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Introduction: The increasing urbanization across the world necessitate efficient
traffic management especially in the emerging economies. This paper presents
an intelligent framework aimed at enhancing traffic signal management within
complex road networks through the creation and evaluation of a multi-agent
reinforcement learning (MARL) framework.
Methods: The research explored how Reinforcement Learning (RL) algorithms
can be employed to optimize the flow of traffic, lessen bottleneck, and enhance
overall transportation safety and efficiency. Additionally, the research explored
the design and simulation of a typical traffic environment that is, an intersection,
defined and implemented a Multi-Agent System (MAS), and developed a Multi-
Agent reinforcement learning model for traffic management within a simulated
environment this model leverages actor-critics and deep Q Network (DQN)
strategies for learning and coordination, and performed the evaluation of the
MARL model. Novel approaches for decentralized decision-making and dynamic
resource allocation were developed to enable real-time adaptation to changing
traffic conditions and emergent situations. Performance evaluation using metrics
such as waiting time, queue length, and congestion were carried out in the SUMO
simulation platforms (Simulation of Urban Mobility) to evaluate the efficiency of
the proposed solution in various traffic scenarios.
Results and Discussion: The outcome of the simulation conducted in this study
showed an improvement in queue management and traffic flow by 64.5% and
70.0% respectively with improvement in performance of the proposed model
over the episodes. The results show that the RL model policy showed better
performance compared to the baseline policy, indicating that the model learned
over different episodes. The results also show that the MARL-based approach
performs better for decentralized traffic control systems in both scalability and
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adaptability. The proposed solution supports real-time decision-making, reduces
traffic congestion, and improves the efficiency of the urban transportation system.
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1 Introduction

The increasing urbanization across the world necessitate
efficient traffic management especially in the emerging
economies. Effective traffic management is one of the important
components of smart cities and technology plays a significant role in
achieving this (Fadila et al., 2024). Urban traffic congestion is a
growing concern in the emerging economies and smart cities,
leading to time wastage, energy consumption, and carbon
emissions (Kong et al., 2016). Traditional traffic signal control
systems often rely on fixed-timing approach, actuated controllers
or rule-based algorithms which fails to adapt to real-time traffic
dynamics and complexities especially in urban cities. These
challenge highlight the need for a more adaptive and intelligent
solution that are more precise (Zhang et al., 2023).

Advances in Artificial Intelligence (AI) especially in RL have
shown substantial capability for effective, intelligent and adaptive
traffic signal control by allowing systems to learn optimal policies
from real-time traffic data without the need for detailed
programming (Medina-Salgado et al., 2022). Traffic scenarios are
usually regarded as a multi-agent system because of the different
intersections and interactions between vehicles. Thus, a single agent
RL may not effectively scale or coordinate traffic especially in a
decentralized environment resulting in suboptimal performance
However, a MARL may sufficiently model each traffic signal and
intersections as independent agents and learn optimal control
policies through interaction and coordination of these agents. As
such it may enable adaptability, scalability, efficient coordination
and real time responsiveness of traffic signal control under different
scenarios especially in decentralized or urban settings. The
implementation of the MARL for traffic management contributes
to the goals of smart cities by enabling efficient mobility through
dynamic signal adjustment in real time, facilitation of real time data-
driven decision-making relating to traffic infrastructure,
development of intelligent transportation systems that will meet
the demand of the urban population amongst others. Thus,
leveraging on the potentials of the MARL techniques can
considerably promote the efficiency and sustainability of urban
transportation systems.

Conventional traffic management systems have been having
difficulty coping with the increasing volume of vehicles, resulting
in incompetence, delays, and natural concerns. The fast
advancement in the use of motor vehicles has brought about ease
for individuals and altered the structure of the overall transportation
system. Likewise, making it a more convenient take-away
distribution. Logistics workers utilize motorcycles as a means of
transportation to navigate through the streets and lanes daily,
resulting in major traffic congestion issues. During instances of
traffic congestion, the vehicle moves at a significantly reduced speed
(Su et al., 2020). New studies when explored offer opportunities for
potential future developments of smart cities based on real-life

situations (Javed et al., 2022). In addition, conventional systems
which could also be called traditional systems do not have a robust
informed system that can handle some of the emergences of
autonomous vehicles and some other intelligent transportation
technologies (Hasan et al., 2020). Therefore, forms an urgent
need to develop a decentralized and adaptive solution that will
give the relevance expected, hence optimizing traffic flow, enhancing
safety, and reducing any form of environmental impact in the smart
city environment (Mishra and Singh, 2023).

This research aimed to apply reinforcement learning and multi-
agent systems for autonomous traffic management in smart cities. In
achieving this, the design and simulation of a traffic environment
were carried out at an intersection, using “SUMO” (Simulation of
UrbanMobility) stating parameters such as agents, state, action, and
reward. Another objective was to define and implement a multi-
agent system in the simulated environment, which involved
representing the traffic lights as agents and designing state
representation, action spaces, and reward structures to help
optimize traffic management. Additionally, this study aims to
develop a MARL model for effective traffic management. The
developed model was tested in a simulated environment, using
Stable- Baselines3 under a decentralised (Independent Actor-
Critic) and centralised (Centralized Actor–Critic) MARL
situations. The performance evaluation of the MARL model was
conducted using metrics such as waiting time, queue length and
congestion to assess the efficiency of the traffic flow and also
prevent traffic jam.

Recent advances in autonomous driving systems and intelligent
transport systems (ITS) have engineered research and innovation in
the areas of deep learning, sensor fusion, multi-agent systems (MAS)
as well as traffic management. Gupta et al. (2021) as well as Yeong
et al. (2021) discussed the innovations resulting from machine and
deep learning models, sensor fusion technologies, with emphasis on
their transformative roles in real-life situations. The authors
indicated the need for a robust and scalable solutions especially
in a complex environment.

Boukerche et al. (2020) and Khalil et al. (2024) focused on traffic
predictions and controls while evaluating statistical and machine
learning models to forecast traffic and ITS applications, the use of
spatial-temporal graph neural networks (STGNN) for local traffic
flow was explored by Belt et al. (2023). Likewise, intelligent traffic
signal control methodologies using algorithms that evolve and deep
reinforcement learning (DRL) were proposed by Al-Turki et al.
(2020) and Rahman (2024) highlighting the benefits such as
optimization and adaptability.

Several traditional model based approaches such as
autoregressive moving averages (ARIMA), exponential
smoothing, regression, KNN, SVR, the Kalman filter, etc., have
been employed for the analysis and prediction of traffic flow or
congestion in urban cities (Williams et al., 1998; Ding et al., 2010; Li
et al., 2016; Xia et al., 2016; Chang et al., 2012). However, the use of
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AI-based models in traffic management and forecasting have also
been reported with a higher precision and efficiency compared to
other models (Kumar et al., 2013; Lv et al., 2015; Ma et al., 2015; Zhu
et al., 2016; Zhao et al., 2017; Duan et al., 2019).

For instance, Zhang et al. (2023) successfully and accurately
employed the integrated convolutional Long Short-Term Memory
(LSTM) and the Convolutional Neural Network (CNN) for
prediction of urban traffic flow and congestion.

Medina-Salgado et al. (2022) found that AI-based model such as
the deep learning model, as well as the ensemble and hybrid models
perform better than the traditional based models when employed for
traffic management and prediction. Mystakidis et al. (2025)
indicated that the linear or statistical models are usually effective
in capturing linear or stationary trends but may not sufficiently
capture variation or non-linear relationships typical of urban traffic
scenario. ML models outperforms statistical models in capturing
non-linear relationships or trends but their accuracy may be affected
by overfitting. On the other hand, DL models, such as LSTM, CNN,
etc., excel in capturing temporal or spatial dependencies, but may be
limited by volume of datasets, and computational resources.
However, the ensemble model harnesses the strength of the
individual models to offer a robust performance and adaptability
across different traffic management scenarios.

Kong et al. (2016) employed the mobile sensor to analyse traffic
congestion and the Particle Swarm Optimization (PSO) to predict
traffic flow. The outcome of the study indicated that the proposed
technique is accurate and stable in traffic congestion analysis and
flow prediction. To improve the accuracy of traffic management,
prediction and security Fadila et al. (2024) suggested the integration
of the fourth industrial revolution technologies such as AI, Internet
of Thing and Blockchain into the traffic management system. The
authors identified some bottlenecks to this proposed solution such
as users’ acceptance, robustness and data availability.

While focusing on AI/ML-based treatment detection, within the
transport system, cybersecurity was explored by Admass et al. (2024)
while Rahman et al. (2021) worked on the challenges of ad hoc
teamwork by making use of graph neural networks. MAS
applications were further researched by Liu and Kohls (2010),
Quallane et al. (2022), and Maldonado et al. (2024) who
emphasized RL–based control, urban traffic coordination, and a
standard MAS framework respectively.

Some perspectives on smart cities were also presented by Appio
et al. (2019), Elassy et al. (2024), and Alfaro-Navarro et al. (2024)
tackling ecosystem innovations, digital literacy, and sustainable ITS
deployment. Almukhalfi et al. (2024) and Heidari et al. (2022)
provided a detailed review of ML/DL roles in smart cities thereby
identifying the research gaps in real-world scalability and
hybrid models.

Despite various improvements and innovations, significant gaps
persist: a lot of current solutions have failed to fully take advantage of
the ability to decentralize, adapt, and take advantage of autonomous
traffic management systems to form real-time decisions. These gaps
outline the importance of more traffic systems that can sustainably
improve traffic flow, advance safety, and also reduce environmental
impact. Hence, this serves as an important motivation for
researching the advancement of future technology to enhance the
quality of human existence (Xia et al., 2023).

Additional contributions include simulation-based traffic
assignment (Hui et al., 2023), AI in logistics and MaaS (Japiassu,
2024), and agent-based UTM evaluation platforms (Carramiñana
et al., 2021). Environmental and policy-oriented studies by
Hosseinian et al. (2024) and Jia (2021) offered insights into
sustainable AV integration and emission reduction strategies.
Collectively, these works emphasize the application of intelligent
systems spanning AI, MAS, and RL in traffic and urban mobility
management. However, challenges persist in system
interoperability, real-time adaptability, and comprehensive multi-
agent coordination, indicating significant avenues for
future research.

Therefore, to bridge this gap, this study applied RL and Multi-
Agent System (MAS) to create a decentralized, autonomous traffic
management system for smart cities unlike previous methods that
either relied on centralized control or static algorithms, this method
utilized the strength of RL in active decision making and distributed
nature of MAS to permit real-time coordination between different
traffic agents (vehicles, traffic signals, and infrastructure). By
stimulating urban traffic scenarios, the system can actively adjust
to any changing situations thereby enabling better efficiency,
scalability, and resilience in the solution that overtakes the
traditional traffic management systems in environmental
sustainability and effectiveness.

This study identified a significant research gap in the field of
urban traffic management within smart cities. This gap primarily
stems from the limitations of conventional centralized traffic
management approaches. These traditional systems are
characterized by a lack of agility and scalability required to
handle the increasing complexities of urban traffic networks.
They are described as rigid and inadequate in adjusting to
various traffic patterns and demands, and they are not equipped
to handle the emergence of autonomous vehicles and other
intelligent transportation technologies.

Additionally, the literature review highlighted other unresolved
issues and gaps in related research, such as:

1. Challenges with sensor performance and data fusion in
complex urban environments underscore the need for
robust calibration and real-time adaptability.

2. The need for practical implementation beyond theoretical
frameworks and simulation models.

3. The persistent challenge of scalability and validation in more
extensive and intricate traffic systems.

4. Deficiencies in multi-objective optimization.
5. A need for more exploration into the socio-economic

implications, including equity and accessibility, and the
integration of privacy and cybersecurity measures in AI-
driven traffic management.

The study aimed to make contributions to knowledge,
specifically by addressing the identified gap through its proposed
MARL framework:

1. Introducing an innovative framework for MARL specifically
for the decentralized management of urban traffic
intersections.
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2. Applying the concept of MAS and RL to improve traffic
efficiency within the simulated environment.

3. Presenting a useful view of the application of intelligent and
advanced traffic systems for the urban environment, which
helps in creating better, scalable, and effective traffic
management solutions.

4. Showing that this research can be applied to forthcoming
advancements in self-driving traffic systems, tackling
essential issues in smart cities’ traffic management.

This study is significant in that it aligns with the goals of smart
city development by enabling efficient mobility through dynamic
signal adjustment in real time, reduction of traffic congestion,
facilitation of real time data-driven decision-making relating to
traffic infrastructure, development of intelligent transportation
systems that will meet the demand of the urban population
amongst others.

2 Methodology

2.1 Design and simulation of a typical traffic
environment

The design and simulation of a typical traffic environment was
done in the SUMO environment. SUMO is a tool that provides
highly detailed traffic simulations with a wide range of vehicle and
intersection types was utilized. Part of the goal of this work is to
reduce overall vehicle waiting time at traffic lights, minimize
congestion across intersections, and balance traffic load across
multiple routes. It is based on the stated goal that the following
parameters were defined for the simulation of the typical traffic
environment which is the intersection:

1. Agents: Each traffic light at an intersection acts as an agent, or
clusters of lights can form groups (e.g., agents for major
intersections, arterial roads, etc.).

2. State Space: The information each agent uses to make decisions
(e.g., the number of vehicles in each lane, vehicle waiting times,
signal phases of neighboring intersections).

3. Action Space: The available actions for each agent (e.g.,
changing the traffic light phases, extending green light
duration, activating turn signals).

4. Reward: A reward signal indicating the success or failure of
each action, often based on the reduction of traffic congestion
or vehicle wait times.

Figure 1 shows the generic model of an agent which illustrates
the framework of reinforcement learning.

Thereafter, the road network was created, the network creation
is a small grid of intersections for real-world maps imported from
OpenStreetMap (OSM). Also, in setting up the simulation
environment, a traffic flow definition was required. This entails
the specification of vehicle routes, traffic volumes, and patterns that
simulate peak-hour traffic, normal conditions, or random vehicle
movements. Since SUMO was used in this work, TraCI (Traffic
Control Interface) was used to interact with the simulation
in real time.

Lastly, in the actualization of this research, Stable Baseline3 was
used for the MARL algorithm to provide robust tools for
reinforcement learning model training and support distributed
learning which is essential for MARL setups while PettingZoo
was used as Multi-Agent Extensions which provided built-in
support for MARL tasks, making it easier to design agent
interactions and environments. The tools and software used are:

1. Traffic Simulator: SUMO was used to stimulate urban traffic
patterns and test agent behaviors in a controlled environment.’

2. Programming the Environment: Python was used as the
primary language for developing the Reinforcement
Learning algorithms and the libraries used were Tensorflow,
Keras, andMatplotlib. Tensorflow is the core machine learning
and deep learning framework used for scalable model building.
The Keras was used to simplify the API for building and
training the neural networks. While Matplotlib was used for
the visualization of data and model performance

3. Framework Development: RLlib or custom implementations
for Reinforcement Learning were used.

4. Hardware: A computer with high-performance GPUs for
training deep neural networks (DNN) was used.

FIGURE 1
The generic model of an agent Source (Bakker and Groen, 2010).
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2.2 System Architecture overview

1. Agents: Each traffic light is denoted as an independent RL
agent. These agents also monitor the local traffic conditions
and develop optimal policies for the phases of the traffic light.

2. Collaborative efforts amongMulti-Agents: The Agents collaborate
indirectly by making use of shared traffic states to achieve
comprehensive traffic optimization as shown in Figure 2.

2.3 State representation

Intersection Model: Each of the intersections has 4 arms (north,
south, east, and west) each of which are divided into 20 presence
cells. Out of these presence cells, 10 cells are for left-turning lanes
while the other 10 cells are for straight/right-turning lanes.

1. State Vector: The binary vehicle presence is encoded such that
11 is the number of vehicles present and 00 is the number of
vehicles absent an example is seen as State = [ 1, 0, 1, . . . , 0, 1, 0].

2. Action Space: Phases of a traffic light: The agent selects one out
of the four predefined light phases.

3. North- South Advance: The green light is for straight/right
turns in the north/south direction

4. East-West Left Advance: The green left turn light is for east/
west traffic.

5. Time Schedule: The green phase was set for 10 s while the
yellow phase was set for 4 s during transitions.

2.4 Reward function

1. Objective: Reduce the total waiting time for vehicles.
2. Formula: Reward = Δ(Cumulative Waiting Time) = positive

reward which is equal to a reduction in waiting time and the
adverse consequence is the extended waiting period.

3. Illustration: Suppose the time (tt) is the waiting period = 500 s,
thus, Time t + 1 is the waiting time = 450 s. The reward =
500–450 = +50

Furthermore, a detailed sequence of experiments was carried out
using a multi-agent reinforcement learning framework within a

controlled urban traffic simulation. The agents, illustrated as the
traffic lights went through training and evaluation during different
episodes to improve the efficiency of traffic flow. During this
training, the agents developed some policies that were utilized as
reward-based reinforcement also using metrics like cumulative
negative rewards and cumulative delay.

4. Criteria for Evaluation: The performance of the system was
scrutinized through different metrics such as queue length,
total traffic congestion or throughput, and the average delay
per vehicle.

5. Simulated Scenarios: The simulation involved a wide range of
traffic scenarios such as dynamic flows, high-density
environments, peak traffic conditions, evaluation of
robustness, and the adaptability of the systems.

2.5 Set up of evaluation and system training

The experiments were carried out in a controlled urban traffic
environment, carefully crafted to mirror the complexities of real-life
traffic behavior within a smart city framework. The environment is
made up of several intersections, each overseen by an agent
symbolizing a traffic light. The complexities of the road network
expose the vigorous flow of vehicles that is described as a result of the
fluctuations in density and demand thereby effectively stimulating
different types of urban traffic scenarios, such as peak hours,
unexpected traffic congestion, and low-density flow.

1. Intersections: The interconnected nodes were where the
environment was designed hence, the actions of one of the
traffic lights which was collectively affected by the ones
surrounding it thereby, inspiring collective decision-making.

2. Traffic Flow: The vehicles that were assigned to different travel
routes were modified into real-time scenarios in other to be
able to cater to peak hour congestion and off-peak periods.

3. Interactions of the Agent: each of the agents functioned
individually and autonomously while exchanging some
specific state variables. (e.g., queue lengths and phase
timing) which was used to decentralize the coordination all
through the network. This environment ensured a well-
structured and even more authentic framework. That was

FIGURE 2
Overview of system architecture.
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used for the training and evaluation or assessment of the
developed Multi-gent Reinforcement Learning
(MARL) system.

2.6 Definition and implementation of multi-
agent system in the simulated environment

In defining the MARL system component, the state for each
agent (traffic light) was represented. This implies that the state for
each agent was captured as the key features of the traffic flow at its
intersection and these features include queue lengths on each
approach, average vehicle speed or waiting time, current signal
phases (green, yellow, red), and status of neighboring
intersections. For compactness and efficiency, these states were
represented as vectors or matrices.

Next, after state representation is the action space design. Each
agent had a discrete set of actions it could take. The actions typically
correspond to changing traffic light phases or adjusting their
durations. The action space includes:

1. Switching between different predefined signal patterns (e.g.,
switch from NS-green/EW-red to EW-green/NS-red).

2. Extending or reducing the duration of the current green phase
by a certain number of seconds.

3. Dynamic adjustments based on real-time traffic flow.

The reward structure used in this work guided the agents toward
optimal traffic management. Typical rewards include: a. Negative
reward for congestion: Reward agents negatively based on the
number of vehicles waiting in a queue. b. Positive reward for
throughput: Reward agents positively for reducing vehicle waiting
times or increasing the number of vehicles that pass through an
intersection during a time step. c. Penalty for oscillation: Agents may

receive a penalty for switching lights too frequently, leading to
inefficiency.

Since it is a MARL, the rewards are designed both individually
(local rewards for each intersection) and globally (a shared reward
for all agents, reflecting system-wide performance). For
implementing the Multi-Agent System, this study considered two
scenarios; decentralized and centralized MARL. In decentralized
MARL, each agent independently learns how to manage its local
traffic, with minimal coordination between agents. Each agent
focuses on its objective, such as minimizing the queue length at
its intersection. Independent Actor-Critic (IAC) was utilized to
achieve this.

Hence, there was minimal direct communication between
agents, with each agent using its local traffic state to make
decisions. While in centralized MARL, all agents trained together
using a global state and reward. This led to more cooperative
behavior between agents and helped to achieve a globally optimal
traffic management solution. A centralized Actor-Critic (CAC)
algorithm was used to achieve a centralized MARL. The “Actor”
learns the policy for selecting the action while the “Critic” evaluates
the quality of the policy as shown in Figure 3.

2.7 Key parameters for the training the
MARL system

The key Parameters for the training the MARL system was done
using the RL algorithms that are designed for traffic control.

Key parameters and configurations included:

1. Episodes: Training was carried out for 100 distinct episodes,
with each episode signifying a full simulation cycle. Agents
engaged with the environment at distinct intervals, utilizing
feedback to enhance their traffic light control strategies.

FIGURE 3
Diagram for Multi-Agent Reinforcement learning for traffic Light Control using Actot Critic Framework.
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2. The reward function was meticulously crafted to promote
traffic efficiency, harmonizing both local and global objectives:
• Penalties: Penalties represent some severe consequences
imposed for protracted vehicle queue lengths, major
delays, and traffic congestion.

• Incentives: These are positive rewards implemented to
promote efficiency in minimising waiting times and
cumulative vehicle throughputs. The total negative
rewards represents inefficiency and was used as a key
performance metric during the training process.

• Traffic Scenarios: Different traffic situations were simulated
to assess the adaptability of the proposed model.

• Baseline: This denotes steady flow of traffic signaled by a
moderate vehicle density.

• Dynamic Flow: This represents varying traffic demand to
model the peak hours and off-peak periods.

• Intense Traffic Conditions: tTis is determined by conducting
a stress tests under various major congestion to evaluate its
robustness.

• Exploration vs. Exploitation: The agents employed the
epsilon-greedy policy during the training process to
achieve a balance between the exploration of innovative
approaches and the deployment of already established
policies. The exploration rate reduces gradually as agents
approach optimal strategies.

The above mentioned parameters form a framework for testing
the system in situations that strictly mirrored the real-world
scenarios, thus, facilitating a thorough evaluation of the model’s
learning capabilities.

2.8 Development of multi-agent
reinforcement system in the simulated
environment

Stable-Baselines3 - a robust RL framework was used to build the
Deep Reinforcement Learning (DRL) models. During training, the
agents interacted with the environment in real time, learning from
the traffic conditions.

The following characterise the training process:

1. Simulation Work Flow: The traffic data was generated and fed
into the SUMO while the agents observed the state, selected
actions, and received the rewards.

2. Experience Replay: It stored transitions (s, a,r,s′s, a,r,s′)
employed for training the neural network in mini-batches.

The neural network architecture has 80 neurons (state features)
in the input layer, while its hidden layers comprise of 5 layers with
400 neurons each. The output layer has 4 neurons (Q-values for
actions). In terms of policy updates, iterative updates were used in
backpropagation and the Q-learning formula.

The Deep Q Network (DQN) was utilised to train 2 models for
different scenarios. Firstly, the decentralized MARL and secondly,
the centralized MARL. The DQN algorithm combines the
Q-learning with DNN. It is effective for simulating complex
scenarios in a continuous state such as traffic management in

urban settings. It also boasts of scalability to high dimensional
inputs, generalization across similar scenarios, end to end
learning and efficiency in complex domains thus, making it
feasible for urban traffic simulation. The main essence of this
algorithm is to learn the action-value function Q (s, a). The
following the optimal policy (Equation 1) holds thus (Sewak, 2019).

Q s.a( ) � i − a( )Q s, a( ) + α r + γmax a′Q s′a′( )( ) (1)

In Equation 1, the Q Function Q (s, a) was captured twice. First,
(1 - α)Q (s, a) is used to retrieve the present state-action value and to
update its value, and secondly, to obtain the “target” value for the
succeeding Q value (i.e., Q as in: r + γ maxa′ Q (s′, a′). Rather than
successive learning from samples, the DQN uses experience relays to
store previous transitions and sample them in a random manner to
break the relationships between updates and employs a replay buffer
to store experiences (s, a,r,s′) to stabilise training using separate
target network Qθ′ with parameters θ′.

Figure 4 presents the neural network architecture used to
supervise the learning task.

Equation 2 expresses the Q-learning update rule.

y � r + γmaxa′Qθ′ s′, a′( ) (2)
where r denotes reward, γ represents discount factor, and s′ is the
next state.

Equation 3 expresses the loss function for updating the
parameters θ of the Q-network.

L θ( ) � E s,a,r,s′( )~D y − Qθ s, a( ))2[ ] (3)

where D denotes replay buffer.
For all RL systems, there is a need to balance between the

exploration and exploitation scenarios. The agents will initially
explore the various traffic signal techniques, however, it is
expected that they should exploit the techniques that will lead to
improved traffic flow over time.

Hyperparameter tuning is an important step in the training of
the RL algorithms, including MARL setups such as the CAC
framework. Hyperparameters are the specifications that
determine how the RL model learns from the environment. It is
therefore necessary to tune them to achieve optimum performance,
as wrong values can lead to slow learning, poor model’s
performance, or suboptimal policies. The key hyperparameters in
MARL include the following:

1. Learning rate: This regulates the size of updates made to the
policy (actor) and value function (critic) during the training
process. Usually smaller learning rate implies slower updates,
resulting in a more stable learning rate but possibly slower
convergence. Conversely, a larger learning rate speeds up
learning rate but with the risk of instability.

2. Discount Factor: This factor determines how much future
rewards are valued compared to the immediate rewards. A
discount factor close to 1 implies that long-term rewards are
prioritized, while a smaller value indicates that the agent
focuses more on short-term rewards than long term rewards.

3. Exploration Parameters: Exploration parameters control the
trade-off between exploration (experimenting new activities)
and exploitation (selecting the best activity). In ε-greedy
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FIGURE 4
The neural network architecture used to supervise the learning task.

FIGURE 5
MARL for traffic Light Control using DQN.
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exploration, for example, ε is the probability that the agent will
select a random activity rather than the best activity.

4. Batch Size: It determines the number of experiences sampled
from the replay buffer during each learning step. Larger batch
sizes allow more stable updates but increase memory
requirements and computational complexity.

5. Replay Buffer Size: The replay buffer stores past experiences
such as state, activity, reward, next state). A larger buffer
permits the agent to learn from a wider range of
experiences but requires more memory.

6. Target Network Update Frequency (in Actor-Critic
algorithms): In methods like Deep Q-Network (DQN) or
Actor-Critic, target networks are used to stabilize training.

7. PolicyUpdate Frequency: This hyperparameter controls howoften
the policy (actor) is updated relative to the critic. More frequent
updates to the policy can enhance a lead to quicker learning but
may promote instability if the critic is not well-trained.

Figure 5 illustrates the MARL for traffic lights
Control using DQN.

Table 1 presents the selected hyperparameters and the
justification.

2.9 Performance evaluation

In the MARL traffic control system, congestion was evaluated by
monitoring queue lengths at each intersection. If one agent reduces

congestion at its intersection but creates a bottleneck at the next, the
system’s performance is considered poor. The evaluation focused on
reducing both localized and network-wide congestion.

1. Cumulative negative reward: This metric assessed inefficiency
by integrating penalties for delays, long queues, and various
unfavorable traffic conditions. The analysis provided an all-
inclusive perception of the system’s performance, where a
reduction in the negative values means improved traffic
management.

2. Cumulative delay: This metric computes the cumulative delay
faced by all the vehicles within the network throughout each
episode. It highlights the system’s ability to minimise delays
and improve vehicular movements.

3. Queue lengths: To determine the congestion level, the average
and peak lengths of queues at various intersections were
documented. These metrics provide useful insights into the
agents’ ability to uniformly allocate traffic and prevent traffic jam.

4. Throughput: This is the total number of vehicles that
effectively routed the network during an episode. This
metric serves as a means of evaluating the overall
system’s efficiency.

5. Stability and convergence: This deals with the stability of
policies over time and the convergence of traffic patterns.
Hence, an analysis was carried out on the trends in rewards
and delay metrics across episodes to assess the system’s ability
to achieve stable policies and successfully manage the changes
in traffic patterns.

TABLE 1 The selected hyperparameters and the justification.

Hyperparameter Selected value Justification

Episodes 100 A large number of episodes is usually required in MARL to
enhance ease of convergence of the solution by minimizing the
complexity of the model as the multi-agents learn concurrently

Episode Length (Steps per episode) 100 steps This is to ensure a balances between adequate interaction time
per episode with computational efficiency. Longer episodes
might capture more dynamics of the scenarios but with the risk
of instability over time

Rewards Ranges from +50 to −50 for achieving goal, −1 per time step This range helps in achieving stability in the learning in MARL
by ensuring a cooperative behaviour among the agents

Penalties Up to −10 This is to discourage destructive strategies

Exploration Rate (ε in ε-greedy) from initial 1.0 → decay to 0.05 The initial exploration of 1.0 ensures sufficient state-action
capture while its gradual decay to 0.05 prevents over-
exploration which ensures stability of the policies

Learning Rate (α) 0.001 Usually smaller learning rate implies slower updates, resulting
in a more stable learning rate but with risk of divergence
(possibly slower convergence) due to non-stationary dynamics.
Conversely, a larger learning rate speeds up learning rate but
with the risk of instability during training

Discount Factor (γ) 0.99 MARL usually requires γ close to 1 for delayed cooperation
payoffs

Batch Size 100 Mini-batches enhances smooth gradient updates while large
batches improve stability but increase the memory and
computation requirement

Replay Buffer Size 1e6 Large buffer is necessary for achieving stability in the off-policy
MARL algorithms

Policy Update Frequency Every 2 steps To prevent overfitting due to rapidly changing policies
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These performance metrics gave a detailed understanding of the
MARL system’s ability to improve traffic flow, while detecting some
possible potential areas of improvement.

In line with some existing studies such as Kolat et al. (2023),
Mushtaq et al. (2023) and Bie et al. (2024), the queue length and
cumulative delay were selected and prioritised as crucial
performance evaluation metrics because they represent general,
all-inclusive measures for efficient traffic management coupled
with the fact that they provide a dene and stable learning rate
which align with real-world scenarios and performance goals.

3 Results

3.1 Result of the design and simulation of a
typical traffic environment (scenario 1)

This research designed and simulated outcomes of a standard
traffic environment which outlined the developed traffic model,
emphasizing its main characteristics, and the methods it employed
to simulate actual traffic scenarios. It further elaborates on the
simulation configurations, encompassing the types of
intersections, vehicle dynamics, and traffic signal phases utilized
to create realistic and functional traffic scenarios.

Figure 6 illustrates the pattern of traffic congestion observed
during various episodes and time intervals. The intensity varied
from 0 to 4, where the deeper shades of blue signify longer queue
lengths. It further illustrates the fluctuations in traffic load over
various time periods, indicating that certain intervals encounter
significant congestion (values of 3–4) whereas, others exhibit lighter
traffic (values of 0–1).

Figure 6 displays the heat map for the queue length.

3.2 Result of the developed multi-agent
system in the simulated environment
(scenario 2)

This section illustrates the deployment of various agents within
the simulated environment. It outlines the dynamics of their
interactions and the method of coordination among agents. The
provided heat map in Figure 6 effectively illustrates the evolution in
queue lengths over different episodes as shown in Figure 7. The

average queue length is the average number of vehicle on the queue
due to traffic congestion. Throughout the initial 60 episodes, the
system exhibited consistent and minimal queue lengths and delays.
After episode 60, there are clear spikes and heightened variability in
queue metric, indicating that the system faced more complex traffic
scenarios and recalibrating its parameters, probably due to
ineffective response to traffic congestions.

Figures 8, 9 show the cumulative delay and the reward
distribution respectively which provides insights into the quality
of the quality of the learned policy by the model. The visual
representations in Figures 8, 9 illustrate the system’s performance
over various episodes. The cumulative delay is the total time the
vehicle have spent waiting on the queue. Low cumulative delay
implies effective system’ response to traffic demands and vice versa.
Throughout the initial 60 episodes, the system exhibited cumulative
delay which implies a free flow of traffic. However, after episode 60,
there are clear spikes and heightened variability in the cumulative
delay metric, indicating that the delay due to traffic congestion and
probably ineffective response of the system to traffic demands.

The reward distribution refers to the trend and features of the
rewards received by an agent during training or evaluation of the RL
model. The reward distribution is skewed to the left
between −0.5 and 0.0 (negative rewards) and concentrated near
0 with fewer bars which implies lesser reward. This implies that the
RL model improves in decision making across the different episodes
although still marked with few errors. A value of 0 means optimal or
neural action while −1 implies a bad action such as long queue and
values ranging from 0.5 to 0 suggest a suboptimal but improving
performance.

3.3 Result of developed MARL model
(scenario 3)

This scenario focused on the learning process of the MARL
model. Figure 9 illustrates how the agents optimized their policies
over time. It elaborates more on the allocation of cumulative
negative rewards within the reinforcement learning framework
designed for autonomous traffic management. The horizontal
axis represents the range of cumulative negative rewards whereas
the vertical axis denotes the frequency of their occurrences. The
distribution of rewards shows a concentration around zero,
indicating that the penalties are generally low whereas instances

FIGURE 6
The queue length heat map.
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of higher negative rewards are less common. This indicates that the
system is operating effectively, reducing negative outcomes in the
majority of instances.

3.4 Result of training, analysis, and learning
dynamics (scenario 4)

The graph in Figure 10 illustrates the total cumulative negative
reward over episodes for two distinct simulations, labeled Run 1 and
Run 2. The horizontal-axis denotes the episodes, whereas the
vertical-axis denotes the cumulative penalty, where more
significant negative values signify inferior performance (for
instance, increased congestion or delays). At the outset, both
runs exhibit consistent performance with slight fluctuations. As
episodes advance, Run 2 shows notable declines (sharp negative
spikes), highlighting the occurrence of considerable inefficiencies or

instability within the traffic system. In contrast, Run 1 demonstrates
a more consistent performance, indicating superior overall system
optimization. This underscores the variations in performance of the
system across various executions.

Figure 11 displays the cumulative negative reward across different
episodes, which reflects the traffic system performance throughout the
training process. The horizontal axis shows the episode number, while
the vertical axis shows the cumulative negative reward, where more
negative values imply a reduction in the system’s performance (in
other words, it implies heightened traffic congestion or inefficiencies.

Originally, the cumulative reward shows a steady pattern with
minimal deviations, which reflects a stable and reliable system’s
performance. However, there are instances of a rapid decline in the
reward (noteworthy spikes), which indicates instances of significant
or instability or inefficiencies by the system. This behaviour depicts
the system’s learning process as it seeks to gain traffic control while
regulating some complex situations.

FIGURE 8
The Cumulative delay.

FIGURE 7
The average queue length.
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Figure 12 shows the total negative reward gathered over the
episodes. It shows the system’s performance during the training
process. The horizontal axis represents the episode number, while

the vertical axis shows the cumulative negative reward. Lower values
implies a decline in the system’s performance, due to delays or
heightened traffic congestion.

FIGURE 10
The cumulative Negative Reward (Run 1).

FIGURE 11
Cumulative negative reward (Run 2).

FIGURE 9
The reward distribution.
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Firstly, the cumulative negative reward depicts a fairly stable,
showing only some slight variations, which indicates a relatively
steady performance. However, as the training progresses, there are
evidences of diminishing performances between episodes 60 and
90). This decline in performance represents instances when the
system was faced significant limitations. The variations observed
highlight the dynamic features of the learning process as the system
responds and regulates various traffic situations.

Figure 13 compares the cumulative negative reward for the
baseline policy and the RL model’s learned policy across different
episodes. The red curve represents the cumulative negative reward
for the baseline policy, showing the stability in the initial episodes of
the system while exhibiting substantial variations in succeeding
ones, signifying challenges encountered in adjusting to the
intricacy of the environment. The blue curve represents the
cumulative delay of the RL learned policy, which shows
substantial increase in the initial episodes as a result of
inefficiencies due to heightened traffic congestion but later
dropped below the red line as the training progresses implying a
better performance compared to the baseline policy, indicating that
the model that learned over different episodes.

3.5 Performance evaluation of the
developed MARL model (scenario 5)

Figure 14 further shows the advancement in the learning of the
MARL model. The distribution of rewards tends towards smaller
negative values, indicating improved performance of the model.

This scenario assesses the efficacy and performance of the
MARL model in traffic management. The analysis of the metrics
conducted in this study includes cumulative delay, throughput, and
average queue length. The delay plot demonstrates the gradual
alleviation of traffic congestion over time. The comprehensive
assessment of the performance is depicted using various metrics.
Figure 14 illustrates a relationship where increased delays
correspond with more negative rewards. The analysis of the runs
in Figures 10–12 illustrates model consistency and reliability.

Analysis of performance metrics indicates:

• The beginning of a stable phase (episodes 0–60) characterized
by minimal delays and short queue lengths.

• A demanding phase (episodes 60–80) characterized by
heightened variability.

FIGURE 12
Cumulative Negative Reward over different episodes.

FIGURE 13
Cumulative Negative Reward for baseline policy and RL learned policy.
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• The concluding adaptation phase (episodes 80+) illustrating
the system’s reaction to intricate traffic scenarios.

The result indicates that the MARL model performs well under
standard traffic scenarios (initial 60 episodes), yet encounters difficulties
in high congestion situations, demonstrating its ability to adapt. The

system exhibits learning behaviour via reward mechanisms; however,
enhancements are needed in managing peak traffic scenarios.

Table 2 shows the system’s performance under different
evaluation metrics.

Table 3 Presents the performance evaluation of the MARL
model across different grid scales while Table 4 compared the

FIGURE 14
The reward vs. delay-scatter plot.

TABLE 2 Systems performance under different evaluation metrics.

Scale Halting vehicles Queue Time(s) Queue length (m) Speed (m/s) Training Time/Rollout(s)

5 × 5 4.76 ± 0.92 0.35 ± 0.02 6.15 ± 0.18 19.20 ± 0.31 12.45

10 × 10 9.82 ± 1.45 0.42 ± 0.03 8.73 ± 0.22 17.85 ± 0.25 42.18

15 × 15 15.37 ± 2.68 0.55 ± 0.04 10.89 ± 0.27 15.48 ± 0.38 95.72

TABLE 3 Performance evaluation of the MARL model summary.

Category Metric Value/Observation Analysis

Queue Management Maximum Queue Length 4 vehicles Peak congestion periods show the highest queue formation

Minimum Queue Length 0 vehicles During low-traffic periods

Average Queue Length <50 vehicles Maintained during stable operation periods

Traffic Flow Congestion Patterns 0–4 vehicles Effectively captured varying traffic intensities

Peak Congestion Periods 3–4 vehicles Represented by dark blue regions in the heat map

Low Traffic Periods 0–1 vehicles Represented by light colors in the heat map

MARL Performance Cumulative Negative Rewards −0.2 × 10̂6 Stabilization point for the system

System Stability Period Episodes 0–60 Shows effective baseline performance

Challenge Period After Episode 60 Peak performance challenges emerged

System Efficiency Throughput Variable Consistent flow maintained except during peak congestion

Average Waiting Time Correlated with rewards Direct relationship with negative rewards

Inter-agent Coordination Observable Visible in delay patterns

Adaptive Response Traffic Condition Response Dynamic Demonstrated through queue length variations

Peak Congestion Handling Limited System shows stress during extreme scenarios

Normal Operation Efficient Effective management under standard conditions
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outcomes of the MARL model with the baseline model or policies.
The outcome of the study shows that the MARL outperforms the
baseline because it makes independent decisions in a coordinated,
adaptive, and goal driven manner. The MARL combines the
strategies of decentralized control, cooperative reward shaping,
and dynamic adaptation to reduced queue lengths and delays,
unlike the baseline models. However, while the MARL model
demonstrates superior performance over the baseline models,
some challenges may include scaling to larger urban
environments which may present some computational, real-
time, and data-related limitations. These challenges can be
addressed by ensuring efficient training of the model,
deployment of edge computing and transfer learning and by
ensuring the development of a scalable features and
architectures amongst other.

The outcome of the simulation conducted in this study showed
an improvement in queue management and traffic flow by 64.5%
and 70.0% respecitively with improvement in performance of the
proposed model over the episodes. These findings agree significantly
with some existing literature such as Sewak (2019), Liu and Kohls
(2010) as well as Bakker and Groen (2010), that RL model can learn
over episodes and improve in performance. Similar to the findings in
this study on the deployment of RL model for effective traffic
control, Kolat et al. (2023) also reported that the use of
reinforcement learning for traffic control using the Q-deep
learning algorithm minimised fuel usage and average travel time
by 11% and 13% respectively. Mushtaq et al. (2023) also reported
that the use of MARL specifically the Multi-Agent Advantage Actor-
Critic (MA2C) for enhancing the flow of autonomous vehicles on
road networks resulted in 38% improvement in the management of
traffic scenarios. Zeynivand et al. (2022) achieved 7.143%
improvement in queue length using MARL while Bie et al.
(2024) found that that the integration of the spatiotemporal
graph attention network (SGAN) into the MARL model to form
a hybrid model improved traffic flow patterns in terms of the
reduction in the average vehicle delays and stops, as well as
increase in the travel speeds when compared to other baseline
models or algorithms.

4 Conclusion

The effectiveness of this study is in the ability to meet the goals by
creating and simulating a dynamic traffic environment, applying the
MAS, and also formulating a MARL model to manage traffic. In other
to improve overall efficiency, the MARL system exhibited the capacity
to optimize traffic flow by reducing cumulative delays and queue
lengths. Highlighting the system’s applicability for practical
implementations in the urban traffic system management, the
model’s resilience and flexibility across diverse traffic scenarios were
validated with the performance. The outcome of the simulation
conducted in this study showed an improvement in queue
management and traffic flow by 64.5% and 70.0% respecitively with
improvement in performance of the proposed model over the episodes.

The results show reward distribution is skewed to the left
between −0.5 and 0.0 (negative rewards) and concentrated near
0 with fewer bars which implies lesser reward. This implies that the
RL model improves in decision making across the different episodes
although still marked with few errors. Furthermore, the RL model
policy showed better performance compared to the baseline policy,
indicating that the model that learned over different episodes. The
result also indicates that the MARL model performs well under
standard traffic scenarios (initial 60 episodes), yet encounters
difficulties in high congestion situations, demonstrating its ability
to adapt. Hence, this study contributes to the development of
intelligent transportation systems that enhance safety, and
efficiency in urban environments. The outcomes of this may
assist in the development of smart city with effective traffic
management system. This study is limited o he use of RL, future
studies may compare the outcome of this study with the
performance of ensemble model under similar traffic scenarios.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author.

TABLE 4 Comparison of the MARL model with the baseline model or policies.

Component Description of erformance Why it outperforms the baseline model

Decentralized Decision-Making This enables each agent to learn policies based on feedbacks or local
observations and feedback, thereby minimizing dependency on a
central controller

Baseline policies have fixed-time control or centralized heuristic
making it difficult to adapt rapidly to dynamic local variations

Agents coordination This is achieved via rewards, communication, or joint learning thus,
agents align actions to reduce negatives like queues or penalties

Baselines treat nodes as independent entities thus resulting in
conflict in decisions

Reward Formulation The rewards and incentives are targeted at reducing cumulative
delay and queue lengths

Baseline rules maymaximize throughput thereby creating inequities,
long waits or traffic bottlenecks

Exploration–Exploitation Balance The balance between exploration and exploitation ensures gents
discover novel strategies before converging

Baseline policies such as static policies lack improvement over time
because of its non-dynamic nature

Scalability MARL can scale to many agents without exponential increase in
state space

A centralized baseline becomes computationally complex with the
introduction of many agents

Learning in Non-Stationary
Environments

Agents adapt to traffic dynamics such as changes in traffic flows or
network

Baseline models are inflexible

Replay and Policy Stabilization The use of replay buffers, target networks, and shared experiences
reduce training instability

Baseline lacks self-improvement over time due to its fixed nature
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