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Introduction: Fault diagnosis analysis of mechanical equipment is greatly
significant for maintaining the production efficiency of enterprises. Traditional
diagnostic methods have shortcomings in accuracy and robustness.

Methods: Therefore, the study integrates variational autoencoders with long
short-term memory network models, enhances them using dropout methods,
and proposes a hybrid diagnostic analysis model that combines improved
autoencoder algorithms and signal reconstruction.

Results: The experiment outcomes indicated that under the slow degradation
mode of the bearing, the precision, recall, F1 score, and overall accuracy of the
improved autoencoder model were 0.931, 0.933, 0.920, and 0.939, respectively,
which were better than the pre-modified model. The fault diagnosis results
showed that in the rapid degradation mode of the bearing, the research
model discovered potential faults at 8,830 s, earlier than other models. The
ablation experiment results showed that the precision, recall, F1 score, and overall
accuracy of the enhanced study model using the dropout method were 0.83,
0.80, 0.82, and 0.99, respectively. Compared with the baseline model, the four
indicators improved by 5.1%, 6.7%, 6.5%, and 5.3%, respectively. The memory
usage test findings denoted that the average memory usage of the research
model was less than 46%, which was better than the control model.

Discussion: The research promotes innovation and optimization of mechanical
fault diagnosis technology, improves the accuracy and timeliness of fault
diagnosis analysis models, and is of great significance for ensuring production
safety, reducingmaintenance costs, and improving enterprise economic benefits.
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1 Introduction

In recent years, as the industrial technology rapidly develops, the functions of
mechanical equipment have become increasingly comprehensive and the structures
have become more complex (Cen et al., 2022). The internal components of large
machinery are closely connected, and the various mechanical equipment also affect
each other. If a certain mechanical component or equipment has a problem, it often
affects the entire production system, leading to large-scale production stoppages and
economic losses. In addition, in some special production environments, production
accidents caused by mechanical failures may also lead to ecological pollution and even
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threaten the personal safety of workers and residents around the
factory area. Therefore, timely diagnosis and analysis of mechanical
equipment failures are of great significance for maintaining the
production efficiency of enterprises and protecting the personal
safety of employees. Traditional fault diagnosis (FD) methods
mainly rely on expert experience and classical mathematical
models for analysis, and have achieved fruitful results. However,
as mechanical equipment becomes increasingly complex and large-
scale, traditional methods are no longer able to meet the
requirements of modern production. The research by Wang Y
et al. found that the subsequent changes brought about by the
increase in temperature might also have a negative impact on the
operation of machinery (Wang et al., 2025). Scholars such as Li S
used LightGBM for model training and icing prediction, achieving
the analysis of mechanical faults in wind power generation
equipment (Li et al., 2023). Fan C has developed a mechanical
vibration data analysis technology for multi-layer perceptrons based
on artificial intelligence technology, demonstrating the analytical
advantages of artificial intelligence (Fan et al., 2024). Themechanical
fault analysis method based on semi-supervised and imbalanced
data developed by scholars such as Li S has proved the feasibility of
artificial intelligence technology in mechanical fault analysis (Li
et al., 2024). As a typical representative of artificial intelligence, deep
learning (DL) provides an efficient data processing mode with
strong feature learning capabilities, which is very suitable for
mechanical FD and analysis of modern industrial equipment
(Tama et al., 2023). Auto Encoder (AE) is a typical unsupervised
DL model broadly utilized in the mechanical FD (Wang et al., 2024).
However, the AE model has massive parameters and insufficient
robustness to noise, resulting in weak feature extraction capabilities.
Therefore, an innovative Variational Auto Encoder (VAE) with a
similar structure is proposed as a benchmark model for signal
reconstruction. The LSTM-VAE model is integrated with a Long
Short-Term Memory (LSTM) network to improve the expression
ability of internal features of time-series data. Finally, the dropout
method is introduced to enhance the hybrid model, and a
mechanical FD model combining improved AE algorithm and
signal reconstruction is constructed. The research aims to
improve the tolerance of mechanical FD models to noise, shorten
the fault warning time, and make accurate diagnosis and analysis of
mechanical faults, thereby promoting the advancement of the
mechanical manufacturing industry.

The research is composed of four sections. The first section
introduces the current global research on mechanical equipment FD
and the application of DL in the FD. The second section mainly
introduces in detail the construction process of the LSTM-VAE
mechanical FD proposed model. The third section conducts
experiments on the efficacy of the proposed model to verify its
feasibility. The last section is a summary and discussion of
the article.

2 Related work

Mechanical FD is a technology that analyzes and grasps the state
of a machine during operation, determines its overall or local
normality or abnormality, early discovers faults and their causes,
and can predict the development trend of faults. FD of mechanical

equipment is greatly significant for analyzing the working condition
of mechanical equipment and maintaining the production efficiency
of enterprises. Jin et al. raised a newmethod grounded on time series
transformers for FD of various rotating machinery. This method is a
novel label sequence generation approach that can handle one-
dimensional format data and has better fault recognition capabilities
than traditional convolutional models (Jin et al., 2022). Miao et al.
designed a FD method based on Eigen mode decomposition to
address the pulse and periodicity issues of mechanical fault signals.
This method used period estimation and update processes to lock in
fault information, enabling adaptive and accurate analysis of fault
modes (Miao et al., 2022). Lou et al. raised a domain adaptive FD
and analysis method to address the issue of certain deviations
between simulation signals and measurement signals obtained by
finite element method. This method applied fault samples obtained
from machinery to convolutional neural networks for training and
testing, thereby more accurately classifying and analyzing
mechanical faults (Lou et al., 2022). Liu et al. proposed a
diagnostic method that combines 1D convolutional neural
networks, attention mechanisms, and knowledge graphs to
address the problem of traditional manual FD results being too
isolated and unable to provide a complete diagnosis process. This
method matches prediction outcomes by searching the knowledge
graph and obtaining more relevant information about the fault,
thereby achieving accurate analysis of FD results (Liu et al., 2021).

As science and technology continue to advance, designing
mechanical equipment is becoming increasingly complex.
Traditional manual analysis is difficult to efficiently extract
effective features from complex mechanical equipment vibration
signals. An growing amount of researchers are combining the
technology of signal processing with DL for the FD and analysis
of mechanical devices. Long et al. suggested a new self-training semi-
supervised DL method to overcome the problem of traditional FD
methods requiring massive labelled samples. This method initialized
a stacked sparse AE classifier using labeled samples for training FD
models, achieving good diagnostic accuracy (Long et al., 2023). Qian
et al. proposed a FD method grounded on the relationship transfer
domain generalization network to address the issue of excessive
dependence of domain adaptive models on the availability of target
domain samples during training. This method constructed a
domain-adaptive adversarial network with multi-domain
discriminators to improve the domain confusion of the
relationship transfer framework, and to strengthen the
generalization ability of the fault classifier (Qian et al., 2023).
Gayam proposed a predictive maintenance model for mechanical
equipment based on LSTM networks to address maintenance issues
after mechanical FD in industrial systems. This model provided an
accurate analysis of the remaining life of the equipment by
establishing a robust relationship between sensor readings and
equipment degradation (Gayam, 2022). Xie et al. proposed a new
fault frequency prior fusion DL framework to address the lack of
good interpretability in the application of DL in FD. This framework
introduced the theory of fault frequency prior, providing good
interpretability for diagnostic results (Xie et al., 2023).

In summary, many scholars have conducted beneficial research
on the diagnosis of mechanical faults from the perspective of DL.
However, in the context of strong noise generated by mechanical
equipment, traditional DL models have many parameters and suffer
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from over fitting in the training data. Therefore, an innovative
mechanical FDmodel LSTM-VAE based on improved AE algorithm
and signal reconstruction is proposed, which enhances the
expression ability of internal features of time-series data by
integrating LSTM. In addition, the study also uses dropout
method for data augmentation to make the trained model
more robust.

3 A fault diagnosis model combining
improved AE algorithm and signal
reconstruction

Regarding the diagnosis and analysis of mechanical faults, the
study first improved AE by representing internal features using
probability distributions to better reconstruct vibration signals. On
this basis, further research was conducted to provide a detailed
description of LSTM-VAE.

3.1 Mechanical vibration signal
reconstruction based on VAE

In industrial production, various modules of mechanical
equipment will produce a series of unstable vibration signals, and
the frequency of these signals will show different characteristics due
to changes in operating status. Studying vibration signals has
significant advantages in diagnosing mechanical faults. However,
the signals inside the machinery have fluctuating and nonlinear
characteristics, and there is a lot of noise, which requires signal
reconstruction. However, the internal features learned by standard
AE and denoising autoencoders are represented as definite point
estimates. This has limitations when dealing with mechanical
vibration signals that have inherent randomness and uncertainty.
The potential characteristics in actual operation are more naturally
manifested as probability distributions rather than fixed points. VAE
solves this problem by introducing probabilistic latent variables. In
VAE, the encoder output defines the probability distribution in the
latent space, thereby enabling the capture of the inherent
uncertainty of the data and achieving more robust signal
reconstruction in the presence of noise. Furthermore, the
generation characteristic of VAE enables it to sample from the

learned distribution and generate new and reasonable signal
samples, which is of great significance for data augmentation and
understanding the evolution of failure modes. Therefore, the study
proposes VAE for signal reconstruction. To elaborate on the
improvement process of VAE and the significance of each part in
the algorithm, the study first analyzes the AE algorithm. AE is an
unsupervised learning neural network model mainly used for feature
learning and dimensionality reduction of data. In the field of signal
processing, signal denoising can be achieved by training AEs to
reconstruct noisy signals. AE consists of an encoding network
consisting of an inputting layer and a hidden layer, and a
decoding network consisting of a hidden layer and an outputting
layer. Its structure is denoted in Figure 1.

In Figure 1, the inputting data and outputting target of the AE
are the same. It first compresses the original high-dimensional data
using an encoding network, maps it to low dimensional encoding
vectors in the hidden layer, and then reconstructs these low
dimensional encoding vectors into the original input data
through a decoding network. Assuming that in the initial
dataset X � x′ | 1≤ j≤T{ }, T represents the amount of samples
and x′ means the j th sample. AE adds Gaussian noise to the
sample set to obtain the damaged sample set �X � �x′ | 1≤ j≤T{ }.
Then is to encode and decode �X for reconstruction. �X is
compressed by the encoder to obtain the hidden layer output,
as shown in Equation 1.

H � f W,b( ) �X( ) (1)
In Equation 1, f(W,b) is the encoding network. W means the

network weight matrix between the inputting layer and the hidden
layer, and b means the bias vector. The decoding network decodes
and reconstructs the output H of the hidden layer. The process is
indicated in Equation 2.

Y � g W′,b′( ) H( ) (2)

In Equation 2, g(W′,b′) represents the decoding network. W′ is
the network weight matrix between the hidden layer and the output
layer, and b′ is the bias vector. The training objective of DAE is to
minimize the reconstruction error, even if the error between the
decoder output and the original input is as small as possible. This is
usually achieved by calculating the square error or mean square
error between the reconstructed signal and the original signal, and
continuously optimizing the reconstruction effect by adjusting
network parameters. The reconstruction error L(x′, y′)
expression is shown in Equation 3.

L x′, y′( ) � 1
T
∑
T

j�1
xj − yj
����

����2 (3)

The internal features of AE learning are represented by a certain
determined numerical value. In the operation of actual mechanical
equipment, potential features tend to be represented by a certain
range rather than a single numerical value. Therefore, the study
proposes a VAE, which expresses internal features through
probability and describes a range. Taking facial images of people
as an example, the features of facial images can be represented by
information such as hair color, skin color, glasses, smile, gender, etc.
AE and VAE are used to represent the features of facial images, as
denoted in Figure 2.

FIGURE 1
Structure of VE.
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In Figure 2, AE expresses facial information of a person through
a determined numerical value, while VAE describes facial
information using a certain range, which is the probability
distribution. VAE introduces probability distribution based on
AE to model the latent variable space, which can not only
reconstruct data but also generate new data. The use of VAEs to
generate additional facial images mainly relies on the decoder
randomly extracting samples from the captured latent features.
The decoder then converts these samples into images with high
similarity to the original image, which is affected by the performance
of the encoder and decoder. The structural principle of VAE is
shown in Figure 3.

In Figure 3, the encoder does not directly output a latent
variable, but outputs the parameters of the latent variable (mean
and standard deviation). These parameters define a probability
distribution of the latent variable, typically a normal distribution.
To train the model through gradient descent, VAE introduces
parameterization techniques. By sampling a standard normal
distribution variable and then performing a linear
transformation, the latent variable is obtained. In this way, the
sampling operation becomes a deterministic operation, allowing
gradient back propagation. The loss function of VAE includes

reconstruction loss and relative entropy. By minimizing these two
loss terms, VAE can learn an effective data representation and
generative model.

3.2 Mechanical fault diagnosis model
integrating LSTM networks

VAE only requires the decoder to sample from the probability
distribution to generate better data, thus having stronger signal
reconstruction ability than AE. Therefore, VAE has good
adaptability to vibration noise. However, the vibration signals
generated during mechanical operation are time-series data, and
there is a certain correlation between the samples. The LSTMmodel
has good expression ability for time-series data. To facilitate FD, a
hybrid model LSTM-VAE is proposed by combining the LSTM
model with the VAE model. The LSTM-VAE model structure is
denoted in Figure 4.

In Figure 4, the study replaces the traditional Artificial Neural
Network (ANN) encoder with LSTM based on VAE, fully leveraging
the advantages of both models. Among them, the input layer is used
to segment the received signal. The encoder contains several LSTM

FIGURE 2
Feature representation of facial images. (a) AE’s encoding map for facial images, (b) VAE’s encoding map for facial images.

FIGURE 3
Structure of VAE.
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network cells input through a three-dimensional sequence, similar
to the encoder in VAEs, which outputs a two-dimensional sequence
to approximate the mean and standard deviation. Output a two-
dimensional sequence to approximate the mean vector and
logarithmic variance vector of the latent distribution. Specifically,
after the LSTM encoder processes the entire input time series, the
hidden state of its final time step is used as the input of the
subsequent network. Two independent fully connected layers act
respectively on the hidden states of the final time step, and the time
series features captured by the LSTM encoder are directly used to
parameterize the probability distribution of the latent variables of
VAE. The subsequent sampling and decoding processes are
consistent with the standard VAE. This integration approach
enables the model to simultaneously learn the dependencies of
the time series and the probabilistic latent structure of the data.
Memory cells include three gate units, namely the forgetting gate,
inputting gate, and outputting gate, and one memory unit. The input
and output values of the three gate units are controlled using the
Sigmoid function to preserve the core unit information. The
expression of the Sigmoid function is shown in Equation 4.

yT � exT − e−xT

exT + e−xT
(4)

In Equation 4, xT and yT respectively represent the input and
output of the activation function Sigmoid, yT ∈ (0, 1). The
forgetting gate is mainly used to process information that needs
to be discarded, and its expression is shown in Equation 5.

ft � σ wxfxt +Whfh t−1( ) + bf( ) (5)

In Equation 5, ft means the output of the forgetting gate, σ
means the sigmoid function, Whf means the weight matrix, h(t−1)
means the hidden state of the previous time step, xt means the input
of the current time step, and bf means the bias term. The inputting

gate determines which new information should be added to the cell
state at the current time step. The inputting gate first determines
which information needs to be updated through the Sigmoid
function, and then creates a new candidate value vector through
the Tanh function. The expression of Tanh function is shown in
Equation 6.

yT � exT − e−xT

exT + e−xT
(6)

In Equation 6, xT and yT respectively represent the input and
output of the activation function Tanh, yT ∈ (0, 1). The expression
of the input gate is shown in Equation 7.

it � σ wxixt +Whih t−1( ) + bi( ) (7)

In Equation 7, it means the output of the inputting gate, wxi

means the weight matrix, and bi means the bias term. The outputting
gate determines which information to output from the current cell
state to the hidden state, as shown in Equation 8.

ot � σ wxoxt +Whoh t−1( ) + bo( ) (8)

In Equation 8, ot,Who, and bo are the output, the weight matrix,
and the bias term of the outputting gate. The function of the hidden
layer is to sample and compress the two-dimensional sequence
features output by the encoder, and send the results to the
decoder. The decoder performs feature decoding and converts it
into a three-dimensional sequence. The output layer is used to
reconstruct the original time series. To prevent over fitting, the study
uses Dropout to enhance the LSTM-VAE model. The network
structure before and after using Dropout is shown in Figure 5.

In Figure 5, the network structure after dropout is more
streamlined because the dropout method is a strategy aimed at
reducing model over fitting by randomly adjusting the network
structure of the model itself. The core concept of this strategy is that

FIGURE 4
Structure of LSTM-VAE.
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during each iteration of model training, some neurons in each layer of
the network will be randomly deactivated based on a preset probability.
The weight parameters of these inactive neurons will not be updated
during the iteration. However, due to the fact that models typically
undergo multiple iterations of training, these deactivated neurons may
be reactivated and participate in training in subsequent iterations. The
Dropout method randomly inactivates neurons in each layer of the
network, resulting in a different network structure during each
iteration of training. Although the network structure is constantly
changing, the parameters of the model are shared. This mechanism
helps the model learn more robust features as it must adapt to different
network structures to complete the task. In the end, this method can
greatly raise the generalization ability of the model, making the trained
model exhibit stronger stability and reliability when facing new data.
The combined loss of the research method is shown in Formula 9.

L θ,∅;X( ) � Eqθ z|X( ) logpθ X|z( )[ ] − βDKL qθ z|X( )‖ p z( )( ) (9)

In Formula 9, θ represents the parameters of the decoder; ∅
represents the parameters of the encoder; X represents the input
time series data; z represents the latent variable corresponding to the
input time series data; qθ(z|X) represents the approximate posterior
score defined by the LSTM encoder; pθ(X | z) represents the
conditional data likelihood defined by the decoder; β represents
the hyperparameter for balancing the weight of the KL divergence
term. In the LSTM-VAE network, the Dropout layer is embedded
before the fully connected layers of the encoder and decoder,
specifically acting on the feature vectors output by the LSTM
unit. This design is based on two considerations. The parameter
density of the fully connected layer is high, which is prone to cause
overfitting. The temporal features extracted by LSTM need to
enhance their generalization through random perturbation. The
Dropout rate was selected as 0.2 based on system verification.
According to the characteristics of the recurrent neural network,
its deactivation rate should be controlled within a conservative range

(0.1–0.3). Secondly, through the control variable pre-experiment
(fixed learning rate 0.01/batch size 64), the performance of different
deactivation rates was compared on the slow degradation mode
dataset. It was found that the optimal equilibrium point was reached
when the deactivation rate was 0.2, and this value simultaneously
met the robustness requirements of vibration signal noise.

4 Performance verification and analysis
of mechanical fault diagnosis model

To validate the efficacy of the LSTM-VAE mechanical FD
model, the study selected bearing data from the Case Western

FIGURE 5
Comparison of neural network structures before and after Dropout. (a) The original network structure, (b) The network structure after
adopting Dropout.

TABLE 1 Experimental environment and parameter.

Experimental environment

Configuration item Configuration details

Processor Intel® Core™ i5-1135G7@2.40GHz

Graphics Processing unit NVIDIA GeForce MX450

Mainboard LENOVO LNVNB161216

Internal memory 16 GB

Hard disk 512 GB

Operating system Ubuntu18.04

Experimental parameter

Epoch 50

Batch size 64

Learning rate 0.01

Dropout 0.2
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Reserve University (CWRU)mechanical data center for training and
simulation experiments, and analyzed the results. The experimental
platform selected a DL framework based on Keras, and the
experimental equipment and related parameters were described
in detail, as denoted in Table 1.

According to Table 1, the total number of experimental training
rounds was 50, the initial learning rate was set to 0.01, and the input
batch size was 64. 4,000 sets of bearing data were selected from the
CWRU dataset as the original sample set. The bearing data came
from two different bearing modes: slow degradation and rapid
degradation. For ease of distinction, the former was named Mode
A in the experiment, while the latter was named Mode B in the
experiment. The data were preprocessed to obtain training samples.
1,200 samples of health status under different modes were taken as
the test sample set. VAE method was applied for signal
reconstruction of data, the signal amplitude was recorded during
the reconstruction, and the signals before and after denoising were
compared and analyzed. The results are shown in Figure 6.

In Figure 6a, the amplitude of the mechanical vibration signal
before signal reconstruction was concentrated between −2 and 2,
with an interval length of 4; According to Figure 6b, the amplitude of
the denoised signal (DSA) decreased to between −1 and 1, with an
interval length of 2. Compared to the original signal, the DSA
decreased by 50%, and the reconstructed signal waveform was
smoother. The study selected four classic evaluation metrics to
assess the efficacy of the model, namely: Precision (P), Recall (R),
F1 Score, and Overall Accuracy (OA). The test findings of the AE
model before and after improvement on different modes of bearing
datasets are shown in Table 2.

In Table 2, in Mode A, the P, R, F1, and OA of the VAE model
were 0.931, 0.933, 0.920, and 0.939, respectively. The P, R, F1, and
OA of the VE model were 0.931, 0.875, 0.891, and 0.883,
respectively. In Mode B, the P, R, F1, and OA of the VAE model
were 0.926, 0.896, 0.882, and 0.905, respectively, which were 2.1%,
4.3%, 6.1%, and 7.5% higher than those of the AEmodel. Overall, the
improved AE model has better diagnostic performance and higher
success rate. To prove the reliability of the LSTM-VAE diagnostic
model proposed in the study, a comparative experiment was
conducted to diagnose bearing data under different modes. The
comparative methods selected were based on the Random Deep

Neural Network (R-DNN) (Liu et al., 2025), CNN-VAE hybrid
model (Balasubramanian, 2024), and DNN-VAE hybrid model
(Dong and Kotenko, 2024), which are all based on random
sampling. R-DNN adopts a three-layer fully connected structure,
and the number of nodes in the hidden layer is 256, 128 and
64 respectively. The dimension of the input layer is consistent
with the length of the original vibration signal. The activation
function selected is ReLU, and the Sigmoid function is adopted
for the output layer. The weight initialization adopts a random
strategy. The optimizer selects Adam and the learning rate is fixed at
0.01. The encoder of CNN-VAE is composed of three layers of
convolution. The number of filters increases layer by layer to 32,
64 and 128. The size of the convolution kernel is uniformly 5 and the
step size is set to 2. The convolutional layer is then connected to the
fully connected layer to output the mean and variance parameters of
the latent distribution. The decoder adopts a symmetrical structure
and realizes signal reconstruction through a fully connected layer
and three layers of transposed convolution. The number of
transposed convolution filters is 128, 64 and 32 respectively. The
encoder of DNN-VAE adopts a three-layer fully connected network,
with the number of nodes being 256, 128 and 64 respectively, and the
decoder is a symmetrical fully connected structure. The activation
function selects LeakyReLU with a negative slope of 0.2, the latent
spatial dimension is also 16 and the KL divergence weight coefficient
is 0.01. The fault threshold is set as a normalized RMS value

FIGURE 6
Signal comparison and analysis before and after denoising. (a) Bearing signal waveform before reconstruction, (b) Bearing signal waveform After
reconstruction.

TABLE 2 Test findings of AE models before and after improvement.

The results in mode A

Model P R F1 OA

VE 0.931 0,875 0.891 0.883

VAE 0.985 0.933 0.920 0.939

The results in mode B

Model P R F1 OA

VE 0.907 0.859 0.831 0.842

VAE 0.926 0.896 0.882 0.905
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exceeding 0.35. This standard is determined based on the ISO
10816-3:2009 mechanical vibration standard and the statistical
characteristics of the health status of the CWRU dataset: When
the bearing damage depth is > 0.5 mm, its RMS value deviates from
the health reference by more than 3 standard deviations. The
diagnosis result is shown in Figure 7.

In Figure 7, dashed lines of different colors are used to represent
the time when different models discover potential faults, and the
vertical axis represents the Root Mean Square (RMS) value of time-
domain features. Its value increases with the depth of the fault,
which can well show the trend of bearing degradation. According to
Figure 7a, in Mode A, the research model found the potential fault
point at 10,860 s, the DNN-VAE model found the potential fault
point at 11,940 s, the CNN-VAE model found the potential fault
point at 14,270 s, and the R-DNN model found the potential fault
point at 16,100 s. At this time, it is too late to issue a fault warning. In
Figure 7b, in Mode B, the research model discovered potential faults
at 8,830 s, earlier than other models. Due to the slow degradation of
bearing performance in Mode A, it was difficult to determine
potential fault points. The research model solved this problem
and significantly advanced the warning time. To prove the

efficacy of each module in the model improvement process,
ablation experiments were conducted to test the baseline model
VAE, the VAE fused with LSTM, and the hybrid model enhanced
with Dropout. The results are shown in Figure 8.

According to Figure 8a, in the slow degradation mode of the
bearing, the P, R, F1, and OA of the VAEmodel were 0.78, 0.71, 0.72,
and 0.90, respectively. The test results of the LSTM-VAE model that
integrated LSTM networks were 0.85, 0.81, 0.84, and 0.97,
respectively. The P, R, F1, and OA of the hybrid model enhanced
with Dropout increased to 0.89, 0.83, 0.86, and 0.98, respectively. In
Figure 8b, in the rapid degradation mode of the bearing, the P, R, F1,
and OA of the baseline model VAE were 0.79, 0.75, 0.77, and 0.94,
respectively. The test indicators of the hybrid model enhanced with
Dropout were 0.83, 0.80, 0.82, and 0.99, which were 5.1%, 6.7%,
6.5%, and 5.3% higher than the baseline model, respectively. When
LSTM is directly used in combination with Dropout, the test
indicators decline compared with those of the hybrid model
enhanced by Dropout, improve compared with VAE, and have
their own advantages and disadvantages with the LSTM-VAE
model. Overall, the integration of LSTM and the use of Dropout
method for enhancement significantly raised the diagnostic efficacy

FIGURE 7
Comparison of neural network structures before and after Dropout. (a) Diagnostic results on mode A, (b) Diagnostic results on mode B.

FIGURE 8
Results of ablation experiment. (a) Test results on mode A, (b) Test results on mode B.
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of the model. Regarding the overfitting inhibition efficacy of Dropout,
the loss changes of LSTM-VAE and its Dropout variant during the
training process were systematically compared. Key quantitative
evidence indicates that the Dropout model shows significant
overfitting in the later stage of training (40-50 rounds), and the
loss of the validation set is approximately 87% higher than that of
the training set (overfitting index = 1.87). The overfitting index of the
complete model (including Dropout) has always been stable within
the range of 1.05–1.12, and the validation loss is only slightly higher
than the training loss. The generalization gap analysis shows that the
accuracy difference between the training and test sets of the model
without Dropout reaches 13.8%. Data confirm that the Dropout
mechanism effectively curbs the model’s excessive sensitivity to
noisy data and improves the generalization performance to a
practical level. Comparative experiments were conducted on the
abnormal rate changes of the LSTM-VAE model during training.
After every 5 iterations, the abnormal rate changes of different models
in FD under two bearing modes are shown in Figure 9.

In Figure 9, in Mode A, the average anomaly rate of LSTM-VAE
FD was 0.39%, the average anomaly rate of DNN-VAE model was
0.60%, the average anomaly rate of CNN-VAEmodel was 0.72%, and
the diagnostic anomaly rate of R-DNN model was the highest,
reaching an average of 0.86%. In Mode B, the average anomaly
rate of FD for LSTM-VAE was 0.56%, which was lower than other
models. Overall, the hybrid model proposed in the study has an
average anomaly rate of less than 0.6% under two bearing failure
modes, which is superior to other models, with lower anomaly rates
and stable performance. Finally, to validate the operational efficiency
of the proposed model, its memory usage was tested under different
bearing modes and compared with the R-DNN, CNN-VAE hybrid
model, and DNN-VAE model. The results are shown in Figure 10.

In Figure 10, the LSTM-VAE model had the lowest memory
occupancy rate, with an average memory occupancy rate of 40.49%
in Mode A and 45.13% in Mode B. The R-DNN model had the
highest memory occupancy rate, with average memory occupancy
rates of 75.36% and 78.99% in the two bearing modes, respectively.

FIGURE 9
Change in abnormal rate of fault diagnosis. (a) Abnormal rate on mode A, (b) Abnormal rate on mode B.

FIGURE 10
Comparison result of memory usage. (a) Memory usage on mode A, (b) Memory usage on mode B.
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The LSTM-VAE hybrid model proposed in the study performed
better in terms of memory usage, which was beneficial for improving
the efficiency of FD. In order to further analyze the superiority of the
research method, five different intensities of Gaussian white noise
(SNR = 0 dB, 5 dB, 10 dB, 15 dB, 20 dB) were injected into the
dataset for testing. Meanwhile, the recently advanced Self-Attention
(Dong et al., 2024) and Insulator-Detection (Hu et al., 2024) are
added for comparison. Self-Attention is based on the Transformer
architecture and consists of 12 layers of encoders (8 attention heads
per layer, with a hidden layer dimension of 512), and the input is the
spectrogram of the vibration signal (256 × 256 pixels). Insulator-
Detection is based on the YOLOv8s architecture (24-layer
convolution, 3 detection heads), and the input is the time-
frequency graph of the vibration signal conversion (generated by
continuous wavelet transform). Training configuration: Learning
rate 0.01, batch size 16, number of training rounds 150. The
comparison results are shown in Table 3.

It can be seen from Table 3 that in a strong noise environment, the
LSTM-VAE-Dropout model shows significant advantages, and its
accuracy reaches 0.82, which is 20.6% higher than 0.68 of the Self-
Attention model. This advantage stems from the core design of the
model. The probabilistic coding layer of VAE effectively filters out
random noise, increasing the signal-to-noise ratio of signal
reconstruction by 8.7 dB. The LSTM timing analysis unit
(128 memory units) can still capture the weak impact characteristics
of early bearing faults in noise, reducing the fault detection delay to
9,210 s, which is more than 3,640 s less than the comparisonmethod. It
is notable that when the noise level increases from 20 dB to 0 dB, the
performance attenuation rate of the Self-Attentionmodel reaches 23.5%
(because its attentionmechanism is difficult to focus effective features in
the noise), while the Insulator-Detection algorithm has a false detection
rate as high as 39% due to its reliance on time-frequency image quality.
In contrast, the performance attenuation rate of LSTM-VAE-Dropout
is only 11.8%, proving its robustness.

5 Conclusion

A LSTM-VEA hybrid model was designed to address the issues of
low robustness of traditional FDmodels to mechanical noise and weak
ability to extract vibration signal features. This model combined the

excellent performance of LSTM model in processing time-series data
and the advantages of VAE model in signal reconstruction, thereby
enhancing the model’s feature extraction ability and tolerance for
noise. Finally, experiments were conducted on the research content to
verify its effectiveness. The analysis results of the mechanical vibration
signal before and after reconstruction showed that the DSA decreased
to between −1 and 1, with an interval length of 2. Compared with the
original signal, the DSA decreased by 50%, and the reconstructed signal
waveform was smoother. Performance tests were conducted on the AE
models before and after improvement, and the results showed that in
the slow degradation mode of bearings, the P, R, F1, and OA of the
VAE model were 0.931, 0.933, 0.920, and 0.939, respectively, which
were better than the AEmodel before the modification. The diagnostic
analysis of bearing data under differentmodes showed that in the rapid
degradationmode of bearings, the researchmodel discovered potential
faults at 8,830 s, earlier than other models. The ablation experiment
results showed that the P, R, F1, and OA of the study model enhanced
with Dropout were 0.83, 0.80, 0.82, and 0.99, respectively. Compared
with the baseline model, the four indicators improved by 5.1%, 6.7%,
6.5%, and 5.3%, respectively. Finally, the memory usage test results
showed that the researchmodel had the lowest memory usage, with an
average memory usage of 40.49% and 45.13% inMode A andMode B,
respectively, which was better than the control model. In summary, the
raised model can accurately diagnose and analyze the faults of bearings
under different degradation modes, shorten the fault warning time,
and maintain stable performance. It is greatly significant for extending
the working life of mechanical equipment and maintaining the
production efficiency of enterprises. However, in terms of data
diversity, the current verification relies on a single bearing dataset
and needs to be extended to multiple types of mechanical failure
scenarios to improve generalization. In terms of noise robustness, the
extreme noise environment leads to the attenuation of model accuracy,
which is due to the filtering bottleneck of impulse noise in the
probabilistic coding layer. In the future, the Dropout scheduler with
noise intensity awareness can be used to dynamically adjust the
dropout rate to a more appropriate range. The industrial
deployment constraint is manifested as the increase in inference
delay caused by dynamic network resources. It is recommended to
develop an FP16 accuracy quantization scheme to compress the
memory usage to within 20% to adapt to embedded devices. In
addition, the introduction of multimodal fusion technology

TABLE 3 Comparative test of noise environment.

Metric Noise level LSTM-VAE-dropout Self-attention Insulator-detection

Precision High (0 dB) 0.82 0.68 0.61

Medium (10 dB) 0.88 0.79 0.71

Low (20 dB) 0.93 0.89 0.83

F1-Score High (0 dB) 0.8 0.66 0.59

Medium (10 dB) 0.87 0.77 0.7

Low (20 dB) 0.92 0.88 0.82

Fault Detection Latency (s) High (0 dB) 9,210 12,850 14,300

Memory Usage (%) All Levels 42.3 68.9 75.6

Performance Degradation Rate 0 dB→20 dB 0.118 0.235 0.311
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combining thermal imaging and acoustic emission can solve the
monitoring blind spots in low-speed working conditions.
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