A PLC-controlled friction stir welding machine was utilized to
conduct the experiments, as illustrated in Figure 2. The machine
specifications are detailed in Table 1.

FIGURE 1
Methodology.

FIGURE 2
Experimental setup.

TABLE 1 Standard parameters of FSW.

Parameter Range

Spindle speed range 100–2,800 rpm

Tool head tilt angle 5°

Feed rate range 1–1800 mm/min

Control system PLC

Machine weight 3150 kg

Motor make KIRLOSKAR

FIGURE 3
FSW Tool with threaded Pin.
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2.1 Experimental setup

The workpiece used in this study was an Aluminum alloy
(Aluminum 5,083) plate, with dimensions of 25 mm × 25 mm ×
6 mm. The joints were created using a single-pass welding process,
employing a threaded cylindrical pin-profiled H13 tool steel, as
illustrated in Figure 3. The spindle speed was considered as
1,200 rpm and 1,400 rpm, while the feed rate was maintained at
30 mm/min. To capture vibration signals during the welding
process, a piezoelectric accelerometer (manufactured by Daytron,
with a capacity of 500 g and a sensitivity of 10.26mV/g) was attached
to the FSW machine using an adhesive method, as shown in
Figure 4. These signals were acquired through a data acquisition
module (NI 9234), capable of recording at 51.2 k samples per
second, integrated with a C9191 Wi-Fi chassis (refer to Figure 5).
The NI Lab-VIEW graphical program was utilized for recording the
vibration data.

Both functional and defective conditions of the FSW tools were
examined to collect vibration data. Four specific fault conditions
were investigated:

• Airgap Defect: This occurs when there is a gap between the
tool shoulder and the workpiece. Such a defect can result in
incomplete penetration, voids, and other imperfections
in the weld.

• Misalignment: This refers to improper alignment of the two
edges of the material being welded. Misalignment can lead to
poor weld quality, voids, and even cracking in the joint.

• One-Side Lift Defect: A common issue in Friction StirWelding
(FSW), where the material on one side of the weld lifts,
creating a visible gap between the welded pieces.

• Good Condition Tool: A brand-new FSW tool with a tapered
threaded pin was used as a reference for optimal performance.

The following welding parameters were used while recording the
vibration signals:

• Speed 1,200 rpm and 1,400 rpm
• Feed 30 mm/min
• Feed piercing depth: 5.7 mm.
• Sample length: 8,192 (213) arbitrarily chosen.
• Sampling frequency: 20 kHz.

The selected parameter values were based on commonly
reported operational ranges in the FSW literature, particularly for
similar aluminium alloy workpiece materials used in this study.

Later, the vibration signals were captured by imitating the FSW
tool’s most common failures, including air gaps, Misalignment, and
One side Lift. The sample signal from the excellent and defective
states of the FSW tool under various operating speeds is shown in
Figures 6a–h.

3 Feature extraction and
feature selection

Various features, such as statistical, wavelet, histogram, etc., can
be derived from the vibration signal, depending on the nature of the
signals. This study specifically focuses on extracting statistical
features, which are fundamental and straightforward for feature
classification. The study is grounded in a uniform set of statistical
factors, including mean, median, mode, standard deviation,
standard error, sample variance, kurtosis, skewness, maximum,
minimum, count, and sum. These features were extracted from
the vibration signal using a Visual Basic code. However, not all
features extracted from the raw signal may be necessary for the
classification study. Therefore, the next step is featuring selection to
choose the best features from the group. Features that provide little
or no information should be removed from the group. Feature
selection can significantly improve the understandability of the
resulting classifier models and often create a model that
generalizes better to unseen data points. Several techniques have
been proposed for feature selection, including the Decision Tree
(Sun et al., 2007), Correlation, Principal Factor Analysis, and
attribute evaluator using the best-first search method. Among
these, the Decision Tree is a more appropriate choice for feature
selection. The effectiveness of this feature selection is confirmed
using an attribute evaluator.

FIGURE 4
Piezoelectric accelerometer.

FIGURE 5
Data acquisition systems.
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FIGURE 6
Sample Vibration Signals. (a) Vibration Plot for good at 1,200 rpm (b) Vibration Plot for good at 1,400 rpm. (c) Vibration Plot for Airgap at 1,200 rpm (d)
Vibration Plot for Airgap at 1,400 rpm. (e) Vibration Plot for Misalignment at 1,200 rpm (f) Vibration Plot for Misalignment at 1,400 rpm (g) Vibration Plot for
Oneside lift at 1,200 rpm. (h) Vibration Plot for Oneside lift at 1,400 rpm.
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4 Feature classification

The classification stage is the final step in machine learning,
encompassing the training and testing of available data using a
model or system. The model undergoes training with specific data
and subsequently undergoes testing with previously unseen data,
following the standard procedure in machine learning. An
algorithmic approach is essential for training the model, and
the subsequent subsections elaborate on six such
algorithmic models.

4.1 Support vector machine (SVM)

The Support Vector Machine is a supervised machine
learning algorithm employed for classification and regression
tasks. Its functioning involves determining the most optimal
hyperplane that effectively separates data points of distinct
classes in a high-dimensional space (Krishnamurthy et al.,
2025). An integral aspect of this algorithm is the support
vectors, referring to the data points nearest to the
hyperplane. The removal of these support vectors can alter
the position of the dividing hyperplane, emphasizing the
critical role of support vectors in a dataset. The hyperplane,
responsible for linearly separating and classifying the given data
set, is known as a hyperplane. The confidence in correct
classification increases as data points move farther away from
the hyperplane, remaining on the correct side of it. The SVM
algorithm was chosen for its commendable classification
accuracy and its effectiveness in classifying smaller, cleaner
datasets. SVM’s efficiency is notable as it utilizes a subset of
training points.

4.2 Multi-Layer Perception (MLP)

Multi-Layer Perceptron (MLP) stands as an Artificial Neural
Network utilized in both machine learning and deep learning,
finding applications in diverse fields like language processing and
image recognition (Gao et al., 2025). Comprising numerous small
neurons organized into layers, an MLP typically features three types
of layers:

Input Layer: Neurons in this layer receive the data.
Hidden Layer: Neurons in the hidden layer preprocess the data,
seeking patterns.
Output Layer: Neurons in the output layer produce the result.

The connections between neurons are influenced by weights,
determining the significance of each connection. Each neuron
sums up its inputs, weights them, and passes them through an
activation function, which determines whether a neuron should
be active. This introduces non-linearity, enabling the model to
capture complex functions. During training, the MLP is
presented with the dataset and corresponding labels. To
enhance accuracy, it adjusts the weights iteratively. When
faced with a new dataset, the MLP employs the learned
weights to make predictions. As the data traverses the layers,

weights are adjusted, and neurons are activated until the model
generates an output.

4.3 Cascade correlation (CC)

Cascade Correlation (CC) is a versatile machine learning
algorithm suitable for addressing a broad spectrum of problems,
including pattern recognition, regression, and classification
(Trzepieciński et al., 2025). Characterized as a self-organizing
neural network, cascade correlation exhibits a unique learning
approach by dynamically expanding its structure during the
learning process. It initiates with a small network and
incrementally adds new hidden units one at a time. The
cascade correlation method involves the continuous creation
of new hidden units, each connected to all input units.
Subsequently, the training process focuses on maximizing the
correlation between the output of the new hidden unit and the
residual error. This iterative procedure continues until the error
is minimized or the maximum designated number of hidden
units has been reached. Notably, the training of cascade
correlation neural networks is robust, often yielding good
results with minimal parameter adjustments. Unlike some
other algorithms, cascade correlation demonstrates a low
likelihood of being trapped in local minima during the
training process.

4.4 Probabilistic neural network (PNN)

The Probabilistic Neural Network (PNN) is a type of
feedforward neural network widely employed in pattern
recognition and classification, particularly when dealing with
continuous target variables (Chaki et al., 2022). Its foundation
lies in the application of Bayes’ theorem, a statistical principle
describing the probability of an event occurring given the
occurrence of another event. In the context of PNN, the
probability density function (PDF) for each class in the
training dataset is estimated. This function characterizes the
likelihood of a specific input vector belonging to a particular
class. Once the PDF for each class is determined, PNN utilizes
Bayes’ theorem to calculate the posterior probability of a new
input vector belonging to each class. The posterior probability
signifies the likelihood of a new input vector being
associated with a particular class, considering the known
PDFs of each class. Ultimately, PNN assigns the new input
vector to the class with the highest posterior probability.
Known for its accuracy in classification, PNN distinguishes
itself by its faster training process and heightened resilience to
the influence of outliers.

4.5 GMDH (Group Method of Data Handling)
polynomial neural network

GMDH, or Group Method of Data Handling, represents a
recursive algorithm employed in modeling relationships between
input and output data through polynomials within a GMDH
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polynomial neural network (Chen et al., 2020). This neural network
variant possesses self-organizing capabilities, allowing it to learn the
network’s structure directly from the data. In the GMDH algorithm,
each candidate neuron takes the form of a polynomial with a specific
degree, generated by combining input features in various
configurations. Evaluation of candidates is conducted using a
fitness function, often the mean squared error on training data.
The most optimal candidate neurons are selected and incorporated
into the network. The iterative process involves creating a pool of
candidate neurons, evaluating them, and selecting the best
candidates until the desired level of accuracy or the maximum
designated number of neurons is reached. To assess the
network’s ability to generalize new data, its performance is
evaluated on a testing set. GMDH networks boast interpretability
due to their foundation in polynomials, which are simple
mathematical functions. Moreover, these networks exhibit
robustness to outliers present in the data.

4.6 Linear discriminant analysis (LDA)

Linear discriminant analysis (LDA) serves as a supervised
machine learning algorithm specializing in classification tasks,
renowned for its simplicity and effectiveness (Uthirapathy and
Sandanam, 2023). Operating on a labeled dataset where each
data point is assigned to a specific class, LDA undergoes a
systematic process. For each class, LDA computes the mean
vector of the features, symbolizing the centroid of that class.
Subsequently, LDA calculates two scatter matrices: the within-
class scatter matrix (Sw), gauging data dispersion within each
class, and the between-class scatter matrix (Sb), assessing the
separation between class centroids. Next, LDA identifies the
eigenvectors and eigenvalues for the matrix Sŵ(-1) * Sb. These
eigenvectors signify the directions, i.e., linear combinations of
features, that optimize the separation between classes.
Discriminant components are derived from the eigenvectors
corresponding to the largest eigenvalues. The Discriminant
components play a crucial role in protecting the data onto a
lower-dimensional space while maximizing class separability.
New data points undergo projection onto the same discriminant
components, and their class labels are determined based on their
proximity to class centroids.

4.7 Summary

Support Vector Machine (SVM) relies on finding optimal
decision boundaries using kernel functions, making it effective
for high-dimensional data without iterative training. Multi-
Layer Perceptron (MLP) is a traditional neural network that
learns through backpropagation, allowing it to model complex
non-linear relationships but requiring careful tuning to avoid
overfitting. Cascade Correlation (CC) stands out by building its
network architecture dynamically during training, adding
neurons one at a time. Probabilistic Neural Network (PNN)
uses statistical distributions and kernel estimation for fast,
probabilistic classification, avoiding the need for iterative
learning. GMDH Polynomial Neural Network automatically

evolves its structure layer by layer, combining polynomial
regression with feature selection to model complex systems.
Linear Discriminant Analysis (LDA) is a simple, linear method
that assumes Gaussian distribution and maximizes class
separability in reduced space. Each algorithm differs in
learning strategy, complexity, speed, and suitability for
specific data types and problem domains.

The six algorithms—SVM, MLP, CC, PNN, GMDH, and
LDA—differ from other machine learning models in their
structure, training, and assumptions. Unlike decision trees or
random forests, they rely on mathematical or statistical functions
rather than rule-based splits. SVM uses kernel-based separation,
MLP and CC are trained iteratively like neural networks, PNN
applies probabilistic density estimation for fast classification,
GMDH self-organizes polynomial models, and LDA assumes
Gaussian distributions for linear class separation—setting them
apart from more flexible or data-driven methods like k-NN or
deep learning.

5 Results and discussion

The prognosis for the tool life of the Friction Stir Welding
(FSW) tool was determined using vibration-based machine
learning, The experimental materials chosen for this study were
aluminium alloy 5,083 and H13 steel. The experiments were
conducted under fixed parameters, including spindle speed and
piercing depth, to examine the vibration behaviour. Vibration
signals were systematically recorded under various conditions of
the FSW tool, and a comprehensive analysis was performed
employing a machine learning approach. The experiments
involved recording vibration signals at both 1,400 and
1,200 rpm, maintaining a consistent feed rate of 30 mm/min.
Initially, the tool was in optimal condition, and vibration signals
were recorded. Subsequently, each fault was intentionally
simulated on the tool, and the corresponding signals were
recorded under identical parameters. A total of 13 statistical
parameters were then extracted from the raw vibration signals
for further analysis.

5.1 Effect of the number of features studies

Not all the features extracted are necessary for classification.
Therefore, feature selection was performed. The study of the effect of
the number of features was used to select the most appropriate
features. In this study, an attribute evaluator was used to determine
the order of the features. The attribute evaluator uses a best-first
search algorithm to order the contributing features. This order was
confirmed by classifying it in algorithms. In this process, the first
feature and the condition class were used for classification and the
accuracy was recorded. The top two features were combined and
classified again. This process was repeated until all feature
combinations were combined and classified. Tables 2, 3 display
the effect of individual feature combinations on
classification accuracy.

In Table 3, feature selection procedures were applied to
refine the chosen features, and these selected features
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underwent classification using the specified feature classifiers.
As depicted in Table 2, the highest classification accuracy
achieved at 1,200 rpm was 87.75%, employing the PNN
algorithm and incorporating 12 effective features. An option
to reduce the number of effective features from 12 to eight
exists, resulting in a marginal accuracy reduction of

approximately 1.25%. This reduction, however, comes with
the advantage of decreased computational complexity. It is
noteworthy that in situations where stringent classification
sensitivity is a priority, retaining all 12 features, despite
increased computational demands, might be more judicious
to attain higher accuracy.

TABLE 2 Effect of number of features on classification accuracy for 1,200 rpm.

Effective no. of feature Classification accuracy (1,200 rpm)

PNN MLP SVM CC LDA GMDH

13 87.75 86.25 85.5 83.25 86.25 83.50

12 87.75 86.25 85.5 83.25 86.25 83.50

11 87.25 86.00 86.5 83.25 86.25 82.75

10 84.50 86.00 86.00 84.25 86.25 83.75

9 86.00 85.75 85.75 84.25 85.75 84.50

8 86.50 85.00 86.75 83.50 85.00 81.75

7 85.50 86.00 85.25 86.25 85.00 82.25

6 85.25 85.25 85.00 84.75 85.25 84.00

5 83.75 86.25 85.50 83.75 83.00 81.75

4 83.50 85.50 84.25 80.25 83.00 84.25

3 83.75 84.75 84.75 83.5 83.25 82.25

2 85.00 85.25 85.50 85.00 84.00 81.75

1 45.25 44.25 42.25 41.50 45.50 NA

TABLE 3 Effect of number of features on the classification accuracy for 1,400 rpm.

Effective no. of feature Classification accuracy (1,400 rpm)

PNN MLP SVM CC LDA GMDH

13 90.50 87.75 90.25 89.00 88.50 87.50

12 90.75 89.75 90.25 89.25 88.50 87.50

11 90.50 88.75 89.50 88.00 88.50 86.50

10 91.25 88.50 89.00 89.75 88.50 86.50

9 90.00 88.25 89.50 86.75 88.50 87.00

8 90.50 87.25 89.50 86.50 88.00 87.50

7 88.50 87.25 89.50 89.50 88.50 88.00

6 88.25 88.50 88.25 87.25 88.5 86.00

5 88.75 88.00 89.75 85.75 89.00 87.25

4 88.50 87.25 87.75 87.50 89.00 88.75

3 89.00 88.50 90.00 88.75 89.00 88.25

2 88.25 89.00 89.25 87.75 88.75 87.50

1 56.75 60.75 60.50 58.50 59.75 NA
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Upon examining Table 3, the PNN algorithm demonstrated
the highest classification accuracy of 91.25% at 1,400 rpm, utilizing
10 effective features. Similarly, there is an option to reduce the
number of effective features from 10 to 3, with a subsequent
accuracy reduction of around 2.25%. This reduction provides a
computational complexity advantage. Again, the decision to retain
all 10 features or opt for a reduced set depends on the specific needs
of the classification study. In scenarios where heightened
sensitivity in classification is crucial, retaining all 10 features
might be preferred, despite the associated increase in
computational complexity required to achieve higher accuracy.
The rationale behind considering a reduced number of effective
features is primarily to mitigate computational complexity. It is
essential to acknowledge that while reducing the number of
features can streamline computational demands, there may be
instances where prioritizing higher classification accuracy is
warranted, even at the expense of increased computational
complexity due to a larger effective feature set.

5.2 Feature classification using the
probabilistic neural network

Based on the results presented in Tables 2, 3, the Probabilistic
Neural Network (PNN) emerged as the most effective algorithm
for classification, achieving the highest accuracy regardless of
spindle speed. At 1,200 rpm, PNN achieved a classification
accuracy of 87.75%, while at 1,400 rpm, it reached 91.25%. At
1,400 rpm, the top ten features used for classification were:
standard error, mean, sum, standard deviation, sample

variance, minimum, range, median, maximum, mode,
skewness, and kurtosis. At 1,200 rpm, the top twelve features
included: standard error, standard deviation, sample variance,
mean, range, kurtosis, sum, minimum, maximum, mode,
skewness, and median. To further analyze the classification
performance, confusion matrices were generated. Table 4
shows the confusion matrix for 1,200 rpm, where the diagonal
elements indicate correctly classified instances. For example, out
of 100“Good” samples, 93 were correctly identified, seven were
misclassified as “Airgap,” and 1 as “One side Lift.” In the
“Airgap” category, 89 were correctly classified, one was
misclassified as “Good,” and 10 as “One side Lift.”

Table 5 presents similar results for 1,400 rpm, revealing a
reduction in misclassifications. Specifically, only 49 out of
400 data points were misclassified at 1,200 rpm (accuracy:

TABLE 4 Confusion matrix for Probabilistic Neural Network algorithm under 1,200 rpm.

Actual category Predicted category

Good Airgap Misalignment One side lift

Confusion matrix 1,200 rpm

Good 93 7 0 0

Airgap 5 88 0 7

Mis-alignment 0 0 97 3

One side Lift 0 21 6 73

TABLE 5 Confusion matrix for Probabilistic Neural Network algorithm under 1,200 rpm.

Actual category Predicted category

Good Airgap Misalignment One side lift

Confusion matrix 1,400 rpm

Good 93 6 0 1

Airgap 1 89 0 10

Misalignment 0 0 100 0

Oneside Lift 1 18 0 81

TABLE 6 Comparative results.

Classifier Classification accuracy

1200 rpm 1,400 rpm

PNN 87.75 91.25

SVM 86.75 90.25

MLP 86.25 89.75

CC 86.25 89.75

LDA 86.25 89.00

GMDH 84.50 88.75
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87.75%), compared to just 37 misclassifications at 1,400 rpm
(accuracy: 91.25%). These matrices provide a detailed view of the
model’s precision across different fault categories, highlighting the
robustness of the PNN in diagnosing faults under varying spindle
speeds. Although the accuracy at 1,200 rpm was slightly lower, PNN
consistently demonstrated strong predictive performance at both
speeds. The Probabilistic Neural Network provided superior
classification accuracy for the selected features at both 1,200 rpm
and 1,400 rpm, confirming its effectiveness in fault diagnosis under
variable machining conditions.

5.3 Comparative study

The classification study involved the evaluation of seven
different classifiers, each applied to the vibration-based machine
learning analysis at spindle speeds of 1,200 rpm and 1,400 rpm.
Notably, the Probabilistic Neural Network emerged as the most
effective classifier, consistently demonstrating superior classification
accuracy for both speeds. A comprehensive comparison of the
classifier performances is presented in Table 6. The results reveal
a higher accuracy at 1,400 rpm compared to 1,200 rpm. This
discrepancy in accuracy can be attributed to the lower variation
among fault conditions and the generally poorer weld quality
observed at the lower spindle speed of 1,200 rpm. In contrast, at
the higher speed of 1,400 rpm, the vibration patterns become more
distinguishable, contributing to the increased accuracy of fault
classification. Specifically, the Probabilistic Neural Network
exhibited the highest accuracy among all classifiers, achieving
87.75% accuracy at 1,200 rpm and an even more impressive
91.25% accuracy at 1,400 rpm. This underscores the efficacy of
the PNN algorithm in accurately identifying and classifying faults in
Friction Stir Welding tool conditions under varying
operational speeds.

5.4 Future scope

Given the encouraging outcomes observed in this study, there is
an opportunity to extend the predictive capabilities of vibration data
to intermediate speeds using artificial intelligence techniques. The
methodologies and procedures employed in this research can be
applied to extrapolate and predict vibration data for spindle speeds
between the tested 1,200 rpm and 1,400 rpm. Furthermore, the
success of artificial intelligence techniques, particularly the
Probabilistic Neural Network (PNN), in accurately assessing FSW
tool health at different operating conditions opens avenues for
exploring and identifying the best predictive models. By
systematically applying similar procedures to diverse operating
conditions, the study can contribute to establishing robust
predictive models that cater to a broader range of scenarios. This
suggests a promising direction for future research, where the
application of artificial intelligence in FSW tool condition
monitoring can be expanded and optimized for various
operational parameters. Such an approach could enhance the
versatility and adaptability of predictive models, ultimately
contributing to a comprehensive understanding of FSW tool
health across a spectrum of working conditions.

6 Conclusion

This study focused on the condition monitoring of Friction Stir
Welding (FSW) tools, utilizing aluminium alloy 5,083 as the
workpiece material and conducting experiments at spindle speeds
of 1,200 rpm and 1,400 rpm. Four distinct conditions, namely, good
condition, air gap, misalignment, and one-side lift, were examined,
and vibrational signals were acquired to investigate the tool’s
performance. The analysis involved the extraction of statistical
features from the raw vibrational signals, and these features were
subsequently subjected to classification using a range of machine
learning and deep learning algorithms which includes, support
vector machines, multilayer perceptron, Cascade Correlation,
Probabilistic Neural Network, Group Method of Data Handling,
Linear Discriminant Analysis. Notably, the Probabilistic Neural
Network (PNN) emerged as the most effective algorithm,
achieving a remarkable accuracy of 87.75% at 1,200 rpm and an
even higher accuracy of 91.25% at 1,400 rpm. The disparity in
classification accuracy between the two spindle speeds is attributed
to the distinguishability of vibration patterns. At 1,200 rpm, the
lower speed resulted in less distinguishable vibration patterns
among fault conditions, leading to a lower classification accuracy.
In contrast, the higher spindle speed of 1,400 rpm facilitated easier
detection of vibration patterns, contributing to the superior accuracy
observed at this speed. Based on these findings, the Probabilistic
Neural Network algorithm is identified as a robust and reliable
prediction model for monitoring FSW tool conditions, particularly
at spindle speeds of 1,200 rpm and 1,400 rpm. The study
underscores the importance of selecting appropriate algorithms
based on operational parameters for effective tool condition
monitoring in FSW processes.
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