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Uranium dioxide (UO,), widely used as driver fuel in light water reactors,
experiences microstructure and property change by nuclear fission reactions.
This paper bridges the characterization of fresh UO, fuel at different length scales,
serving as a baseline for future post irradiation examination of irradiated UO, fuel.
To characterize the microstructural change of nuclear fuel, modern approaches
cover a wide range of length scales through different characterization
techniques, such as mm scale for Synchrotron-based X-ray computed
tomography (SXCT) and microscale for focused ion beam (FIB) and scanning
electron microscopy (SEM). It is challenging to bridge the data and knowledge of
the same sample in different length scales. This paper proposed a deep learning
framework leveraging transfer learning to detect microstructural defects, trained
from a sparse FIB, SEM, and SXCT images. The proposed model achieved superior
performance in defect segmentation on multiscale microscopic data compared
to four of the latest deep learning models.

KEYWORDS
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1 Introduction

Uranium dioxide (UO,) fuel (Zinkle and Was, 2013) is widely used in light water
reactors due to its high stability, outstanding corrosion resistance, and acceptable
thermal conductivity. Nuclear fission reactions generate thermal spikes and collision
cascades in UO, fuel matrix, leading to significant defect production, microstructure,
and property change.

Although UO, fuel has been studied in the past several decades (Lyons et al., 1972; Gong
etal, 2019; Miao et al,, 2018), quantifying fuel defects remains challenging due to the lack of
method to bridge characterization results from different length scale (Porter and Crawford,
2022; Crawford et al., 2007; Carmack et al., 2009). Fuel defects are critically affecting fuel
performance. For example, gaseous fission products from nuclear fission reactions tend to
form gas bubbles and coalesces to pore and form cracks of various shapes and sizes within
the nuclear fuel. The behavior of these fission gas pores and cracks dictates fuel performance
through gas release, grain growth, swelling, and fuel cladding interaction (Mariani et al.,
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FIGURE 1

Image cross-sections of UO, fuel captured from different instruments with varying spatial resolutions.

2011; Di Lemma et al., 2022; Keiser, 2019). Defect migration and
their movements are critical as they can lead to deterioration of the
fuel’s mechanical properties. Additionally, lanthanide particles or
nodules are often located around the periphery of pores (Mariani
etal, 2011; Keiser, 2019). Understanding the distribution changes of
pores and cracks in the cross-section of UO, fuel provides valuable
insights into these phenomena. Accurate defect detection allows for
trustworthy morphological distribution changes of pores and cracks
along the thermal gradient from the hot fuel region to the cold
cladding rim, providing an understanding of defect variation
and movements.

The evolution of UO, nuclear fuel involves microstructure
transformation, phase redistribution, and thermal property
degradation in the fuel phase, along with embrittlement,
hardening, and corrosion of the cladding and encapsulating
materials during irradiation (Carmack et al., 2009) (Aitkaliyeva,
2022) (Cassagne et al, 2021). These interconnected phenomena
form a complex multi-factor problem, making it difficult for
conventional fuel models to accurately predict fuel behavior from
estimated burnup and cladding temperature (Greenquist and
2021) (Hirschhorn et al, 2022). Advanced post-

irradiation examination (PIE) technologies provide qualitative

Powers,

understanding of the irradiation behavior of UO, fuel. Data
collected from different instruments may vary in image types and
microscopic length scales, resulting in large variances in the
appearance of defects in micrographs. As illustrated in Figure 1,
image patches appear in different formats, such as scanning electron
microscopy (SEM) from focused ion beam (FIB), transmission
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electron microscopy (TEM), and synchrotron-based X-ray
computed tomography (SXCT) (Bohm et al., 2019). SXCT images
have better resolution than SEM in a non-destructive manner,
visualizing microstructure features and defects in more detailed
spatial structures.

Although SXCT provides better resolution for visualizing
defects, a major challenge is quantitatively extracting defect
information especially in the presence of high-Z materials, such
as Uranium (U), which leads to increased X-ray absorption, beam
hardening, and scattering. The beam hardening and scattering of
the X-rays is so strong that it leads to severe photon starvation.
This photon starvation introduces artifacts which can be seen as
streaks in the reconstructed volume, see Figure 2. Historically,
characterization of defects in irradiated nuclear fuel relied on
traditional image segmentation techniques, such as image
thresholding (Otsu, 1975). The
variance, color, and texture differences in the images, making

significant morphological

accurate defect segmentation challenging with traditional
approaches, see Figure 3c.
(ML) (Cai et al, 2022)

outperformed traditional approaches in terms of reliability and

Machine learning algorithms
accuracy on material images (Cai et al, 2022; Morgan et al,
2022; Shen et al.,, 2021; Li et al, 2018) (Song et al., 2020; Sun
et al,, 2023; Huang et al., 2017; Shen et al., 2021; Wang et al., 2023;
Kirillov et al., 2023; Archit et al., 2025; Abebe et al., 2025; Van
Opbroek et al., 2014), natural images (Minaee et al., 2021) (He et al.,
2019), and biomedical images (Tajbakhsh et al., 2020)  For instance,
Cai et al. used a decision tree model to classify the bubbles into
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FIGURE 2

Axial cross-sections of the UO, fuel from SXCT reconstructed volume showing the streak artifacts due to photon starvation.

FIGURE 3

(a) Reconstructed Images from SXCT (b) The ground truth for the training phase (c) Segmented noisy image using image thresholding (

) (d) Segmented images using the retrained DL model (

model ( ) (f) Prediction from original Micro_sam model (

different categories in U-10Zr fuels ( ). However, this
hybrid framework failed to separate pores very well, with the
introduction of streak artifacts, leading to incorrect calculations
of physical properties like size, shape, and orientation. More
recently, convolutional neural networks (CNNs) have shown
tremendous performance and robustness in segmenting both
natural and microscopy images ( ;

; ). Wang et al. utilized a dense CNN
architecture, combined with ResNet-50 and U-Net, for pore
characterization on U-10Zr fuel ( ). However,
this method still came short, segmented defects on fuel cross-
sections remain challenging due to inherent variations in the
. These

ML based models also depend on the amount of annotated data

images using existing methods, as can be seen in

received. Advanced experimental characterization tools provide
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) (e) Prediction and overlay with original images from original SAM

)

but lack
Furthermore, no existing models handle multiscale instrumental

high-resolution images sufficient annotated data.
data for the same sample. Recently, segmenting anything model
serial models ( ) (
proposed to tackle real-time segmentation for natural images and

)were

microscopy images. The Segment Anything Model (SAM) is a state-
of-the-art model designed to perform image segmentation tasks
( ). SAM excels in generalizing across various
types of images and can segment objects with minimal user input. It
is particularly useful for applications where precise segmentation is
required but annotated data is scarce. SAM’s architecture is typically
based on advanced CNN’s and incorporates attention mechanisms to
enhance its ability to focus on relevant parts of the image. The SAI_
I_AM model (Segmentation and Annotation Integration for
Multiscale Instrumental Analysis and Modeling) is an innovative
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FIGURE 4
Pipeline for the proposed framework.

framework designed to integrate segmentation and annotation tasks
across multiple scales of instrumental data (Archit et al., 2025). This
model addresses the challenge of handling multiscale data by
combining insights from different imaging modalities and scales.
The Micro_sam model is a specialized version of SAM, tailored for
microscopic images (Abebe et al., 2025). This model is optimized to
handle the unique characteristics of microscopic data, such as high
resolution and intricate details. Micro_sam leverages transfer
learning from models trained in natural images and fine-tunes
them on microscopic datasets. This approach enhances its
performance by segmenting complex structures found in
biomedical and material science images. Although SAM and
Micro_sam models were proposed for multiscale microscopy
images and handle the interesting region detections and relatively
large object detections, they still cannot detect small defects in our
cases, as Figures 3e,f.

To leverage existing deep learning models for small object
detection, like pore detection (Sun et al, 2023)on SEM and
SXCT images, we utilized a transfer learning strategy to
efficiently detect defects from a small training set combined with
limited labeled SEM and SXCT images. The transfer learning
strategy helps to train the deep learning model from already
available larger training data originating from a different source,
which are somewhat similar, but not exactly representative of the
target data (Wang et al., 2023).The proposed workflow includes the
following major components, as shown in Figure 4 1) preparing
data, including reconstructing SXCT slices using the existing SIRT
algorithm (Gilbert, 1972) and labeling limited images for transfer
learning; 2) designing and evaluating the proposed model; 3)
utilizing the proposed model on unseen SXCT and FIB data. The
proposed model adopts a base model (Wang et al., 2023) which is a
fully convolutional deep neural network containing encoder-
decoder architecture for accurate pore segmentation on U-Zr
metal fuel SEM images and is fine-tuned using new labeled
images to accomplish instance segmentation of defects on UO,
fuel. With limited annotated data, the method achieves the best
performance compared to the other models on the new UO,
multiscale dataset. In the following sections, we will outline the
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major advancements of our work: first, the data collection and
reconstruction methodology to obtain clean and high-quality SXCT
data for extracting further insights; and subsequently, the process
behind selecting a suitable model for segmenting defects and cracks
in the SXCT data by utilizing the transfer learning capabilities of
machine learning models.

2 Materials and methods
2.1 Experimental data

The material analyzed in this study was fresh uranium dioxide
(UO,). SEM images on the material with sized 5.91 um x 1.7 pm x
13.85 pm were collected at 8000x magnification using backscattered
electrons (BSE) with a Helios NanoLab G3 Dual Beam Plasma FIB
instrument at the Irradiated Material Characterization Laboratory
(IMCL). A total of 67 sectioning SEM images were obtained with a
resolution of 0.183 um/pixel. Each SEM image was 1024 x
1512 pixels with a resolution of 0.015 pm/pixel. Some images
from the sectioning sequence are shown in Figure 5. The XCT
data was collected using the synchrotron source with a rotation
speed of 6°/sec and an overall angular range of 200" from
Brookhaven National Laboratory (BNL). The raw SXCT data
consisted of 638 projections across 200 degrees of rotation, taken
at a speed of 3°/sec with a 0.1-s exposure time. Exactly 24 slices of the
638 sample projections were omitted due to obstructions to the
sample. The UO, tip with dimensions 5.198 um x 5.176 um x
21.522 pm was scanned where a spatial resolution of 0.0215 pm/
pixel was achieved. XCT provided volumetric data with each tip
reconstructed consisting of 2160 2D slices showing the cross-
sectional view along the z-axis, a 2D cross-sectional slice along
axial view can be seen in Figure 6a. To efficiently reconstruct the
data, we removed irrelevant areas with respect to the viewfinder of
the Synchrotron and cropped the SXCT data from 2560 x
2560 pixels to 540 x 540 pixels to match the sample size, as
shown in Figure 6b. Additionally, we utilized the SIRT algorithm
for 300 iterations to remove multiple streak artifacts from the

frontiersin.org


https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1619834

Manda et al.

10.3389/fmech.2025.1619834

FIGURE 5
SEM images from sectioning sequence

FIGURE 6

(©) (d)

SXCT image preprocessing. (a) original SXCT image (b) cropped image (c) removed noise (d) 3D reconstructed

projection data, resulting in a cleaner reconstruction, as shown in
Figure 6¢. After reconstruction, we obtained 2160 slices of the UO,
samples. The 3D structural view is illustrated in Figure 6d.

2.2 Methods

Given the lack of ground truth/labeled data for the SXCT and
FIB SEM data identifying the defects (i.e., the cracks and pores) at
different scales, it was challenging to train a model from scratch.
Under these circumstances, we decided to leverage the inherent
transfer learning capabilities of machine learning models on the new
generated dataset. Fine-tuning is a specific type of transfer learning
involving retraining some or all of a pre-trained model’s layers to
better suit a new task with limited labeled data. More details for each
component of the proposed framework are provided as follows.

2.2.1 Data preparation

To label necessary training images, we used a click-based
interactive segmentation model (Sun et al, 2024) which extracts
the object of interest by integrating the users’ inputs of background
and foreground. 17 SEM images and two SXCT images of the
studied sample were labeled as shown in Figure 3b. After
collecting all the images of 17 of the FIB Images together with
the two SXCT images label pairs, we opt to apply the patch-based
approach where each of the 540 x 530 images are divided into
patches of 270 x 270 pixels in addition to applying augmentation
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techniques, such as Gaussian blur, median blur, brightness, contrast,
vertical flip, horizontal flip and center crop. These augmentation
techniques allowed us to increase the size of the dataset without
labels.  After applying
augmentation and patch-based splitting, we were left with

requiring extra expert annotated
3,884 unique image labels pairs for training with 1,020 image

patches used for validation after every epoch.

2.2.2 Model development

Wang et al. proposed an encoder-decoder-based deep fully
convolutional network to segment pores accurately from different
resolution scale SEM images and demonstrated the model’s
performance with sufficient comparison experiments (Wang
et al, 2023). We adopted the model and fine-tuned it with new
labeled images. The model architecture is shown in Figure 7. The
learning objective of the model was to segment out the defects such
as the cracks and pores in the material from the unaffected area.
Therefore, we opted to utilize the summation of the Binary Cross
Entropy Loss (BCE) as well as the Dice Score of the corresponding
image, annotation pair for a robust dual loss strategy.

2.2.3 Training setup

The experiments were conducted on Nvidia RTX 3090 GPUs,
with the primary software environment being CUDA 11.8 and Python
3.8. The deep learning framework used was PyTorch, version 1.13.0.
We trained the model for exactly 100 epochs with a learning rate of
10™* and a weight decay of 107 for the Adams optimizer.
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FIGURE 7
Complete end-to-end pipeline of the Model.

2.2.4 Post-processing

After receiving the output probabilities from the model, we
applied morphological operations such as binary filling operation
to fill out any pores that might not have been classified correctly
but were surrounded by a border of positive pixels. In addition to
some other operations to remove any noise from the generated
image, we evaluated the fidelity of this generated result with the
original ground truth mask for each patch. In the case where we
needed to evaluate the model, we simply split the image for
inference into patches of the same size as mentioned earlier
and performed inference on each of the individual patches.
After performing inference, the patches were combined in the
end for evaluation using parameters that will be detailed in the
following sections.

3 Results
3.1 Dataset and evaluation metrics

We evaluated the performance of our model on the test dataset
of corresponding images and label pairs. Additionally, we opted to
use pixel level evaluation metrics in the form of Precision, Recall,
F1 score and intersection over union (IoU). Mathematically they are
defined using the equations below.

TP

Precision = — L2 1
recision TP 1 FP (1)
TP

Recall = ———— 2
TPy EN @
Fl < 2 x Pre.c.ision x Recall 3)

Precision + Recall
U= 2 (4)

" TP+FN +FP

Here TP, FP and FN represent the raw pixel numbers for True
Positive, False Positive and False negative. Precision is the total
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Training the existing Deep Learning Modell?Ibased on 2
labeled XCT images and 17 labeled FIB SEM images

percentage of pixels that were correctly classified in relation to the
binary mask. While recall shows the percentage of pixels that were
correctly segmented out as pores or cracks in comparison to the total
number of annotated defects. Finally, Fl-score represents a
harmonic mean between precision and recall and is used to relay
the overall predictive performance of the model and the higher score
indicates the model’s performance was better. IoU is a metric used to
evaluate the accuracy of an object detection model. It measures the
overlap between the predicted bounding box and the ground truth
bounding box. The higher value indicates the better performance.

Due to the small scale of our dataset, we evaluated our model
using the leave-one-out cross validation (LOOCYV) technique to use
a size-able amount of our dataset for the purpose of training and
validation of our model. In this study, LOOCYV splits the images as
18 images for training and leaving one image for test. We conducted
LOOCV for each image as test image and used the average
performance as the evaluation as shown in Table 1.

3.2 Performance comparison

In this study, we utilized the existing source codes for the models
listed in Table 1. Initially, we applied the original SAM model to the
new dataset, which yielded very poor results. Subsequently, we
retrained the SAM model by using a single bounding box
region, but the
performance was still poor. To enhance the model’s accuracy, we
adopted a multiple bounding box technique for retraining. In this
approach, we generated individual bounding boxes for each pore
based on the mask using the connectedComponentsWithStats
method from the OpenCV package. This method performs
connected component analysis on a binary image and provides
statistics for each detected component (Bradski, 2000). The resulting

encompassing the entire pore model’s

bounding boxes were then individually fed into the model for
training. The retrained model’s performance was significantly
better than the original SAM model.
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Methods Recall Precision F1 score loU
Baseline pore detection with pretrained weight file (Wang et al., 2023) 0.9174 0.0222 0.0411 0.0047
Retrain the model (Wang et al., 2023) 0.6568 0.8781 0.7466 0.55
Retrain Res-UNet (Zhang et al., 2018) 0.7595 0.1350 0.2239 0.1285
SAM (Kirillov et al., 2023) 1.9e-5 1.09e-7 2.17e-7 1.08e-7
Retrained SAM (Kirillov et al., 2023) 0.3 0.7 0.41 0.27
Fine-tuning model with pretrained weight file (Wang et al.,, 2023) 0.7214 0.8174 0.7574 0.6

The performance of various models for defect segmentation in
UO, fuel was evaluated using recall, precision, and F1 score metrics,
as summarized in Table 1. The baseline pore detection model with a
pretrained weight file (Wang et al., 2023)exhibited a high recall of
0.9174 but suffered from extremely low precision (0.0222), and
F1 score (0.0411). indicating a high rate of false positives. Retraining
the model (Wang et al., 2023)from scratch using the labeled 17 FIB
images and two SXCT images significantly improved its
performance, achieving a recall of 0.6568, precision of 0.8781,
and an F1 score of 0.7466, reflecting a more balanced and
accurate detection. Conversely, retraining the Res-UNet model
(Zhang et al, 2018) from scratch resulted in poor performance,
with a recall of 0.0156, precision of 0.4518, and an F1 score of 0.0299,
highlighting its ineffectiveness in this context. The latest SAM serial
models which achieved great performance on natural images cannot
perform well in the study. One of the major reasons is that the SAM
models are designed for relatively large object detection with high
image quality. The proposed fine-tuning the model (Wang et al,
2023) with pretrained weight file demonstrated the best overall
performance, with a recall of 0.7214, precision of 0.8174, and an
F1 score of 0.7574. This approach effectively balanced the trade-off
between recall and precision, resulting in the most accurate and
reliable defect segmentation.

Regarding IoU metrics, which highlight the importance of
accurate localization in object detection tasks, all the models are
not achieving high values. Poor IoU performance can often be traced
back to issues such as inaccurate boundary prediction, lower image
quality, or inadequate training data. In our dataset, the defects on the
images are now showing clear boundaries which may cause the
ground truth and detected results cannot overlap well. Moreover, the
FIB SEM data were collected under lower magnification and many
defects, like weak cracks, can be captured by human labeling, but are
challenging for the model to precisely localize the defects. Fine-
tuning and retraining models with representative and high-quality
datasets can significantly enhance detection accuracy and improve
IoU scores.

3.3 Overall performance

The overall results from performing leave-one-out cross
validation can be seen in Table 2 based on the transfer learning
with fine-tuning model. We found that the overall F1-score for the
entire dataset was 0.76 with diverging results between the FIB and
SXCT Images. The latter had a higher F1 score, precision, recall of
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TABLE 2 Evaluation metrics for FIB and SXCT images using the proposed
method.

Images Recall Precision F1 score loU
Overall 0.72 0.81 0.76 0.6

FIB SEM Images 0.63 0.84 0.79 0.59
SXCT Images 0.76 0.91 0.83 0.72

0.83,0.91 and 0.76 in comparison to the results exhibited on the FIB
Images. This can be explained through the difference in both the
resolution and the size of the defects in the two different types of
microscopic images. When focusing on Figure 8, which shows a
comparison of the ground truth and the model prediction for the
FIB images, the model’s prediction missed some of the very faint
cracks and pores due to the similarity with the background.
Furthermore, we can argue that these defects were barely visible
to the human eye making it extremely difficult for the model to
segment them as shown by the overall lower metrics as compared to
SXCT. On the other hand, when looking at the SXCT slices in
Figure 8, we can see that we had a much closer field of view of the
same defect, i.e., cracks and pores. There was also a clearer
demarcation between the material and the defects through a
distinct color difference. Henceforth we observed a significant
improvement in the evaluation metrics.

3.4 Visualizing the uranium dioxide defects
in the 3D space

After completing the model training, we performed inference
using our trained model on all 2,160 SXCT (Synchrotron X-ray
Computed Tomography) images and unseen FIB (Focused Ion
Beam) sectioning SEM (Scanning Electron Microscope) images.
Given that a majority of the images consisted of either the base
holder of the sample or the top of the sample which had no
defects, we opted to remove those slices in the beginning and the
end for a clear visualization of the 3D model structure after
stacking them. To achieve a clear and accurate 3D representation
of the uranium dioxide defects, we first preprocessed the images
by removing any unnecessary sections that did not contribute to
the defect analysis. This preprocessing step ensured that the final
3D visualization focused solely on the regions of interest, thus
providing a more precise view of the defect distribution within
the sample.
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(a) (®) © (d)

FIGURE 8
Visual prediction results. (a) Input images. (b) Ground truths. (c) Prediction of the proposed method. (d) Prediction from retrained SAM model

FIGURE 9
(a) 3D Representation of UO, sample (b) 3D Representation of the defects in the top portion of a UO, sample in (a, c) Pores’ 3D structure of the
sample (d) Crack structure of the sample
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FIGURE 10

(a) Raw single FIB SEM image; (b) The software interface with loading 3D Quanta FIB SEM image of UO, material; (c) Selecting Region of Interest with

overlay of defects in 3D view; (d) 3D structure view of defects.

The visualization of the SXCT results is shown on Figure 9.
This figure illustrates the 3D reconstruction of the uranium
dioxide defects, allowing us to observe the spatial distribution
and morphology of the defects (pores and cracks) within the
sample. The reconstructed 3D model highlights the intricate
details of the defects, providing valuable insights into their
characteristics and potential impact on the material’s properties.
Figure 10 shows the results of the FIB SEM images. These images
offer a complementary perspective by providing high-resolution,
localized views of the defects. The combination of SXCT and FIB
SEM images enhances our understanding of the defects by
integrating both macroscopic and microscopic details. This dual
approach enables a comprehensive analysis of the defect
structures, facilitating better-informed decisions for further
research and material optimization.

In summary, the 3D visualization of uranium dioxide defects,
achieved through careful preprocessing and the integration of SXCT
and FIB SEM images, provides a detailed and informative
representation of the defect landscape. This visualization serves
as a crucial tool for researchers at Idaho National Laboratory,
aiding in the advancement of nuclear material science and
engineering.

4 Discussion and conclusion

In this study, we proposed a deep learning framework utilizing
transfer learning to effectively detect and segment microstructural
defects in fresh uranium dioxide (UO,) nuclear fuel. Our
approach leveraged high-resolution SXCT and FIB SEM
images, overcoming the challenges posed by noise, artifacts,
and the limited availability of annotated data. We arguably
achieved utilizing transfer learning for segmentation using a
diverse and multimodal microscopic image dataset. Our model
significantly outperformed baseline and retrained models in terms
of recall, precision, and F1 score. Specifically, the transfer learning
method achieved the highest F1 score of ~0.76, indicating a
balanced defect detection capability and accuracy. Our future
work will bridge multiscale instrumental data, such as FIB
SEM, XCT/SXCT, TEM, to gain comprehensive understanding
of materials’ microstructure change and defect evolution from
irradiation.
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