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Introduction: Parallel hybrid vehicles face challenges in real-time torque
distribution, including slow feedback speeds and suboptimal energy allocation,
which constrain overall energy efficiency. This study aims to develop a high-
precision, robust torque distribution model to enhance energy utilization while
addressing interference from environmental noise and extreme temperatures.
Methods: A real-time torque distribution model integrates three core
components: a Markov Decision Process framework transforms torque
allocation into a mathematical optimization problem; the Proximal Policy
Optimization algorithm enhanced with Prioritized Experience Replay
dynamically generates control strategies; and Fiber Bragg Grating sensors
achieve millisecond-level torque measurement by correlating shaft strain
forces with wavelength shifts. Validation employed the Gamma Technologies
Suite simulation platform and the Next Generation Simulation dataset, with
benchmark comparisons against Equivalent Consumption Minimization
Strategy, Fuzzy Logic Control, and Thermostat Strategy models.
Results: The optimized Proximal Policy Optimization algorithm achieved 93.2%
accuracy and 1.0% loss rate upon convergence, with an average feedback time of
32 milliseconds. In simulated vehicle operations, torque distribution was
completed within 70 milliseconds, while energy utilization rates reached 75.5%
during startup, 42.3% in normal driving, 41.5% under acceleration, 22.5% during
deceleration braking, and 50.0% in high-speed driving. Robustness testing
demonstrated 82.3% accuracy under 300-decibel noise interference and
83.1% accuracy at 180-degree Celsius temperatures.
Discussion: The model establishes a closed-loop system that synergizes rapid
Fiber Bragg Grating sensing with Markov Decision Process-driven decision-
making, enabling efficient torque distribution under extreme operating
conditions. While energy utilization during deceleration braking remains
suboptimal, future work will optimize regenerative braking strategies through
road condition prediction and advanced power devices. This approach provides a
viable pathway to improve energy sustainability in hybrid transportation systems.
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1 Introduction

With the advancement of society, people have gradually realized the irreversible
environmental harm caused by the unrestricted use of fossil fuels, which further leads to
an energy crisis (Li and Yue, 2024). In the automotive field, parallel hybrid vehicles have
emerged as a new technology to address this issue. They maximize overall energy
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efficiency by dynamically allocating torque between different
power sources. Although torque distribution technology can
enhance engine energy utilization and stability, as shown by
Morera-Torres et al., who improved the cornering speed and
stability of formula-style race cars using torque distribution,
existing technologies struggle to formulate reasonable
strategies in a short time, resulting in reduced overall energy
efficiency (Morera-Torres et al., 2022). Therefore, there is an
urgent need for a real-time torque distribution method with fast
feedback and reasonable allocation strategies. Proximal Policy
Optimization (PPO) is a reinforcement learning algorithm
known for its high stability and fast convergence speed
(Sadhukhan and Selmic, 2022). The MDP enables the creation
of a virtual environment based on environmental information,
transforming complex decision-making problems into
mathematical problems (Goyal and Grand-Clement, 2023).
This mathematical framework has demonstrated significant
value across diverse domains—from IoT resource allocation to
medical decision support—by providing a universal methodology
for optimizing sequential decisions under uncertainty. Its core
capability to model state transitions and reward mechanisms
aligns precisely with the dynamic requirements of real-time
torque distribution, where millisecond-level responses to
rapidly changing vehicle states are critical. Using MDP, the
torque distribution problem can be transformed into a
mathematical approximation process for finding the optimal
solution, which is iteratively solved using PPO. Fiber Bragg
Grating (FBG) is a sensitive and convenient optical fiber
passive device that can quickly and accurately measure engine
torque (Mohapatra et al., 2022). Thus, this study proposes a real-
time torque distribution algorithm that combines MDP and PPO.
Based on this algorithm and FBG, a real-time torque distribution
model is constructed, and the model’s performance is verified in
subsequent simulation experiments. The innovation point of the
research lies in transforming the torque distribution strategy
problem of parallel hybrid vehicles into a computable
mathematical optimization problem and achieving real-time
dynamic optimal decision-making based on vehicle status
through the MDP framework integrating the PPO algorithm.
Meanwhile, it innovatively introduces fiber Bragg grating sensing
technology to achieve rapid and high-precision real-time
measurement of engine torque. The combination of the two
builds a closed-loop system that integrates rapid perception
and real-time decision-making, aiming to maximize the energy
utilization efficiency of the system. It is expected that this model
will effectively address the challenges faced by existing parallel
hybrid vehicles and provide new ideas for the development of
real-time allocation technologies in hybrid systems in
other fields.

2 Related works

The MDP has gained widespread attention from scholars
worldwide due to its strong adaptability and has been widely used
in various research fields. For example, Heidari’s team applied
MDP to analyze the offloading strategy in the Internet of Things.
They built a reinforcement learning algorithm based on MDP

and convolutional neural networks for acceleration. In the
validation tests, the algorithm reduced offloading delay by
3.3% and improved energy efficiency by 4.2% (Heidari et al.,
2023). To detect deteriorating components in devices in a timely
manner, Kechagias’ team constructed a deterioration prediction
model based on MDP, which transformed equipment
maintenance into a linear programming problem. The results
showed that this method could identify deteriorating
components accurately and on time (Kechagias et al., 2024).
Rosenstrom’s team proposed a digital model based on MDP for
predicting the onset time of sepsis using electronic health
records, aiming to determine the golden time for sepsis
treatment. The model, by analyzing the hospitalization history
of sepsis patients, reduced the mortality rate by 2.2%
(Rosenstrom et al., 2022). Due to its high sample efficiency
and fast convergence speed, PPO has also been applied by
scholars worldwide in various research areas. For example,
Kuai’s team proposed a PPO-based deep learning method to
reduce hardware costs in virtual network mapping. This method
adjusts mapping strategies based on the state of the service chain.
The test results indicated that the algorithm outperformed greedy
algorithms and random forests in optimizing virtual network
mapping (Kuai et al., 2022). To address the limitations of
traditional ground access networks in remote intelligent
transportation systems, Hassan et al. proposed a PPO-based
deep learning algorithm with an attention mechanism. This
method, by decomposing offloading tasks between different
servers into independent resource allocation problems,
improved the performance of intelligent transportation
systems (Hassan et al., 2023).

In the field of hybrid vehicle energy optimization, a number of
relatively mature optimization theories and practical technologies
have been developed, and many scholars have conducted in-depth
research. For example, to address dynamic performance and energy
efficiency issues, Nguyen et al. proposed a fuzzy reasoning
management framework based on adaptive neural networks. This
framework used dynamic programming to achieve global optimal
torque distribution, which ultimately improved the overall efficiency
of hybrid vehicles by 73.3% (Nguyen et al., 2023). To improve
vehicle path tracking accuracy and energy efficiency, Tan et al.
proposed a hierarchical control framework that simultaneously
considers total demand torque and inter-axle torque.
Experimental results showed that this framework optimized
overall efficiency while ensuring path tracking accuracy (Tan
et al., 2024). To optimize the overall performance of hybrid
vehicles, Sun et al. proposed an optimization method using
nested design, which solved the coupling problem between
physical system parameters and control algorithms to formulate
the best torque distribution strategy, thereby maximizing energy
efficiency (Sun et al., 2023). Ricci’s team, in order to overcome the
limitations of physical sensors in torque measurement, integrated
Long Short-TermMemory with 1D Convolutional Neural Networks
to propose a new method for replacing physical torque
measurement devices. The test results indicated that the average
error percentage of the method did not exceed 2% (Ricci et al., 2023).
Kneissl et al. developed a simulation method based on co-simulation
for developing new transmission systems and related operational
strategies. By virtualizing the structural components of the car, they
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realized conceptual control of hybrid powertrains, significantly
improving vehicle energy utilization (Kneissl et al., 2022). Wang
J et al., aiming to optimize energy management strategies for hybrid
power systems, took fuel cell hybrid commercial vehicles as the
object and designed an energy management strategy based on the
double-delay deep deterministic policy gradient. During the process,
a fuel cell/battery/supercapacitor topology was constructed, and the
supercapacitor was utilized to coordinate the power output. The
results show that the proposed method significantly improves the
economy and service life of the power system (Wang et al., 2022).
Yang C et al. systematically reviewed the relevant strategies for
hybrid vehicles and hybrid aircraft in view of the current research
status and development needs of energy management strategies for
hybrid power systems. During the process, they first sorted out the
three major challenges faced by the hybrid vehicle strategy: real-time
performance, adaptability to working conditions, and multi-
objective optimization, as well as the solutions. Secondly, the
hybrid aircraft strategy was summarized according to the
architecture. This review provides guidance for research on
energy management strategies for hybrid power systems in flying
cars and promotes knowledge transfer (Yang et al., 2023). Scholars
such as Chen W proposed an integrated ecological driving
framework for fuel cell hybrid electric vehicles in multi-lane
scenarios in response to the lack of continuous lateral dynamic
coordination in energy-saving optimization of hybrid power
systems. During the process, deep reinforcement learning was
utilized to synchronously optimize trajectory planning and
energy management strategies, taking spatial traffic information
and vehicle power status as inputs. The results show that the
proposed method effectively improves the health status of the
power system (Chen et al., 2025).

Although the existing energy system optimization and torque
distribution technologies for hybrid electric vehicles have made
certain progress both in theory and application, they generally
have core bottlenecks such as insufficient real-time performance
and low efficiency in strategy generation. Traditional optimization
methods often have heavy computational burden and slow response
speed under complex dynamic working conditions, and are difficult
to meet the demand for real-time torque distribution at the
millisecond level during vehicle operation. Meanwhile, the
traditional sensors relied on in the torque measurement process
are prone to reduced accuracy and reliability in harsh environments
such as high temperatures and high noise, further restricting the
timeliness and accuracy of the overall distribution strategy. These
limitations make it difficult for the existing system to maximize
energy utilization efficiency in rapidly changing driving conditions.
In summary, existing automotive energy system optimization and
torque distribution technologies have made certain advancements in
both theory and practical applications. However, they generally
suffer from poor performance and long strategy formulation
times. The PPO algorithm under the MDP framework can find
an approximate optimal solution for torque distribution based on
the vehicle’s status, while FBG can quickly measure real-time torque
during operation. Therefore, this study innovatively proposes to
integrate the MDP and PPO algorithms to construct a real-time
torque distribution model based on FBG torque measurement, with
the aim of meeting the real-time and accuracy requirements of
torque distribution.

3 Construction of real-time torque
distribution model based on MDP and
PPO algorithms

3.1 Design of torque distribution algorithm
based on MDP and PPO

The hybrid electric vehicle achieves a balance among power,
economy, and energy efficiency through the coupling and
complementarity of the engine and electric motor. In this
process, only by accurately judging the vehicle’s operational state
and formulating a reasonable torque distribution strategy can the
maximum energy efficiency be achieved. The MDP can convert
various environmental information into data types recognizable by
the algorithm and iteratively train the reinforcement learning
algorithm by constructing a virtual environment. Therefore, this
study uses the MDP framework as the interactive hub between the
engine and control system, enabling information exchange with the
external environment through MDP, as shown in Figure 1.

In Figure 1, the MDP framework consists of state space, policy
core, interaction actions, state transitions, reward function, and
discount factor. During environmental interaction, the MDP
framework generates the initial state space based on the current
environmental conditions. This state space is updated dynamically
at regular intervals as the environment evolves. The policy core
continuously monitors changes in the state space and responds by
generating interaction actions. After executing an action, the
environment undergoes changes that directly influence the
formulation of the state transition strategy. Specifically, the state
space integrates these environmental updates with the reward
function and discount factor to formulate an optimized state
transition strategy. This strategy is then output to the
environment, driving its next update cycle. Crucially, the updated
environmental state is fed back into the state space, creating a
closed-loop system where environmental dynamics directly shape
subsequent state transitions and policy decisions. The probability of
each strategy occurring is shown in Equation 1.

P � E0∏
T

t�0
S0 At Et|( )Q Et+1 Et, At|( ) (1)

In Equation 1, t represents the time step, and T represents the
total number of steps. E0, Et, and Et represent the environmental
states at time steps 0, t, and t + 1, respectively. At represents the
interaction action, S0 is the policy core value, and Q is the state
transition strategy. The policy formulation process in the MDP
framework aims to maximize cumulative reward, with the
reinforcement learning algorithm at its core, which ultimately
transforms the strategy formulation problem into a search for
optimal parameters in the algorithm, as shown in Equation 2.

J � J θ( ) ≜ Exp G τ( )[ ] (2)

In Equation 2, Exp represents the expected value of the state
transition strategy, τ represents the state transition trajectory, and
G(τ) is the cumulative reward for the corresponding trajectory. The
G(τ) expression is shown in Equation 3.

G τ( ) ≜ ∑T

t
γtr Et, At( ) (3)
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In Equation 3, γ and r represent the discount factor and the
reward function, respectively. Various indicators of the vehicle
during operation change rapidly in a short period, so the
algorithm embedded in the MDP framework needs to be highly
efficient. The PPO algorithm can quickly find the optimal solution
by calculating the policy gradient and using iterative historical data.
However, the random sampling strategy of PPO may cause some
important samples to be ignored, leading to imprecise results.
Prioritized Experience Replay (PER) assigns priority to samples
based on their importance, highlighting key information and
effectively improving the accuracy of the target algorithm (Lou
et al., 2024). Therefore, this study integrates PER with the PPO
algorithm, and the optimized algorithm is shown in Figure 2.

In Figure 2, when samples are input, the PER algorithm first
assigns sampling probabilities to all samples based on their
importance. The importance of the samples is shown in Equation 4.

δ � r +max
A′

γQ E′, A′( ) − Q E,A( ) (4)

In Equation 4, E′ and A′ represent the space state and
interaction action under the maximum cumulative reward in the

MDP framework. The sampling probability process is shown in
Equation 5.

Pi � Pa
i∑kP
a
k

(5)

In Equation 5, i represents the sample sequence number, a
represents the sample priority, and k represents the total number of
samples. To eliminate errors in the calculation process, sampling
weights must also be set, as shown in Equation 6.

w � 1
N

· 1
Pi

( )
ε

(6)

In Equation 6, N represents the total number of samples, and ε

represents the bias correction value. After processing by PER, the
samples are then input into the PPO algorithm to search for the
optimal solution. The PPO algorithm consists of a value network
and a policy network. During iteration, the PPO algorithm first sets a
set of initial parameters. After extracting data samples, the value
network updates based on information such as the reward function.
The gradient conditions for each update are shown in Equation 7.

FIGURE 1
MDP framework for environmental interaction (Source from: https://icon.sucai999.com/and author self-drawn).

FIGURE 2
PER-optimized PPO algorithm flowchart (Source from: https://icon.sucai999.com/and author self-drawn).
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ΔS � Exp
pθ At, Et( )
pθ′ At, Et( )g

θ′ Et, At( )∇logpθ An
t S| n

t( )[ ] (7)

In Equation 7, pθ and pθ′ represent the probabilities of a certain
strategy occurring in two consecutive updates, gθ′ represents the
average return advantage function, and n represents the total
number of trajectories. To ensure that the gradients from the two
updates are not too large, the relative entropy is calculated to assess
their similarity, as shown in Equation 8.

Jθ′ ppo � Jθ′ − ϕ*KL θ, θ′( ) (8)

In Equation 8, Jθ′ represents the objective function, ϕ represents
the penalty coefficient, andKL(θ, θ′) represents the relative entropy
between the two updates. The PPO algorithm stops iterating when
the maximum number of iterations or reward convergence is
reached and formulates the corresponding interaction strategy
based on the current algorithm parameters. The process for
stopping iteration based on reward convergence is shown in
Equation 9.

Rθ − Rθ′∣∣∣∣ ∣∣∣∣≤ η (9)

In Equation 9, η represents the convergence threshold, and Rθ

and Rθ′ represent the cumulative rewards of the two updates. Finally,
a real-time torque control algorithm based on the fusion of PER
algorithm and PPO algorithm under the MDP framework is
obtained, named MDP-PP. The specific process of the algorithm
is shown in Figure 3.

In Figure 3, the MDP-PP algorithm consists of two parts: the
MDP framework and the optimized PPO. During real-time torque
distribution, the MDP algorithm constructs a virtual internal
environment based on engine speed, energy consumption, and
other information. The virtual environment, as the data source
for reinforcement learning algorithm training, converts external
information changes into numerical changes. The function of the
optimized PPO is to use the numerical information from the virtual
environment in the MDP framework as samples for iterative
training to find the optimal solution or an approximate optimal
solution. The MDP framework treats this optimal solution as an
interaction action, performs state updates, and updates the discount

factor and reward function, outputting the updated strategy to the
environment. The process of real-time torque distribution involves
continuous updates to the engine state, virtual environment
construction, PPO iteration to find the optimal value, and
strategy output.

3.2 Construction of real-time torque
distribution model based on FBG and
MDP-PP

The real-time torque distribution of the parallel hybrid vehicle
engine is a complex autonomous decision-making process in the
vehicle control system. It typically requires cooperation between the
vehicle control platform, driver’s intent inputs, algorithmic dynamic
planning, and other factors. The MDP-PP proposed in this study
only achieves the dynamic decision-making process of the
algorithm. Therefore, in order to realize the complete real-time
torque distribution of the parallel hybrid vehicle engine, this study
proposes a real-time torque distribution process, which includes
data collection, torque distribution strategy formulation,
implementation of the distribution strategy, and feedback on the
strategy’s effects. The specific steps of this process are shown
in Figure 4.

In Figure 4, during real-time torque distribution, the driver first
conveys their intent to the vehicle through the accelerator, brake, etc.
The control system then determines the engine operating state
through sensors and predicts the upcoming operating state. The
torque distribution process needs to formulate the best distribution
plan based on the upcoming operating state and engine
performance, which is then implemented by components such as
the clutch to achieve real-time torque distribution. The strategy
effect feedback system evaluates the torque distribution effect based
on the driver’s intent, the expected vehicle state, the expected
strategy effect, and the real-time vehicle state, and feeds this back
to the torque distribution module. This feedback serves as reference
data for formulating more effective torque distribution strategies.
Existing real-time torque monitoring technologies often suffer from
slow feedback speeds, which ultimately leads to untimely strategy
implementation. FBG, on the other hand, is a high-precision fiber

FIGURE 3
Optimized PPO algorithm flowchart under the MDP framework (Source from: https://icon.sucai999.com/and author self-drawn).
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optic sensor that can quickly measure torque in complex
environments (Miguel et al., 2022). In order to further improve
the real-time torque distribution effect, this study proposes a real-
time torque monitoring technology based on FBG. The workflow of
the FBG in torque measurement is shown in Figure 5.

In Figure 5, when measuring torque with FBG, two optical fibers
are attached at a 45° angle to the surface of the shaft. The FBG
structure consists of an inner layer, an outer layer, and a protective
layer. The inner layer is high-purity silica doped with a small amount
of germanium, the outer layer is pure silica, and the protective layer
is composed of large polymer molecules. The principle of torque
measurement is that the heat energy and stress generated during the
vehicle’s operation change the refractive index of the FBG, resulting
in a shift in the central wavelength of the fiber. The mathematical
relationship for this process is shown in Equation 10.

Δμ
μ

� ψ + ζ( )ΔT +MΔF (10)

In Equation 10, ψ and ζ represent the thermal expansion
coefficient and the thermal-optical coefficient, respectively. μ and
Δμ represent the central wavelength and the shift, respectively.M is
the sensitivity coefficient under stress, F is the strain force, and T is
the temperature. When the temperature remains constant, the
relationship between the shift and the stress variation is shown
in Equation 11.

Δμ
μ

� MΔF (11)

In Equation 11, the relationship between the shift and stress is
ideal when temperature is constant. This study uses two identical
optical fibers to eliminate the impact of temperature variations. In
this case, the refractive index of the fiber and the central wavelength
shift only depend on the stress applied. The elastic shaft can visualize
the physical concept of torque. The calculation process for
measuring torque with the elastic shaft is shown in Equation 12.

Tor � ZI∂
rs

(12)

In Equation 12, Z, I, and ∂ represent the shear modulus, polar
moment of inertia, and shear strain of the elastic shaft, respectively.
rs is the radius of the elastic shaft. When the optical fibers are
attached to the elastic shaft, the mathematical relationship between
the shear force and stress when the shaft is subjected to stress is
shown in Equation 13.

ΔF � 1
2
sin 2a∂( ) (13)

In Equation 13, a represents the angle between the optical fiber
and the axis of the elastic shaft. When a = 45°, the strain force
applied to the optical fiber is shown in Equation 14.

FIGURE 4
Real-time torque distribution workflow for parallel hybrid vehicle engine (Source from: https://icon.sucai999.com/and author self-drawn).

FIGURE 5
FBG structure and workflow diagram (Source from: https://icon.sucai999.com/and author self-drawn).
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ΔMFBG � rs
2ZI

· Tor (14)

In Equation 14, ΔMFBG represents the two optical fibers adhered
to the shaft. The shift in the central wavelength of the two optical
fibers is shown in Equation 15.

Δμ1 � M · ΔMFBG · μ1
Δμ2 � −M · ΔMFBG · μ2{ (15)

As shown in Equation 15, the shift of the two optical fibers is
exactly opposite. The torque can be determined by the relationship
between Δμ1 and Δμ2. Finally, this study integrates the MDP-PP
algorithm and the FBG torque measurement technology into the
torque distribution process to construct a real-time torque
measurement model for the parallel hybrid vehicle engine, named
MPF. The specific structure of the MPF model is shown in Figure 6.

In Figure 6, compared to general engine torque distribution
models, the model proposed in this study is optimized in three areas.
First, the study replaces traditional strain force or magnetic force
torque measurement technologies with FBG torque measurement
technology, which is expected to offer higher measurement accuracy
and feedback speed. Second, the study innovatively replaces the
differential devices used in torque distribution with the constructed
MDP-PP algorithm, expecting the reinforcement learning-based
torque distribution module to provide higher energy utilization
efficiency for the overall vehicle. Finally, the study adds feedback
value to the torque distribution results, expecting the MDP-PP
algorithm to incorporate historical torque distribution strategies
to improve the distribution time and accuracy.

4 Performance verification of hybrid
vehicle engine real-time torque
distribution model

4.1 Performance verification of MDP-PP
algorithm for strategy formulation

In order to validate the performance of the MPF model, the
study first used the Next-Generation Simulation (NGSIM) dataset to

test the performance of the MDP-PP algorithm. The NGSIM dataset
consists of vehicle driving data collected from four typical traffic
scenarios in the United States and contains 11.8 million vehicle data
entries. Since its release, the dataset has been widely used in traffic
flow analysis and algorithm training. During the test, the Trust
Region Policy Optimization (TRPO) algorithm, Deep Deterministic
Policy Gradient (DDPG) algorithm, and Soft Actor-Critic (SAC)
algorithm were used as comparisons. All algorithms were tested
under the same conditions, and the laboratory equipment and
configuration are listed in Table 1.

The GPU acceleration function is not used during the testing
process. Accuracy and loss rate are among the most important
metrics in deep learning algorithms. The experiment first compared
the accuracy, loss rate, and Receiver Operating Characteristic (ROC)
curve of each algorithm, and the results are shown in Figure 7.

As shown in Figure 7a, when the iterations were completed, the
accuracy of the MDP-PP algorithm reached 95.5%, and the loss rate
was 0.5%. The SAC algorithm had an accuracy of 93.2% and a loss
rate of 1.0%. The DDPG algorithm had an accuracy of 86.4% and a
loss rate of 1.0%. The TRPO algorithm had an accuracy of 83.6% and
a loss rate of 1.7%. TheMDP-PP algorithm converged at an iteration
rate of 40%, while only the SAC algorithm showed a trend toward
convergence among the compared algorithms. As shown in
Figure 7b, the ROC curve of the MDP-PP algorithm completely
enveloped the ROC curves of the comparison algorithms, with the
area under the ROC curve for the MDP-PP algorithm being 0.965,
for SAC it was 0.927, for DDPG it was 0.871, and for TRPO it was
0.811. This clearly indicates that the overall performance of the
MDP-PP algorithm is significantly superior to the comparison
algorithms. Next, to verify the working efficiency of the MDP-PP
algorithm, the study used 100 sets of driving data from the dataset to
test the algorithm’s efficiency. The results are shown in Figure 8.

As shown in Figures 8a,b, the maximum feedback time for the
MDP-PP algorithm was 40 ms, the minimum was 25 ms, and the
average was only 32 ms. The feedback time for the DDPG algorithm
ranged from a maximum of 66 ms to a minimum of 39 ms, with an
average of 50 ms. The SAC algorithm had a maximum feedback time
of 83 ms, a minimum of 58 ms, and an average of 70 ms. The TRPO
algorithm had a maximum feedback time of 97 ms, a minimum of
76 ms, and an average of 90 ms. Therefore, it can be concluded that

FIGURE 6
Real-time torque distribution model workflow integrating FBG and MDP-PP (Source from: https://icon.sucai999.com/and author self-drawn).
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the MDP-PP algorithm demonstrated higher working efficiency
when formulating torque distribution strategies. Subsequently, to
verify the applicability of the torque distribution strategy formulated
by the MDP-PP algorithm, the energy efficiency and recovery rates
of the torque distribution strategies from 100 tests of each algorithm
were compared. The results are shown in Figure 9.

As shown in Figure 9a, the energy efficiency of the torque
distribution strategy formulated by the MDP-PP algorithm
increased from 40.1% to 57.4%, and the energy recovery
efficiency increased from 20% to 27.4%. As shown in Figure 9b,

the energy efficiency of the torque distribution strategy formulated
by the DDPG algorithm increased from 36.1% to 42.1%, and the
energy recovery rate increased from 17.3% to 20.1%. As shown in
Figure 9c, the energy efficiency of the torque distribution strategy
formulated by the SAC algorithm increased from 34.2% to 48.3%,
and the energy recovery rate increased from 16.2% to 25.6%. As
shown in Figure 9d, the energy efficiency of the torque distribution
strategy formulated by the TRPO algorithm increased from 34.2% to
37.1%, and the energy recovery rate increased from 16.0% to 20.1%.
These results show that the MDP-PP algorithm clearly outperforms

TABLE 1 Experimental equipment statistics.

/ Category Version Category Version

Software Operating System Windows 11 Deep Learning Framework PyTorch 2.0

Programming Language Python 3.11 Visualization Library Seaborn

Hardware CPU AMD Ryzen 9 7950X GPU AMD Radeon RX 6800 XT

Memory 64GB DDR5 Storage 1TB SSD

FIGURE 7
Comparison of loss rate, accuracy, and ROC curves (Source from: author self-drawn). (a) Loss rate and accuracy change. (b) Area under the
ROC curve.

FIGURE 8
Comparison of torque distribution feedback time (Source from: author self-drawn).(a) Algorithm processing time distribution. (b) Average
processing time.
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the comparison algorithms, as it can formulate torque distribution
strategies with higher energy efficiency and recovery rates.

4.2 Simulation performance verification of
MPF model

After verifying the performance of the MDP-PP algorithm, the
study used the Gamma Technologies Suite (GTS) coupled simulation
platform to test the simulation performance of the MPF model. The

GTS platform, developed by Gamma Technologies using Modelica
language, is an intelligent tool focused on vehicle energy system
modeling and optimization. It offers high openness and adaptability
to various environments. During the simulation experiment, the
Equivalent Consumption Minimization Strategy (ECMS), Fuzzy
Logic Control (FLC), and Thermostat Strategy (TS) were used as
comparison models for real-time torque distribution. To verify
whether the MPF model had an advantage in processing speed, a
simulation experiment was conducted to compare the processing
efficiency. The results are shown in Figure 10.

FIGURE 9
Comparison of energy efficiency and recovery rate of strategies formulated (Source from: author self-drawn). (a) Energy utilize rate and recovery
rate of MDP-PP algorithm. (b) Energy utilize rate and recovery rate of DDPG algorithm. (c) Energy utilize rate and recovery rate of SAC algorithm. (d)
Energy utilize rate and recovery rate of TRPO algorithm.

FIGURE 10
Feedback comparison of real-time torque distribution (Source from: author self-drawn). (a) The feedback time of the model in the process. (b) Box
diagram of the average feedback time.
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As shown in Figures 10a,b, the feedback time distribution for the
MPFmodel was more concentrated, with a minimum value of 53 ms
and a maximum value of 70.0 ms. The feedback time distribution for
the ECMS model was also concentrated, with a minimum value of
92.1 ms and a maximum value of 101.2 ms. The feedback time
distribution for the FLC model was more dispersed, with a
minimum value of 125.9 ms and a maximum value of 142.7 ms.
The feedback time distribution for the TS model was also more
dispersed, with a minimum value of 137.5 ms and a maximum value
of 182.3 ms. Therefore, it can be concluded that the MPF model
demonstrated higher processing efficiency. Next, to verify the energy
utilization efficiency of the MPF model, the energy efficiency and
recovery rate during five driving phases—startup, normal driving,
acceleration, deceleration braking, and high-speed driving—were
compared. The results are shown in Figure 11.

As shown in Figure 11a, the MPF model had higher energy
efficiency than the comparison models in all five driving phases,
with efficiencies of 75.5%, 42.3%, 41.5%, 22.5%, and 50.0%,
respectively. As shown in Figure 11b, the energy recovery rate
during startup for all models was 0%. However, in the other four
driving phases—normal driving, acceleration, deceleration
braking, and high-speed driving—the MPF model had higher
energy recovery efficiency than the comparison models, with

recovery rates of 14.1%, 4.7%, 23.4%, and 15.4%, respectively.
This indicates that the MPF model achieved better overall energy
utilization compared to the comparison models. Subsequently, to
verify the robustness of the MPF model, each model was
subjected to torque distribution accuracy tests under different
intensities of environmental noise and temperature conditions.
The results are shown in Figure 12.

As shown in Figure 12a, when the environmental noise
intensity increased from 0 dB to 300 dB, the accuracy of the
MPF model decreased from 92.1% to 82.3%, while the accuracy of
the ECMS algorithm decreased from 90.1% to 73.5%, the accuracy
of the FLC model decreased from 80.2% to 69.2%, and the accuracy
of the TS model decreased from 75.5% to 60.3%. As shown in
Figure 12b, as the environmental temperature increased from 0 °C
to 180 °C, the accuracy of the MPF model decreased from 92.1% to
83.1%, while the accuracy of the ECMS algorithm decreased from
90.1% to 76.9%, the accuracy of the FLC model decreased from
80.2% to 70.2%, and the accuracy of the TS model decreased from
75.5% to 59.4%. In summary, the MPF model proposed in this
study consistently outperformed the comparison models in terms
of accuracy under various levels of environmental noise and
temperature. This demonstrated that the MPF model had
superior robustness.

FIGURE 11
Energy efficiency comparison of each model in different driving phases (Source from: author self-drawn). (a) Comparison of energy utilization in
different stages of each model. (b) Comparison of energy recovery rates in different stages of each model.

FIGURE 12
Robustness comparison under different noise and temperature environments (Source from: author self-drawn). (a) Allocation accuracy of each
model under different noise intensities. (b) Allocation accuracy of each model under different noise intensities temperature.
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5 Conclusion

To address the issue of insufficient real-time performance
and accuracy in the engine torque distribution of existing parallel
hybrid vehicles, this study innovatively proposed a torque
distribution strategy formulation algorithm based on the MDP
framework with an optimized PPO algorithm. Additionally, an
FBG torque measurement method was integrated to construct a
real-time engine torque distribution model for parallel hybrid
vehicles. The simulation results showed that the model exhibited
high energy utilization efficiency in the start-up, normal driving,
acceleration, and high-speed driving stages (75.5%, 42.3%, 41.5%,
and 50.0%, respectively). However, the energy utilization rate
(22.5%) during the deceleration braking stage is relatively low.
The potential reasons for this may involve the fact that the torque
distribution strategies for regenerative braking and mechanical
braking have not been fully optimized, the limitation of the
recovered power due to the high battery state of charge, and
the delay in control response under emergency braking
conditions. Future work will explore the dynamic adjustment
of the braking torque distribution ratio, introduce control
strategies based on road condition prediction, and consider
the use of higher-performance power devices such as silicon
carbide to enhance the energy capture efficiency at this stage. In
terms of robustness, the model maintained an accuracy of 82.3%
and 83.1%, respectively, under 300 dB strong noise and 180 °C
high-temperature environments, verifying the instantaneous
reliability of the sensor and control algorithm under extreme
conditions. In conclusion, the model successfully integrated the
advantages of the MDP framework, the PPO algorithm, and the
FBG torque measurement method, creating a real-time torque
distribution model that meets the requirements for both
efficiency and accuracy in high-noise and high-temperature
environments during vehicle operation. However, the
economic benefits of the model were not evaluated in this
study. Future research will include a comprehensive evaluation
of the model’s economic, power, and energy utilization efficiency,
and will focus on its continuous optimization. At the same time,
when conducting tests and analyses, the variables brought about
by the degradation of mechanical performance during long-term
operation were not considered for the time being. Subsequently,
more abundant experimental Settings will be combined to further
verify and enhance the overall durability of the system under
high-temperature working conditions.
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