:' frontiers ‘ Frontiers in Mechanical Engineering

’ @ Check for updates

OPEN ACCESS

Mohamed Arezki Mellal,
University of Boumerdés, Algeria

Amlana Panda,

KIIT University, India

Arif Gok,

Dumlupinar University, Turkiye

Jieyu Tian,
tianjieyuhb@163.com

09 June 2025
08 September 2025
24 September 2025

Huang Y and Tian J (2025) Motion path
optimization of truss manipulator based on
simulated annealing and BP neural network.
Front. Mech. Eng. 11:1643848.

doi: 10.3389/fmech.2025.1643848

© 2025 Huang and Tian. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Mechanical Engineering

Original Research
24 September 2025
10.3389/fmech.2025.1643848

Motion path optimization of truss
manipulator based on simulated
annealing and BP neural network

Yingya Huang and Jieyu Tian*

College of Railway Locomotive and Rolling Stock, Hebei Vocational College of Rail Transportation,
Shijiazhuang, China

Introduction: This research focuses on optimizing the motion path of truss
manipulators and proposes a path optimization method based on a simulated
annealing algorithm and a neural network to address the positioning deviation
problem that occurs in industrial production.

Methods: The research method first uses a simulated annealing algorithm to
initially improve the path parameters and avoid falling into local optima. The path
is then further optimized through a neural network to ensure the precision and
energy productivity of the motion path.

Results: The experimental outcomes indicated that the proposed algorithm
performs well across multiple indicators, reducing the path length to 12.486
m, improving energy consumption optimization by 23.78%, controlling the path
error at 2.14 cm, and achieving a convergence speed of 147 iterations. Compared
with other algorithms, the algorithm proposed in the study also has significant
advantages in path smoothness and computation time.

Discussion: The significance of the research lies in providing an efficient and
energy-saving optimization strategy for the motion path of truss manipulators in
industrial automation, which is expected to improve production efficiency and
reduce industrial energy consumption.

truss manipulator, motion path optimization, simulated annealing algorithm, BP neural
network, industrial automation

1 Introduction

With the thriving development of industrial automation, the application of truss
manipulators in production processes is experiencing a continuous and extensive
expansion. They can automatically complete operations such as material grabbing,
handling, and placement, significantly improving production efficiency and accuracy
(Zhou et al., 2024). However, in practical applications, because of the complicacy of the
production status and the restrictive conditions of the robot arm’s own structure and
control system, truss robots often face problems such as positioning errors and inaccurate
path planning, which pose challenges to overall production efficiency and safety (Yaldiz
et al.,, 2013; Gok et al,, 2017). Therefore, how to optimize the motion path of the truss
manipulator to maintain high precision and stability in complex production environments
has become a hot research topic (Aydin et al., 2015). Traditional path optimization methods
for truss manipulators often rely on pre-set paths or simple algorithms for control, but these
methods have significant limitations. Firstly, the pre-defined path encounters significant
challenges in adapting to the dynamic alterations that may transpire throughout the
production process. Moreover, once deviations emerge, the robotic arm exhibits limited
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This research addresses significant geometric positioning errors in truss manipulator systems by proposing a hybrid optimization algorithm. The
method uses a Simulated Annealing Algorithm (SAA) to initialize the weights of a Backpropagation (BP) neural network. The direct impact is a highly
efficient control response, demonstrated by the rapid convergence of the system'’s PID controller parameters (Kp, Ki, and Kd) to stable values within 0.2 s.
This swift stabilization confirms the algorithm’s ability to produce a fast, stable, and accurately optimized motion path for the manipulator.

capacity for self-adjustment (Han et al., 2023). Secondly, many
existing optimization algorithms such as Genetic Algorithms
(GA) and Particle Swarm Optimization (PSO) can optimize paths
to a certain extent, but they tend to become trapped in local minima
and cannot guarantee global optima (GO) (Liu B. et al,, 2023). In
addition, these algorithms have long computation times and low
efficiency in complex path planning problems, making it difficult to
meet the real-time and efficient requirements in industrial
still  has
shortcomings in the accuracy, efficiency, and adaptability of path

production. Therefore, traditional research many
optimization.

Recent research has focused on using simulated annealing
algorithms (SAA) and their combination with neural networks
(NN) to optimize prediction and control problems for various
complex systems. Yan et al. constructed the SA-GRU city
flooding forecasting model based on Gated Recurrent Unit
(GRU) NN and SAA to optimize hyperparameters. Compared to
traditional models, SA-GRU had higher accuracy in short-term
forecasting, effectively improving the accuracy and response
speed of urban waterlogging warning (Yan et al., 2023). Tsoulos
et al. proposed a novel combined way to improve the training

efficiency of artificial NN in sorting learning and data fitting
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issues. This technology combined variants of GA and SAA, by
periodically applying SAA to stochastically chosen chromosomes
in the GA population to cut training errors related to these
chromosomes (Tsoulos et al., 2024). The two-step SAA proposed
by Pei et al. effectively improved the accuracy and stability of
spectral feature extraction, which was consistent with the goal of
studying and optimizing the path of truss manipulators, indicating
the wide application of SAA in multiple fields and its ability to
optimize complex systems (Pei et al., 2023). Rehman et al. used a
two-step optimization algorithm based on Recurrent Neural
Network (RNN) and improved the accuracy of wind speed data
estimation by combining the Broyden-Fletcher-Goldfarb-Shanno
algorithm with SA. The algorithm improved the accuracy and
efficiency of path optimization for truss manipulators (Rehman
et al,, 2023). Yin et al. predicted the loss factor of particle dampers
using SA backpropagation NN (SA-BP), which was consistent with
the SA-BP method for optimizing the path of truss manipulators,
demonstrating the effectiveness of SA-BP in complex engineering
problems (Yin et al., 2023).

The efficiency of motion planning in the design of engineering
systems such as truss robots has broad application prospects.
Suvorov et al. used SA-BP NN to optimize the design of ship
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cranes, to cut weight and improve productivity. The optimization
design method applied by it was consistent with the goal of studying
the path optimization of truss manipulators, indicating the wide
applicability of SA-BP algorithm in engineering optimization design
(Suvorov et al,, 2023). Cao et al. proposed a novel way for predicting
the dependability of stamping machine loading and unloading truss
robots. This method first used the component counting method to
forecast the error rate of the electronic managing machinery, and
then used the professional valuing strategy based on fuzzy theory to
estimate the MTBF and error rate of the mechanical and pneumatic
systems (Cao et al., 2024). Dai et al. used reinforcement learning and
SA-BP algorithm to optimize the in orbit assembly of space trusses.
Similar to the methods used in optimizing the path of truss
manipulators, they combined multiple optimization strategies in
complex systems to improve the efficiency of automation systems
(Dai et al,, 2023). A reinforcement learning algorithm proposed by
Liu et al. optimized a variable topology truss robot and improved the
assembly and motion planning efficiency of complex systems
through intelligent optimization techniques (Liu C. et al., 2023).
The improved sparrow algorithm designed by Dai et al. effectively
planned the motion path of robots climbing trusses, improved the
efficiency of path planning through optimization algorithms, and
solved complex automation problems (Dai et al., 2024).

In summary, many experts have studied the application of NN-
based path optimization and SAA in model training. However, current
research still has shortcomings such as insufficient path planning
accuracy, poor adaptability to dynamic environments, and long
training time. Therefore, a research proposes a motion path
based on the
combination of SA and BP NN to solve problems such as improving
path accuracy, enhancing adaptability in dynamic environments, and

optimization method for truss manipulators

improving training efficiency. The peculiar thing of the study lies in the
SAA, which can effectively break out of local optima (LO) and explore
GO solutions by simulating the state changes during the cooling process
of materials. At the same time, combining BP NN to adaptively adjust
path parameters further improves the accuracy and efficiency of path
planning. The contribution of this research lies in proposing a hybrid
SA-BP method which adeptly formulates a synergistic strategy
combining ‘global exploration’ with ‘local exploitation’. Specifically,
the SAA is employed to perform a global search to optimize the
initial weights of the BP NN. This approach addresses the network’s
tendency to settle in poor LO. Subsequently, the BP algorithm leverages
its efficient local search capabilities to rapidly fine-tune the solution from
this advantageous starting point. This integrated strategy is designed to
enhance both the final accuracy and the computational efficiency of path
optimization, providing a more intelligent and robust solution for truss
manipulators in industrial automation.

2 Methods and materials

2.1 Optimization of motion path and
automatic control strategy of truss
robot arm

Truss manipulators are widely used in industrial automation,
capable of automatically executing pre-programmed trajectories and
actions to achieve operations such as grabbing and transporting
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objects. The key components include the actuator, drive system,
control software, and sensing equipment, which together ensure the
efficient material handling of the robotic arm in industrial
production, as shown in Figure 1.

As shown in Figure 1, the structure of the truss manipulator
consists of a vacuum pump, a walking rack, an accumulator, a lifting
beam, a lifting servo motor, a moving plate, a descent detection, and
a suction cup frame. The vacuum pump is responsible for providing
suction power, the walking rack guides the horizontal movement of
the robotic arm, the accumulator maintains stable system pressure,
and the lifting beam and lifting servo motor work together to achieve
vertical movement of objects. The moving plate is used to carry and
transport objects, the descent detection sensor monitors the descent
process of objects, and the suction cup holder fixes the suction cup to
grasp objects. Figure 2 shows the workflow of the truss manipulator.

As shown in Figure 2, as the control center of the truss manipulator,
the industrial controller is responsible for executing logical control tasks.
It analyzes input signals, makes decisions based on the analysis results,
and commands execution components. These components operate
synchronously according to the instructions of the controller,
achieving multi-axis coordinated actions of the robotic arm to
complete automation tasks. Automated robotic arms are susceptible
to environmental and equipment fluctuations during operation,
resulting in workpiece positioning errors that can reduce efficiency
and even cause machine tool collisions. Therefore, the machine tool
system requires strict error control and coordination with other systems
to adapt to complex production requirements. In the motion of the truss
manipulator, significant positioning errors can occur, compromising
precision and operational safety. These discrepancies primarily stem
from geometric inaccuracies inherent in the mechanical system. Key
contributing factors include manufacturing and assembly tolerances,
rotational deviations in the gripper, wear and tear on components like
gears and racks, and thermal expansion of the guide rails due to
temperature changes. Figure 3 provides a schematic representation
of these primary geometric errors within the manipulator’s coordinate
overall

system, contribute to the

positioning deviation.

illustrating  how  they

In the motion of the truss manipulator, significant positioning
errors can occur due to factors such as manufacturing, assembly,
gripper rotation, gear and rack wear, and changes in guide rail
temperature (Yaldiz et al., 2016). To improve the positioning
accuracy, an NN trained model combined with PID control
algorithm is used for error compensation.

As shown in Figure 4, in the research of optimizing the motion
path of the truss manipulator, it is necessary to first select a suitable
factor encoding method to represent the motion path parameters of
the manipulator. Subsequently, a path optimization objective
function is constructed, which is used to evaluate the
optimization process and guide the search direction. It adjusts
weights through BP NN to further refine the motion path.
of the

optimization matter in the BP algorithm is provided to give a

Meanwhile, a comprehensive explanation weight
theoretical basis for the algorithm. During the SA process, the
energy differences of different paths are calculated and annealing
operations are performed to explore the solution space. The fitness
of each solution is evaluated to determine its optimization potential.
Ultimately, the initial solution is crafted to serve as the algorithm’s

starting point, from which it iteratively seeks out the optimal path.
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FIGURE 2
Workflow of the truss manipulator.

In this study, path smoothness is a critical metric used to
evaluate the quality of the manipulator’s trajectory. It is
quantified as the average cosine of the angle between consecutive
path segments. For a path defined by a sequence of points
Py,P,,...,Py, the smoothness S is calculated as shown in
Formula 1.
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N-24

1
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I
o

This metric yields a value between —1 and 1, where a value closer
to one indicates a smoother path with minimal changes in direction.
Path smoothness is highly relevant as it directly correlates with real-
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Optimization process of motion path for truss manipulator.

world performance. A smoother path reduces mechanical stress and
vibrations on the manipulator’s joints and structure, leading to less
wear and tear. Furthermore, it improves energy efficiency by
minimizing abrupt accelerations and decelerations, and enhances
stability when handling delicate or liquid materials (Kara
et al.,, 2015).

2.2 Optimization of motion path for truss
manipulator based on SA-BP algorithm and
PID control

To optimize the motion path of the truss manipulator,
research needs to be conducted according to the process
shown in Figure 4. SAA is used for path planning of truss
manipulator, mimicking the annealing process of material
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heating and gradually cooling. As an extension of the random
search algorithm, it probabilistically accepts changes in the
solution and adjusts the grope method over time to locate the
overall best solution, decreasing the danger of falling into LO.
The SAA model is shown in Figure 5.

Figure 5 illustrates the core mechanism of the SAA, which is
designed to find a GO solution by mimicking the physical process of
annealing. The algorithm begins at an initial solution (State A) and
explores the solution space by generating neighboring solutions
(e.g., State B). The decision to move to a new state is governed by two
principles. First, if the new solution is an improvement (i.e., has
lower ‘energy’), it is always accepted, guiding the search towards
better solutions. Second, and more critically, if the new solution is
worse (higher ‘energy’), it may still be accepted based on a certain
probability. This probabilistic acceptance allows the algorithm to
make temporary ‘uphill’ moves, enabling it to escape LO that would

frontiersin.org
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FIGURE 5
SAA model.

trap simpler algorithms. As the algorithm progresses, a
which
the probability of accepting worse
solutions, ensuring that the search eventually converges towards
the globally optimal state. The SAA combined with BP NN is

represented in Figure 6.

‘temperature’  parameter is  gradually lowered,

systematically reduces

As represented in Figure 6, in the research on optimizing the
motion path of the truss manipulator, SAA and BP NN are used to
train the critical path parameters. Through a three-layer NN model,
SAA is used to initialize network weights and avoid LO, while BP
NN adjusts weights to optimize paths. The objective function
evaluates the path efficiency to ensure that the robotic arm plans
its motion path quickly and efficiently, improves production
efficiency, and ensures operational safety (Agrawal et al., 2024).
In this training model, the amount of input points is #, and the input
layer (IL) points of the network correspond to the teaching quality
evaluation indicators, as shown in Formula 2.

pi:{l)zr""n} (2)

In Formula 2, p; means the output signal of the i th input node,
and the number of motion parameters of the robotic arm
corresponds to the amount of nodes in the IL of the NN. These
parameters include position, velocity, and acceleration, which serve
as input signals to the intermediate layer of the network after
processing. Therefore, for the IL of an NN, the received motion
parameters are consistent in quantity with the information output to
the intermediate layer. The number of intermediate layer points is n,
and the calculation for the network layer input is represented in
Formula 3.

I; = Zwijpi (3)
P

In Formula 3, I'; means the input signal of the j th neuron, and
w;j means the contribution of the i th input node to the input signal
of the j th neuron. The calculation for the output of the intermediate
layer is shown in Formula 4.

Frontiers in Mechanical Engineering

»
»

Number of iterations
GO

oj=1/ 1+[(j_i(}v,-,-p,-)1—1]2

= 1/[1 +(1; - 1)2]

In Formula 4, O; represents the output of the j th intermediate
node. The final output layer (OL) node number is 1. To convert a
real value into a value between 0 and 1, the calculation is shown in
Formula 5.

1
1+ [(Z?:'ijof)_l - 1]2

q= (5)

In Formula 5, q represents the probability of an event occurring.
O; means the value of the j th input feature. w; means the
contribution of input features to the output variable. In the SA-
BP algorithm, for the purpose of facilitating genetic operations, the
SAA chooses binary encoding to genetically encode the weight
coefficients. The training objective function is determined, whose
mathematical expression is shown in Formula 6.

B=(1/p)Yla-a = (/pYE ®

In Formula 6, E represents the mean square error, which is the
average of the squares of all individual errors. g represents the actual
value of a single observation point. g represents the average of actual
values. p means the amount of samples. E; means the square of the
error at the j th observation point. In the process of adjusting the
weight coefficients, the gradient descent method is used, and the
adjustment formula for w;; is shown in formula 7.

In Formula 7, Aw;; represents the change in weight; # represents
the learning rate; 0E/Ow;; means the partial derivative of the loss

frontiersin.org
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function E with respect to the weight w;;. The adjustment amount of
wj is shown in Formula 8.

Aw; = —ﬂ(aE/awj) ®)

In Formula 8, Aw; represents the change in w;. The weight Aw;;
is further updated as shown in Formula 9.

Aw,-j = xleO§ [1 - Zw,-jx,](sj (9)
i=1

In Formula 9, x; represents the activation value or input signal of
the i th input node. §; means the error derivative of the j th neuron,
used to propagate errors and update weights, as shown in
Formula 10.

j
9 =2q" [1 - dw0;|[a-q]’ (10)

Formula 10 is used to update the weights in the network to
reduce the discrepancy between the forecasted result and the real
target value. When studying the optimization of the motion path of
the truss manipulator, the MPU6050 sensor is used to obtain real-
time posture data of the manipulator, and the BP NN is applied to
forecast the optimal motion trajectory. By combining SAA to
optimize PID control parameters, the system can reduce actual
motion deviation and ensure precise control.

u(k) = Kpe(k) + K Y e(k) + KD(e(k) - e(k - 1)) (11)

In Formula 11, u (k) represents the control input or control action
at discrete time step k. K p represents proportional gain. e (k) means the
error at discrete time step k. KD represents differential gain. A BP NN
with a single hidden layer was constructed in the study. The OL is
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designed with three output nodes, corresponding to the K, K;, and K4
parameters of the PID controller. Each node outputs a non-negative
value, thus forming a three neuron OL. Since the input and output of
the IL are the same, it can be expressed as Formula 12.

o)

= x()) (12)

In Formula 12, o](-l) means the output of the j th neuron in the
first layer of the NN. x () represents the j th element in the input
vector. The input and output of the hidden layer in the network are
shown in Formula 13.

m
net,.(z) (k) = Zwi(f)o](l) (13)
=0

In Formula 13, net(® (k) represents the weighted sum of the
inputs of the i th neuron in the second layer of the NN at the
discrete-time step k. wi(jz) represents the weight between the j th
neuron in the first layer and the i th neuron in the second layer. m
represents the number of neurons in the first layer. The output of the
hidden layer neurons in the time step is shown in Formula 14.

0o (k) = f(net? (k)) (14)

The recursive formula for updating the weights of the third layer
is shown in Formula 15.
E (k)

0
Aw (k) = ———+ pAwy) (k- 1)

aw,(f) (15)

1(3) (k) represents the update amount of the

In Formula 15, Awy;
weight wy; of the third layer at time step k. wy; represents the learning
rate. y represents the momentum factor. The final update is shown
in Formula 16.
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Aw (k) = n8Pof (k) + yAw;” (k- 1)

3
8 = f'(net? (k)Y 8w (k) i=1,2,3.. (1o
=1

In Formula 16, 8! represents the error derivative of the i th
neuron in the second layer of the BP NN assisted by SAA. This error
derivative is the key to the calculation in the backpropagation
process and directly affects the update of hidden layer weights,
thereby affecting the optimization effect of the robotic arm motion
path. By accurately calculating the error derivative of each neuron,
the network weights can be effectively adjusted to make the motion
path of the robotic arm closer to the ideal state.

3 Results

3.1 Performance evaluation and
comparative analysis of SA-BP algorithm in
optimizing the motion path of truss
manipulator

The performance assessment metrics for the model were studied
through three metrics: Mean Absolute Error (MAE), Root Mean
Square Error (RMSE), and Mean Absolute Percentage Error
(MAPE). The SA-BP algorithm was wused to verify the
optimization of the motion path of the truss manipulator. The
network structure adopted a three-layer NN, with 10 IL nodes
corresponding to multiple motion parameters of the truss
manipulator. The amount of points in the hidden layer varied
between 10 and 30. The OL was a single node that output the
optimized motion path. The learning rate ranged from 0.0004 to
0.0012, and the gradient descent method was applied to optimize the
model throughout the training phase. To determine the optimal
hyper-parameters for the SA-BP model, a systematic tuning strategy
based on Grid Search combined with 5-fold Cross-Validation was
implemented. This approach ensured that the selected parameters
were robust and not overfitted to a specific data split. The hyper-
parameter space was defined based on preliminary experiments and
common practices. Specifically, the number of hidden layer nodes
was explored in the range of [10, 30] with an integer step of 2, while
the learning rate was searched within the range of [0.0004, 0.0012]
with a step of 0.0002. For each combination of hyper-parameters in
the grid, the model was trained and evaluated using 5-fold cross-
validation on the training dataset. The performance was measured
by the average RMSE across the five validation folds. The
combination yielding the lowest average RMSE was selected as
the optimal configuration for the final model. The training data
was the actual data of multiple motion paths of the robotic arm. This
historical data were collected from a physical truss manipulator
system as depicted in Figure 1. The data acquisition process involved
executing a series of predefined motion tasks, such as pick-and-place
operations, across various start and end points within the
manipulator’s workspace. An MPU6050 inertial measurement
unit was used to capture real-time posture data, including
position, velocity, and acceleration for each axis. The dataset was
structured as a time-series collection of data points, where each
point contained a timestamp, the Cartesian coordinates (X, Y, Z) of
the end-effector, its corresponding velocity and acceleration values,
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and the motor control signals sent from the controller. The error of
SA-BP algorithm in optimizing the motion path of truss
manipulator is shown in Figure 7.

Figure 7a shows the trend of three indicators as the amount of
hidden layer nodes rose from 10 to 30. When the amount of hidden
layer points was 20, the MAE reached the lowest value of 0.211,
while the RMSE and MAPE were 0.282 and 0.347, separately,
indicating that the model performed best at this number of
nodes. Figure 7b shows the variation of model error as the
learning rate was adjusted from 0.0004 to 0.0012. When the
learning rate was 0.0008, the error values of MAE, RMSE, and
MAPE were 0.942, 1.466, and 2.513, separately. At this time, the
model’s error was relatively lowest, indicating that the model
performed best at this learning rate. To enhance the algorithm
performance, a three-layer SA-BP NN model was applied in the
validation experiment. The IL had 10 nodes representing the key
motion parameters of the truss manipulator, the hidden layer has
20 nodes, and the OL output the optimized path for a single node.
The model used mean square error (MSE) as the loss function, with a
learning rate of 0.0008, and was optimized through gradient descent.
The model was trained and tested using historical motion data, and
its stability was ensured through cross validation. The loss
convergence curves of the SA-BP algorithm training and testing
sets are shown in Figure 8.

On the training set shown in Figure 8a, the mean square error
rapidly decreases in the initial stage, then continues to steadily
decrease and converges to nearly 107> around 1.3 x 10~ iterations.
Although there are slight fluctuations caused by random
optimization, the overall trend is smooth and consistent; On the
test set shown in Figure 8b, there is also monotonic convergence,
with a rapid decline in the initial stage and a slow approach to the
low error interval, reaching a low value of the same magnitude as the
training set around 1.5-1.6 x 107" iterations. The continuous decline
and convergence of the training and testing curves indicate that the
model performs well in both optimization efficiency and
generalization performance. It can quickly reduce errors without
significant overfitting, thus demonstrating the advantages of the
proposed method in terms of stability and prediction accuracy. To
first evaluate the core discriminative power of the proposed model
against other algorithms, a binary classification task was established
as a preliminary assessment. In this framework, historical motion
paths from the training dataset were labeled as either ‘acceptable’
(Class 1) or ‘unacceptable’ (Class 0) based on a predefined threshold
of performance, such as exceeding a critical positioning error or
failing to meet smoothness criteria. The performance of the SA-BP
algorithm was benchmarked against four other common
optimization algorithms (GA, PSO, DE, and ABC) on a binary
classification task, with the results detailed in Table 1. This
comparison aimed to assess the core discriminative power of
each model in distinguishing between ‘acceptable’ and
‘unacceptable’ motion paths.

As shown in Table 1, the SA-BP algorithm demonstrated
superior performance across all key metrics. It achieved the
highest accuracy (93.78%), precision (91.62%), and recall
(92.34%). Crucially, it also obtained the top F1 score of 91.98%,
indicating the best balance between precision and recall, and the
highest ROC-AUC value of 0.954, signifying its excellent overall
capability to discriminate between the two classes. While other
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algorithms like ABC and PSO also yielded strong results, with
F1 scores of 91.12% and 90.71% respectively, they did not
surpass the balanced performance of the SA-BP model. The GA
and DE algorithms showed comparatively weaker performance in
this task. Overall, the comprehensive results in Table 1 confirmed
that the SA-BP algorithm possessed the most robust and reliable
discriminative power for evaluating the quality of manipulator
motion paths.

3.2 Performance analysis and verification of
SA-BP algorithm combined with PID control
in optimizing the motion path of truss
manipulator

The SA-BP algorithm combined with a PID controller was used
in the experiment to optimize the motion path of the truss
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manipulator. The PID controller was used to adjust the motion
trajectory of the robotic arm to minimize its error. The parameter
settings were as follows: the initial value of proportional gain K, was
0.1, the initial value of integral gain K; was 0.05, and the initial value
of differential gain K; was 0.01. The sampling period of this
experiment was 0.01 s, and the total running time was 3 s. The
actual motion data of the robotic arm were fed back to the controller
in real-time through sensors, and the PID parameters were
optimized using BP NN and SAA to make the movement
trajectory of the robotic arm smoother and more accurate. The
time-varying curves of the three parameters of the PID controller are
shown in Figure 9.

Figure 9 shows the changes in three parameters K, K;, and Ky
over time when the SA-BP algorithm was combined with a PID
controller in the motion path optimization task of a truss
manipulator. Firstly, there was a change in the K, parameter,
which rapidly increased in the initial stage and stablhzed at
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TABLE 1 Comparison of algorithm performance indicators.
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Algorithm name Accuracy(%) Precision F1 score Specificity ROC-AUC value
SA-BP algorithm 93.78 91.62 92.34 91.98 94.21 0.954
GA 91.45 89.67 88.92 89.29 91.33 0.925
PSO 92.12 90.34 91.08 90.71 92.74 0.941
DE 90.87 88.55 89.12 88.83 90.45 0916
ABC 92.76 91.01 91.23 91.12 93.02 0.947
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FIGURE 9
Time dependent curves of the three parameters of the PID controller.

around 0.15 at approximately 0.1 s. Next was the K; parameter,
which rapidly increased to around 0.11 at the beginning and reached
a stable value at about 0.2 s. The final curve showed the variation of
K, parameter, which rapidly increased to 0.02 at about 0.05 s and
remained unchanged. All three parameters converged to stable
values within a brief timeframe, indicating that the algorithm had
a fast and stable response speed in PID control. The comparison of
optimization algorithm effectiveness for the motion path of the truss
robotic arm is represented in Table 2.

As shown in Table 2, the SA-BP algorithm performed
excellently in key performance indicators, with a path length
of 12.486 m, the shortest, energy optimization reaching 23.78%,
calculation time of 8.213 s, iteration convergence speed of
147 times, path error of 2.14 cm, smoothness of 0.854,
demonstrating high stability. In contrast, the GA path length
was 13.168 m, with an optimized energy consumption of 21.29%
and a path error of 3.56 cm, showing slightly inferior
performance. The PSO algorithm had a path length of
12.934 m, energy optimization of 22.46%, and 182 iterations,
slightly slower than SA-BP. The DE algorithm had a path length

Frontiers in Mechanical Engineering

of 13.513 m, a computation time of 9.315s, 215 iterations, and the
slowest convergence speed. The ABC algorithm had a path length
of 12.763 m, optimized energy consumption of 22.35%,
smoothness of 0.842, computation time of 10.817 s, balanced
performance, and was close to SA-BP. Overall, the SA-BP
algorithm demonstrated significant advantages in path
optimization, energy consumption, and computational
efficiency. The performance of the proposed SA-BP algorithm
was comprehensively validated by comparing its generated path
against both the original, unoptimized path and a theoretically
optimal path, with the results detailed in Table 3.

As shown in Table 3, the algorithm demonstrated substantial
improvements over the pre-optimization baseline across all
evaluation metrics. Notably, it reduced the path length from
14.872 m to 12.486 m (a 16.05% improvement) and slashed the
positioning error by a remarkable 62.09%, from 3.64 cm down to
1.38 cm. Crucially, the performance of the SA-BP optimized path
closely approached the benchmarks set by the theoretically optimal
path. The optimized path length, energy consumption, and
execution time showed minimal deviation rates of just 1.16%,

10 frontiersin.org
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TABLE 2 The comparison of optimization algorithm effectiveness for the motion path of truss robotic arm.

Algorithm Path Calculation Energy Path Convergence speed Path
name length time (s) consumption smoothness (number of iterations)  error
(m) optimization (%) (unit) (cm)

SA-BP algorithm 12.486 8213 23.78 0.854 147 2.14

GA 13.168 10.453 2129 0.803 203 356

PSO 12.934 9.769 22.46 0.826 182 2.88

DE 13,513 9315 20.92 0.794 215 312

ABC 12763 10.817 2235 0.842 173 267

TABLE 3 Performance validation of truss manipulator motion path optimization model.

Evaluation SA-BP Theoretical optimal  Pre-optimization Deviation Efficiency
metric algorithm path path rate (%) improvement (%)
Path length (m) 12.486 12.342 14.872 1.16 16.05
Energy 2317 2.290 2.765 118 16.22
consumption (kWh)
Execution time (s) 8.213 8.104 9.756 1.34 15.80
Smoothness (units) 0.854 0.862 0.792 0.93 7.83
Positioning 1.38 1.25 3.64 10.40 62.09

accuracy (cm)

Stability (%) 94.32 95.01 89.78 0.73 5.05

TABLE 4 Comparison of SA-BP predicted path vs actual executed path on physical system.

Performance metric Performance metric Performance metric Performance metric
SA-BP predicted path (Ideal) SA-BP predicted path (Ideal) SA-BP predicted path (Ideal) SA-BP predicted path (Ideal)
Actual executed path (Measured) Actual executed path (Measured) Actual executed path (Measured) Actual executed path (Measured)
Fidelity deviation Fidelity deviation Fidelity deviation Fidelity deviation
Execution time (s) Execution time (s) Execution time (s) Execution time (s)

1.18%, and 1.34% from the ideal values, respectively. Furthermore,  predicted path and the actual execution path on the physical system
key performance indicators such as smoothness (0.854 units) and  is shown in Table 4.

stability (94.32%) were also remarkably close to the theoretical best- The results of this direct comparison are presented in Table 4,
case scenario, with deviations of less than 1%. This proximity to the =~ demonstrating a high degree of correlation between the predicted
ideal benchmark strongly underscored the algorithm’s high  performance and the physically realized results, thereby confirming
efficiency and its capability to converge on a near-optimal the algorithm’s effectiveness and robustness in a practical
solution. To rigorously validate the real-world applicability of the  application scenario.

proposed SA-BP algorithm, a final verification experiment was

conducted on the physical truss manipulator system described in

Section 2.1. In this experiment, a standard pick-and-place task was 4 Discussion

defined with specified start and end coordinates. The SA-BP

algorithm was first used to generate the optimal motion path and The research focused on optimizing the motion path of truss
corresponding control commands. These commands were then fed ~ manipulators to solve their positioning deviation problem in
directly to the manipulator’s control system. The actual executed  industrial automation. The research proposed an optimization
trajectory of the manipulator’s end-effector was tracked in real-time ~ method that combined SA and BP NN. The SAA was used to
using the MPU6050 sensor system. The performance of the initially optimize path weights, and then the BP NN was applied to
predicted path was then compared against the actual executed  further adjust the motion path to improve the precision and energy
path. Key performance indicators (KPIs) were measured to  productivity of path planning. The research results indicated that the
quantify the fidelity of the real-world execution against the = SA-BP algorithm outperformed other optimization algorithms in
algorithm’s optimized plan. The comparison between the SA-BP  multiple performance metrics. Specifically, the SA-BP algorithm
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reduced path error to 1.38 cm, improved energy optimization by
16.22%, and reduced execution time to 8.213 s. Meanwhile, the
smoothness of the path reached 0.854, significantly better than GA’s
0.803 and PSO’s 0.826. In contrast, GA had a path error of 3.56 cm
and an energy optimization rate of 21.29%. These data further
proved that the SA-BP algorithm had significant advantages in
path optimization and energy saving. Although the research
results were satisfactory, there were still some shortcomings in
this study. The training time of the model was relatively long,
especially when dealing with large-scale data, which might affect
the practical application of the algorithm. Future work prospects can
further optimize the computational efficiency of algorithms to
shorten training time. Meanwhile, incorporating dynamic path
planning into the research scope and developing more intelligent
and flexible control systems to cope with complex industrial
automation scenarios.
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