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In the era of Industry 4.0, the integration of advanced technologies such as digital
twins represents a strategic opportunity for process optimization in the
metalworking industry. Although their potential has been widely
acknowledged, many companies face significant challenges in
implementation, particularly in terms of operational efficiency, predictive
maintenance, and economic feasibility. This study addresses how a digital twin
can be effectively deployed within metalworking operations to solve concrete
production issues, enhance decision-making, and optimize resource utilization.
The proposed system models critical processes, such as milling, welding, and
material flow, and integrates real-time data to enable continuous improvement.
Through a longitudinal evaluation, the implementation of the digital twin resulted
in a 30% reduction inmaterial waste, a 40% decrease in the rejection rate ofmilled
parts, and a return on investment of 233% over 5 years. These results provide
empirical evidence of the digital twin’s capacity to drive both operational
excellence and economic return. This work contributes to the existing
literature by offering a robust quantitative assessment of digital twin
deployment in metalworking, emphasizing its practical benefits and strategic
relevance.
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1 Introduction

Digital twins have emerged as a transformative paradigm within Industry 4.0,
particularly in the metalworking sector, where the demands for precision, operational
efficiency, and adaptive control are exceptionally high. A digital twin is defined as a dynamic
and continuously updated virtual counterpart of a physical process, product, or system,
leveraging real-time data acquisition and advanced simulation (Hyre et al., 2022). In
metalworking operations, where methods such as machining, welding, and surface
treatment coexist with tight tolerances and complex workflows, the integration of
digital twins enables unprecedented visibility and control over industrial assets and
performance.

The maturity of enabling technologies—such as the Internet of Things (IoT), edge
computing, big data analytics, and artificial intelligence (AI)—has facilitated the scalable
deployment of digital twins in industrial contexts (Tancredi et al., 2022). These systems
provide predictive insights, enable real-time anomaly detection, and allow the testing of
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operational strategies in silico, reducing risks and accelerating
decision-making. In the context of the metal industry, digital
twins provide tangible solutions to persistent challenges,
including high rejection rates, inefficient maintenance cycles, and
suboptimal resource utilization. Their implementation enables a
shift from reactive to predictive and adaptive
manufacturing practices.

Despite the conceptual advancement and technological
feasibility of digital twins, the literature reveals critical gaps
regarding their quantitative impact and practical implementation
across diverse production environments (Mateev, 2020; Guerra-
Zubiaga et al., 2021). Prior studies have emphasized theoretical
frameworks and isolated use cases—mainly in predictive
maintenance or energy monitoring—but comprehensive
evaluations grounded in real industrial data remain scarce
(Moiceanu and Paraschiv, 2022; Wang and Wang, 2019). This
lack of applied evidence limits the generalizability of previous
findings and hinders informed adoption strategies by
stakeholders in the manufacturing sector.

This study addresses that gap by presenting an in-depth
evaluation of a digital twin implemented in a metalworking
facility, analyzing its operational, economic, and strategic effects
over a sustained period. By integrating sensor data, high-fidelity
simulations, and predictive models, the system was embedded into
the daily production workflow, providing not only monitoring
capabilities but also direct input into decision-making processes.
The methodology adopted combines quantitative metrics such as
cycle time, productivity, energy usage, and material waste with
qualitative observations from maintenance, quality control, and
operational feedback loops (Bellavista et al., 2023). This hybrid
approach ensures a robust and multi-layered understanding of
the technology’s real impact.

This research bridges the gap between conceptual frameworks
and real-world applications of digital twins in the metalworking
industry. By grounding the study in empirical observations and
system-level deployment, it contributes to the growing body of work
that aims to demonstrate the effectiveness and scalability of digital
twin technologies beyond isolated use cases.

This article is structured as follows. Section 3 details the
materials and methods, including the architecture of the digital
twin, data acquisition, and experimental setup. Section 4 presents a
comprehensive overview of the results, with a focus on operational
performance, maintenance reliability, and quality improvements.
Section 5 discusses the implications of the findings in light of current
literature and industrial trends. Finally, Section 6 concludes the
study by summarizing the key contributions, practical implications,
and future research directions.

2 Literature review

The literature review studies the digital twin’s application in the
metalworking industry. It highlights previous research and how our
work is incorporated into and dialogues with these findings. The
analyzed works demonstrate the breadth and depth with which the
digital twin concept has been explored, focusing on its ability to
improve operational efficiency, decision-making, and sustainability
in industrial processes.

Stavropoulos and Mourtzis, (2021) provide one of the broadest
perspectives on the digital twin, defining it as a virtual entity
replicating a physical system’s structure and behavior. This work
highlights the potential of the digital twin to perform detailed
simulations to predict and optimize the performance of
production systems. Our study aligns with this vision,
demonstrating how implementing the digital twin in the
metalworking industry replicates production processes and allows
for significant optimization and continuous improvement.

Shahzad et al. (2022) explore how digital twins can be used for
mass customization and product quality improvement in
manufacturing. Although their research provides a solid
understanding of the benefits of digital twins in terms of
personalization and quality enhancement, it lacks a detailed
quantification of economic outcomes. Our work extends these
observations by explicitly measuring the financial impact of
digital twin implementation, as demonstrated by our ROI
analysis, which reveals a significant return on investment.

In the study by Kenett and Bortman, (2022), the importance of
the digital twin is analyzed in the context of Industry 4.0,
highlighting its role in integrating physical and virtual systems.
However, despite providing a theoretical understanding of the
digital twin, there is a need for more applied and industry-
focused studies, such as metal-working. Our study addresses this
gap, providing an applied analysis of how the digital twin can
transform operations in the metalworking industry, evidencing
tangible improvements in efficiency and productivity.

Other research, such as that of Pang et al. (2021), who coined the
term “digital twin,” focuses on this technology’s conceptual and
fundamental aspects. While these works laid the theoretical
foundation, there is a growing need for studies demonstrating
practical applications and specific results. Our approach builds
on these foundations to examine the tangible and measurable
impact of the digital twin in a specific industrial environment.

The literature review determines the importance and potential of
the digital twin in improving manufacturing and industrial
management. Although significant progress has been made in the
conceptual and theoretical understanding of the digital twin, our
study contributes to the literature by providing empirical evidence of
its economic and operational impact on the metalworking industry
(Zhong et al., 2023). Through detailed and quantitative analysis, we
demonstrate how the digital twin not only optimizes processes and
improves decision-making but also results in a significant return on
investment, affirming its value as a strategic tool in the era of
Industry 4.0.

Recent research has expanded the scope of digital twin
applications into adjacent domains with high potential for
transference to discrete manufacturing. Arowoiya et al. (2024)
developed a digital twin architecture for optimizing thermal
comfort and energy efficiency in buildings, emphasizing real-time
calibration through sensor fusion and predictive control techniques
that are equally applicable to thermal regulation in industrial
processes. Similarly, Kang and Mo, (2024) proposed a
comprehensive digital twin framework for building monitoring,
with a focus on data connectivity, bidirectional communication,
and model updating—all core requirements in digital twins for
manufacturing systems. Although developed for the built
environment, these frameworks illustrate key architectural
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components (e.g., dynamic state synchronization, real-time sensing)
that are directly transferable to production-line digital twins. In the
manufacturing domain, Yan et al. (2024) proposed an adaptive
machining method for carbon fiber-reinforced plastic and titanium
stacks, utilizing feedback-driven interface recognition to optimize
helical milling. This technique aligns with the core objectives of
digital twin-based machining optimization. These empirical studies
underscore the importance of validated, data-driven architectures
and adaptive control models in real-world deployments.

Literature demonstrates increasing adoption of digital twin
technologies specifically tailored to the steel and metal industries,
highlighting both their practical benefits and implementation
challenges. Kasper et al. (2024) develop an adaptive optimization
system based on digital twins for waste heat recovery in green steel
production, demonstrating how real-time calibration and data-driven
control can enhance energy efficiency and sustainability in high-
temperature industrial environments. Similarly, Panagou et al.
(2022) propose a hybrid digital twin framework for predictive
maintenance in steelmaking, integrating real-time monitoring with
physics-based and data-driven models. Their work illustrates not
only the technical feasibility of digital twins in harsh industrial
settings, but also the importance of simulation–reality alignment and
system interoperability. Moreover, Shi et al. (2024) explore the
development and application of digital twins in steel structures,
focusing on structural integrity, lifecycle monitoring, and integration
with Building Information Modeling (BIM) systems. Their findings
highlight how digital twin approaches can be applied to operational
intelligence across various construction and manufacturing contexts.
These studies reinforce the relevance and urgency of domain-specific
investigations, such as the present work, which evaluates the systemic
implementation of a digital twin in a metalworking facility and its
impact across operational, economic, and organizational dimensions.

3 Materials and methods

The development and deployment of the digital twin solution for
the metalworking industry follows a technically rigorous, multi-
phase process that integrates physical modeling, simulation, and
real-time data acquisition to replicate and optimize metallurgical
operations. This implementation is grounded in principles of solid
mechanics, computational fluid dynamics (CFD), thermodynamics,
and control theory, which collectively enable accurate simulation of
the behavior and interaction of machine elements and thermal-fluid
processes intrinsic to the metal transformation domain
(Muthuswamy and Shunmugesh, 2023). Finite Element Analysis
(FEA) is employed to evaluate the mechanical response of structural
components subjected to operational loads, thermal stresses, and
vibration profiles. At the same time, CFD is used to model heat
dissipation and lubricant flow in machining operations, particularly
in cooling channels and regions of surface contact.

Digital models of machines and assemblies are constructed using
advanced CAD/CAM software, incorporating exact geometrical
constraints, material properties, and kinematic behaviors to serve
as the foundation for virtual replication. These models, once
validated, are integrated into dynamic simulation environments
where toolpath trajectories, actuator cycles, and workstation
interactions are virtually tested to optimize process parameters

before physical deployment (Moreno et al., 2023). The simulation
outputs provide critical feedback for minimizing cycle times,
reducing tool wear, improving energy efficiency, and enhancing
operational ergonomics across production cells.

Real-time operational data is acquired via IoT sensors embedded
in CNC machines and other production equipment, capturing
variables such as spindle temperature, vibration amplitude, tool
load, and lubrication flow. This sensor data is transmitted to the
digital twin platform, where it is used to update model states,
recalibrate predictive functions, and validate the accuracy of
simulations. The continuous feedback loop between the physical
and virtual environments ensures high-fidelity synchronization and
supports adaptive control strategies based on real-time deviations
and process anomalies.

Figure 1 presents a schematic overview of the complete digital
twin lifecycle, from the initial conceptual modeling and simulation
stages to the integration and synchronization with the physical
system. This architecture enables a cyber-physical continuum in
which environmental, operational, and simulation data converge to
support advanced monitoring, early failure detection, and predictive
maintenance (Stavropoulos and Mourtzis, 2021). Furthermore, the
integration of multisource data into a unified virtual model enhances
the system’s capacity to react dynamically to production shifts and
external disruptions, enabling sustained optimization of
metallurgical processes (Singh et al., 2021).

To ensure terminological precision throughout the analysis, the
following definitions are adopted in the context of this
implementation. Efficiency is used as a general descriptor of
output-to-input ratio across energy, time, or resources, depending
on context. Overall Equipment Effectiveness (OEE) is defined as the
product of availability, performance, and quality rates, offering a
standardized composite measure of equipment productivity. Cycle
time refers to the total elapsed time required to complete one
production unit or machining sequence, inclusive of tool
engagement, repositioning, and idle periods. Finally, production
efficiency denotes the ratio between actual output and the maximum
achievable output under ideal conditions, accounting for losses
related to delays, speed reductions, and partial load operation.
These definitions are consistently applied in all subsequent
analyses and interpretations of performance metrics.

3.1 Selection and characterization of metal-
mechanical systems

The metalworking domain analyzed in this study encompasses
high-precision transformation processes, including turning, milling,
welding, and surface finishing, as well as painting. These processes
are central to the manufacturing of structural and functional
components. They are selected based on their operational
significance, complexity in physical modeling, and data richness for
integration into digital twin environments (Howard et al., 2021). Table 1
summarizes the specific selection criteria, inherent characteristics, and
modeling requirements associated with each process.

Turning and milling are prioritized due to their foundational
role in shaping and dimensional control, as well as the availability of
high-frequency process data suitable for model calibration. These
operations demand precise regulation of cutting variables, tool
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geometry, and spindle dynamics, which must be virtually
reproduced to capture energy consumption, tool wear
progression, and vibration profiles.

Welding processes are integrated due to their critical influence
on structural integrity and their complexity in terms of thermal
gradients and joint behavior. The digital twin implementation
includes thermal field simulation, fusion zone analysis, and stress
propagation modeling, supporting predictive quality control and
defect identification (Hu et al., 2022).

The painting stage is incorporated based on its relevance to
lifecycle durability and compliance with visual and protective
standards. The virtual representation encompasses modeling of
spray trajectories, fluid deposition patterns, and post-application
curing behavior to assess coating performance and pinpoint process
deviations. Collectively, these selected processes provide a
representative sample of the metalworking production chain,
offering sufficient complexity and variability to validate the
applicability of digital twin architectures in real industrial contexts.

3.2 Development of the digital twin

The construction of the digital twin follows an iterative and
modular development framework, grounded in the integration of

multi-source data, simulation models, and feedback control loops.
This development process aligns with the principles of Industry 4.0,
emphasizing adaptability, interoperability, and real-time
responsiveness to dynamic manufacturing conditions (Rasheed
et al., 2020). The implementation pipeline is supported by CAD-
based geometric modeling, physical process simulation, sensor-
based data acquisition, and validation cycles, ensuring that the
digital replica maintains high fidelity and operational relevance.

Figure 2 disaggregates the workflow into five functional stages.
These stages are presented sequentially but are interconnected by
feedback loops that facilitate continuous model improvement. In the
conception phase, the functional scope, modeling objectives, and
required granularity are defined based on constraints and key
performance indicators (KPIs) specific to the metal-mechanical
domain (Madubuike et al., 2022). This includes identifying
critical variables, such as spindle torque, thermal gradients, or
feed rate, and determining the spatial and temporal resolution
required to simulate them accurately.

Subsequently, the modeling and simulation stage involves
constructing domain-specific physics-based models. These include
finite element representations for mechanical structures and CFD
models for thermal-fluid interactions. Virtual prototypes are
executed under controlled conditions to evaluate operational
behavior, failure points, and process sensitivity.

FIGURE 1
Digital twin development and integration lifecycle.

TABLE 1 Selection criteria and requirements for implementing digital twins in metalworking processes.

Process Selection criteria Main features Requirements for digital twins

Turning Importance in forming parts, impact on quality Cutting speed, feed, depth Machine modeling, material properties, cutting
parameters

Milling Relevance in detailed manufacturing, production
efficiency

Rotating tools, material removal Detail of tools, operating conditions, process simulation

Welding Comprehensive assembly, structural quality Fusion techniques, temperature
control

Thermal simulation, joint modeling, quality control

Paint Effect on final finish, protection, aesthetics Surface preparation, application
method

The application process, spray simulation, curing
evaluation

Frontiers in Mechanical Engineering frontiersin.org04

Villegas-Ch et al. 10.3389/fmech.2025.1655565

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1655565


The environment connection phase enables the alignment of
these models with field-deployed systems through standardized
communication protocols (e.g., OPC UA, MQTT), ensuring that
the virtual environment mirrors real-time behavior. The core real-
time integration module ingests streaming data from IoT sensors
and controllers, which are then processed and mapped to the
simulation parameters to update the model state continuously.
This mechanism supports data-driven refinements, enabling the
digital twin to adapt to production fluctuations and unanticipated
disturbances.

The testing and validation block focuses on comparing
simulated outputs with absolute sensor data using statistical error
metrics (e.g., RMSE, MAE). This enables iterative tuning of
simulation fidelity, providing confidence in predictive outputs.
The deployment and scaling stage incorporates the refined digital
twin into the operational infrastructure. Depending on
computational requirements, this may involve cloud or edge
deployment and integration with manufacturing execution
systems (MES) or ERP platforms. This ensures both scalability
and real-time synchronization with plant operations.

3.2.1 Project phase
The conception phase of the digital twin project begins with a

comprehensive analysis of the production layout to identify the
primary systems, interdependencies, and performance bottlenecks
to be digitally replicated. This process involves establishing a set of
performance indicators {K1, K2, . . . , Km} and modeling objectives
that guide the construction of the twin architecture. In the design
and prototyping phase, detailed parametric 3D models of
mechanical systems, actuators, and process flows are developed
using CAD platforms. These serve as the initial geometric and
kinematic backbone of the digital twin. Virtual process logic and
control algorithms are embedded into the model to reflect real-time
operational behavior (Li et al., 2022).

In the development and testing phase, the digital twin is
enriched with sensor data streamed from IoT devices. Let
xreal(t) ∈ Rn denote the vector of n real-time measurements from
the physical system at time t, and xtwin(t; θ) the corresponding

vector of predicted values from the digital twin, where θ represents
the set of model parameters subject to calibration.

The instantaneous modeling error is then defined as described in
Equation 1:

ε t( ) � xreal t( ) − xtwin t; θ( ) (1)

Over a time horizon T � {t1, t2, . . . , tN}, the aggregate model
deviation is quantified using the multivariate Root Mean Square
Error (RMSE) as described in Equation 2:

RMSEtotal �

�����������
1
N

∑N
i�1

ε ti( )‖ ‖2
√√

�
����������������������������
1
N

∑N
i�1

∑n
j�1

x
j( )

real ti( ) − x
j( )

twin ti; θ( )( )2

√√
(2)

Model calibration is formulated as an optimization problem to
minimize this error metric over the parameter space Θ, as described
in Equation 3:

θ* � argmin
θ∈Θ

RMSEtotal (3)

Gradient descent, Levenberg–Marquardt, or evolutionary
algorithms may be used to solve this minimization depending on
the complexity and differentiability of the digital twin simulation.
The calibration loop is run iteratively until convergence criteria
‖θ(k+1) − θ(k)‖< δ are satisfied for a small threshold δ.

To account for dynamic time-varying behavior, an online
identification model can be embedded using recursive least
squares (RLS) or Kalman filter-based estimators, where:

θt+1 � θt + Kt xreal t( ) − xtwin t; θt( )( ) (4)

and Kt is the Kalman gain matrix dynamically updated from the
covariance of the prediction error, as described in Equation 4. This
allows real-time tuning of the digital twin in response to changing
operating conditions, mechanical degradation, or external
perturbations.

In the scaling and refinement stage, the calibrated twin is
deployed across the entire production workflow. Continuous

FIGURE 2
Diagram of the development and integration process of the digital twin.
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performance metrics are extracted to validate consistency with
operational baselines. In the implementation, the digital twin is
embedded into the supervisory control system, integrated with
MES/ERP layers, and actively supports predictive diagnostics and
production reconfiguration tasks (VanDerHorn and
Mahadevan, 2021).

3.2.2 Existing platforms and tools
The implementation of the digital twin architecture leverages

state-of-the-art software platforms for modeling, simulation, and
real-time data integration, selected based on criteria such as
interoperability, precision, simulation depth, and scalability
within industrial environments. These tools not only accelerate
deployment but also ensure adherence to standardized
engineering workflows and robust system integration practices.

For geometric modeling and multiphysics simulation, platforms
such as Autodesk Fusion 360, SolidWorks, and Siemens NX are
utilized. These environments provide integrated CAD/CAM/CAE
functionalities, enabling the construction of high-fidelity three-
dimensional models of machines and assemblies. The simulation
modules support finite element and kinematic analyses, allowing the
evaluation of mechanical stress, thermal loads, and motion
trajectories under variable boundary conditions. This is essential
for reproducing the behavior of critical subsystems and validating
virtual prototypes before integration with the digital twin core.

Real-time data acquisition and operational synchronization are
handled through industrial IoT (IIoT) platforms such as PTC
ThingWorx and Siemens MindSphere. These platforms support
secure data ingestion from distributed sensor arrays using
industrial protocols (e.g., OPC UA, MQTT) and enable edge and
cloud-level data processing. Time series data from sensors
(temperature, torque, spindle speed, energy consumption) is
mapped to the simulation model to update state vectors and
compute prediction deviations as defined in the model
calibration framework.

Customization and process adaptation are conducted through
the configuration of digital threads and API-level integration.
Simulation engines are parameterized to reflect the technical
specifications of each machine unit (e.g., tool rigidity, maximum
spindle load, thermal expansion coefficient), and embedded scripts
or external algorithms are integrated to enable predictive analytics
and failure forecasting specific to the metal-mechanical domain (Jia
et al., 2022). This modular architecture facilitates future expansion
with AI-enhanced modules, including anomaly detection,
reinforcement learning-based optimization, or adaptive
scheduling modules aligned with Industry 4.0 requirements.

3.2.3 Use of existing platforms and tools
The iterative refinement of the digital twin follows a model-

driven and data-informed cycle, grounded in continuous feedback
from both simulated results and real-time operational data. The
initial digital twin is constructed based on static system
specifications and historical performance data, and serves as the
baseline model for functional testing. Each development iteration
includes parameter reconfiguration, simulation re-execution, and
comparative evaluation between the predicted and observed
behavior of system components.

Testing is conducted at multiple levels of abstraction. Unit-level
validation assesses individual subsystem models (e.g., toolpath
fidelity, thermal response, actuator kinematics), while integration-
level testing examines interdependencies and emergent system
behavior. For each test, deviation metrics—such as temporal
alignment error, frequency domain distortion, or maximum
residual error—are computed. Let Δx(t) � xreal(t) − xtwin(t)
denote the residual for a monitored variable, and define a
normalized score Si for component i as described in Equation 5:

Si � 1 − ‖Δxi t( )‖2
‖xreal,i t( )‖2 (5)

where Si ∈ [0, 1] represents the relative accuracy of the twin
concerning the physical component. Scores below a defined
threshold τ trigger calibration routines or design adjustments.

Feedback mechanisms are integrated via data pipelines from
industrial sensors, operator logbooks, and system event logs.
Structured feedback from domain experts (e.g., maintenance
engineers, production supervisors) is incorporated into model
updates through formal issue tracking and parameter tuning
reports. The iterative framework is managed using digital
engineering environments that support version control, model
rollback, and test traceability, ensuring rigorous validation and
traceable evolution of the twin across development cycles
(Tuhaise et al., 2023).

The overall refinement strategy follows a test-driven development
(TDD) approach adapted to cyber-physical systems, where each
iteration reduces modeling error and improves predictive robustness
under operational variability. This methodology ensures that the digital
twin progressively converges towards an accurate, responsive, and
scalable representation of the physical production environment in
the metal and mechanical industries.

3.3 Implementation and testing

The implementation phase of the digital twin involves deploying
software and communication middleware into the plant’s
technological ecosystem. Secure and low-latency communication
protocols, such as MQTT and OPC UA, are configured to enable
bidirectional data exchange between physical sensors, actuators, and
the simulation layer of the digital twin (He and Bai, 2021). These
protocols are selected based on their support for Quality of Service
(QoS) levels, compatibility with industrial hardware, and robustness
under high-frequency sampling rates.

Sensor calibration is conducted using process-specific reference
standards. Let si(t) denote the raw signal from sensor i and srefi (t)
the expected reference value. The calibration function fi(·) is
computed to minimize the mean squared deviation over a
reference interval [t0, tf], as described in Equation 6.

f*
i � argmin

fi

1
tf − t0

∫tf

t0

srefi t( ) − fi si t( )( )( )2dt (6)

The adjusted signal ~si(t) � f*
i(si(t)) is then used in the data

integration pipeline. This calibration ensures reliable synchronization
between physical processes and the digital representation.
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Operational workflow mapping involves encoding production
sequences, machine states, and event logic into the digital twin’s
execution model. This includes process identifiers, inter-process
dependencies, and time-based triggers. Custom user interfaces,
designed by human-machine interaction (HMI) principles, provide
real-time feedback loops and control elements for supervisors
and operators.

A multilayer validation protocol is defined to ensure the
operational readiness and robustness of the digital twin. The
validation space V is constructed as a finite set of test cases
{v1, v2, . . . , vk}, each characterized by an input condition uj,
expected system state trajectory xexpj (t), and tolerance band δj.
For each case, the simulation output xsimj (t) is evaluated with the
deviation function, Equation 7.

Δj t( ) � xsimj t( ) − xexpj t( )
����� �����2 (7)

The test case is considered valid if maxtΔj(t)< δj. The overall
system validity score Γ is defined as described in Equation 8.

Γ � 1
k
∑k
j�1

I max
t

Δj t( )< δj[ ] (8)

where I[·] is the indicator function. A threshold Γmin is defined
based on criticality, and full system deployment is allowed only if
Γ≥ Γmin.

This validation framework is applied across functional,
performance, and stress testing categories. Functional tests verify
that control logic and state transitions execute as expected;
performance tests assess the system’s capacity to process
streaming data within bounded latency (e.g., <100 ms for
control-critical feedback); and stress tests evaluate system
behavior under worst-case load conditions (e.g., burst sensor
input or process anomalies) (Ferré-Bigorra et al., 2022).

3.4 Industrial case study: digital twin
deployment in a dilution tank system

Although not directly a machining or metallurgical transformation
unit, the dilution tank system is a critical component within the broader
metalworking facility, supporting the chemical preparation and
regulation of industrial fluids essential to thermal and surface
treatment stages. The implementation framework, including sensor
integration, calibration methodology, computational simulation, and
optimization routines described in the previous section, was fully
applied and validated within this subsystem. This controlled
subsystem was selected for digital twin validation due to its well-
instrumented nature and dynamic behavior, which allow for
accurate modeling, simulation, and feedback testing before broader
deployment.

To validate the digital twin implementation process in a real
industrial scenario, a case study was conducted on a dilution tank
system used in chemical processing operations. This tank is part of a
surface treatment line for flat steel products, where precise chemical
concentration and thermal regulation are essential to ensure uniform
coating and resistance properties. The system consists of a vertical
cylindrical tank equipped with a multi-level agitator and internal flow

deflectors. The digital twin was developed to replicate the mixing
dynamics, energy usage patterns, and operational parameters of the
physical system.

The configuration includes real-time sensor integration for key
variables, such as agitator shaft torque (measured via strain gauges),
motor rotational speed (measured via encoders), internal fluid
temperature (measured via thermocouples), and concentration
distribution (measured via conductivity probes placed at multiple
depths). These signals si(t) are calibrated through a defined
function f*

i as previously introduced, ensuring accurate alignment
between physical measurements and the digital simulation layer, as
described in Equation 9.

f*
i � argmin

fi

1
tf − t0

∫tf

t0

srefi t( ) − fi si t( )( )( )2dt (9)

Once calibrated, the adjusted values ~si(t) � f*
i(si(t)) are used to

update the system’s state vector in real time.
The digital twin integrates a computational fluid dynamics

(CFD) module to simulate the velocity field v(x, t) and
concentration field c(x, t) within the tank geometry. Multiple
agitator configurations are tested using a parameterized design
framework that allows for variation in blade angle, spacing, and
shaft speed. These configurations are evaluated through a multi-
objective cost function (Equation 10).

J � α · Tmix

Tref
( ) + β · Euse

Eref
( ) (10)

where Tmix is the time to reach a predefined homogeneity
threshold and Euse is the energy required for agitation. The
reference values (Tref , Eref ) correspond to the baseline
configuration that has historically been used in the plant.

For validation, a test suite V � {v1, v2, . . . , vk} is constructed based
on distinct operational conditions. Each scenario defines an input
condition uj, a corresponding expected state trajectory xexpj (t), and
a tolerance band δj. The digital twin output xsimj (t) is compared
through, Equation 11.

Δj t( ) � xsimj t( ) − xexpj t( )
����� �����2 (11)

A test case is valid if maxtΔj(t)< δj. The global validation index
Γ is computed as computed according to Equation 12:

Γ � 1
k
∑k
j�1

I max
t

Δj t( )< δj[ ] (12)

This validation framework confirms the fidelity of the twin
under varying operational scenarios.

Figure 3 presents the integrated interface used during deployment,
which displays the dilution tank structure, sensor data streams, and
control modules. This environment allows operators to monitor real-
time variables, compare system states, and interactively adjust key
parameters such as impeller speed and flow rate.

3.5 Analysis and optimization of processes

The digital twin architecture enables the detailed simulation and
evaluation of production processes, allowing for the identification of
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inefficiencies and the testing of improvements without physical risk
or downtime. In machining operations, the twin simulates
tool–material interactions by modeling cutting speed, feed rate,
depth of pass, and thermal conditions. Through simulation loops,
suboptimal parameters are identified, such as unstable cutting
speeds or inefficient tool paths, which contribute to increased
tool wear or cycle delays.

The optimization routine is structured around a multi-objective
function (Equation 13).

Jmach � λ1 · Tcycle

Tmax
( ) + λ2 · Wtool

Wref
( ) + λ3 · Qsurf

Qtarget
( ) (13)

where Tcycle is the simulated machining cycle time, Wtool is the
estimated tool wear, and Qsurf is the predicted surface quality metric
(e.g., Ra). The weights λi are assigned according to production
priorities. Constraints include machine dynamics, thermal
thresholds, and tool load capacities.

In assembly processes, the digital twin evaluates workstation
ergonomics, tool accessibility, and component alignment. Motion
planning algorithms simulate the joining sequences under different
configurations. Ergonomic impact is assessed using metrics derived
from reachability, force exertion, and cycle repetition. The system
proposes optimized assembly paths and tool placements to
minimize task complexity and reduce operator fatigue.

Material waste reduction is addressed by simulating alternative
cutting strategies and nesting configurations to optimize resource
utilization. The optimization focuses on maximizing raw material
utilization by minimizing the area of the residual scrap matrix. A
layout function Flayout is used to evaluate geometric utilization,
Equation 14.

Flayout � Aused

Araw
(14)

whereAused is the total material area effectively transformed into
components, and Araw is the area of the raw material sheet.

3.6 Predictive maintenance and
anomaly detection

The predictive maintenance module embedded in the digital
twin architecture is designed to minimize unplanned downtime
through early anomaly detection, fault diagnosis, and optimized
intervention scheduling. This module operates as an integral
component of the virtual representation, using synchronized
sensor data and real-time simulation to anticipate mechanical
and operational failures.

The process begins with the deployment of IoT sensors across
critical components, capturing variables such as vibration
acceleration, spindle and bearing temperatures, oil pressure, and
volumetric flow rates (Fulle et al., 2020). The digital twin computes a
prediction ŝ(t) of these sensor values using a dynamic systemmodel,
formulated as described in Equation 15.

_x t( ) � Ax t( ) + Bu t( ), ŝ t( ) � Cx t( ) (15)
where x(t) is the internal state vector, u(t) is the control input,

and (A,B,C) are matrices defined via first-principles modeling or
subspace system identification.

The residual vector ε(t) � s(t) − ŝ(t) quantifies deviations
between actual sensor measurements s(t) and predicted signals.

FIGURE 3
Digital twin interface for the dilution tank system, integrating process visualization, real-time sensor data, simulation overlays, and parameter
control modules.
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An anomaly score is computed using a fault-sensitive norm, as
described in Equation 16.

‖ε t( )‖F �

����������������∑n
i�1

si t( ) − ŝi t( )
σ i

( )2

√√
(16)

To improve sensitivity under varying conditions, an adaptive
anomaly threshold is employed, as described in Equation 17.

τanom t( ) � με t( ) + κ · σε t( ) (17)

where με(t) and σε(t) are computed using a sliding window of
size w, and κ is a tunable sensitivity coefficient. An alert is triggered
when ‖ε(t)‖F > τanom(t) for a sustained interval.

The fault diagnosis stage classifies the anomaly by projecting the
residual into a fault signature space using a mapping matrixM, such
as described in Equation 18.

z t( ) � Mε t( ) (18)

The resulting vector z(t) is compared with known failure
patterns to infer the most probable fault mode f* via
probabilistic inference, as described in Equation 19.

f* � argmax
f∈F

P f | z t( )( ) (19)

This probabilistic model combines expert-encoded failure
modes with classification trees trained on historical
residual patterns.

Once a fault is identified, the digital twin initiates a maintenance
scheduling module formulated as a constrained optimization
problem. For each asset i, let Si be the scheduled maintenance
time, and Ci(Si) the total cost including delay impact and labor, as
described in Equation 20.

min
S

∑m
i�1

Ci Si( ) subject to Si ∈ tmin
i , tmax

i[ ] (20)

The cost function, Equation 21, incorporates risk-
aware penalties:

Ci Si( ) � αi ·Di Si( ) + βi · Li Si( ) (21)

where Di(Si) quantifies risk due to delayed intervention, and
Li(Si) models the cost of execution at Si, with αi, βi as asset-specific
weighting factors.

To prioritize interventions under limited resources, a criticality
index Ri is calculated for each machine, as described in Equation 22.

Ri � ρi · Pfail
i + γi · Cimpact

i (22)

where Pfail
i is the fault probability derived from residual

trends, and Cimpact
i represents the operational risk associated

with asset failure. The parameters ρi and γi are normalized
coefficients reflecting the operational strategy. This integrated
framework enables the digital twin to function as a proactive
agent, continuously assessing degradation, simulating fault
propagation, and triggering optimized, risk-aware maintenance
operations. The architecture ensures high equipment availability,
cost-efficiency, and alignment with the plant’s operational
constraints.

3.7 Evaluation of results and feedback

The evaluation framework for the digital twin implementation
integrates quantitative performance metrics with qualitative
feedback to assess system effectiveness, user acceptance, and
operational improvements. This dual approach ensures that both
objective process enhancements and subjective user experiences are
systematically captured and analyzed. To ensure that user feedback
is based on meaningful operational experience, the digital twin was
deployed in its active phase for a minimum period of 4 weeks before
survey administration. This interval allowed plant personnel to
interact with the system across varied scenarios, ensuring that
qualitative responses reflected informed judgments.

From a quantitative perspective, a set of key performance
indicators (KPIs) is defined before system deployment. These
indicators are monitored over two operational phases: baseline
(pre-deployment) and digital twin-enhanced (post-deployment).
Let K(0)

i and K(1)
i denote the values of KPI i in the baseline and

digital twin phases, respectively. The normalized improvement
index Δi is computed according to Equation 23.

Δi � K 1( )
i −K 0( )

i

K 0( )
i

× 100 (23)

Four primary KPIs are selected based on domain relevance:

• Cycle Time (Tc): Measures average time per unit produced,
Equation 24.

Tc � Ttotal

Nunits
(24)

• Throughput Rate Percentage (TRP): Assesses operational
efficiency relative to the system’s theoretical capacity,
Equation 25.

TRP � Nunits

Cmax
( ) × 100 (25)

• Failure Rate (FR): Evaluates equipment reliability by
computing failure frequency, Equation 26.

FR � Nfail

Hop
(26)

• Conformance Rate (Cp): Reflects product quality by
comparing inspected units to those within specification,
Equation 27.

Cp � Nconf

Ninsp
( ) × 100 (27)

A paired-sample statistical hypothesis test (e.g., Wilcoxon signed-
rank test or t-test, depending on the distribution’s normality) is
performed for each KPI to assess the significance of the observed
changes. The null hypothesis H0: “Δi � 0” is tested against the
alternative H1: “Δi ≠ 0”, using a significance level α � 0.05.

Complementarily, qualitative data is collected through
structured interviews, Likert-scale surveys, and field observations
involving plant operators, technicians, and supervisory personnel.
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Questions address usability, perceived accuracy of the simulations,
responsiveness of the system, and its contribution to decision-
making and task execution.

The qualitative responses are encoded and analyzed via thematic
coding and sentiment quantification. A satisfaction index Sj is
defined for participant j as described in Equation 28.

Sj � 1
nq

∑nq
q�1

Rjq (28)

where Rjq is the response score to question q, normalized in the
range [0,1], and nq is the number of survey items. The aggregate system
acceptance score Savg is computed acrossm respondents, as described in
Equation 29.

Savg � 1
m

∑m
j�1

Sj (29)

A value of Savg > 0.75 is considered a strong indicator of user
satisfaction and readiness for adoption.

Finally, a comparative analysis is conducted between actual
operational data streams and simulated outputs generated by the
digital twin. Let yreal(t) be the measured output vector and ysim(t)
the corresponding simulation output. The model accuracy is evaluated
via the normalized root mean square error (NRMSE), as described in
Equation 30.

NRMSE �
��������������������
1
T∑T

t�1 yreal t( ) − ysim t( )( )2√
max yreal( ) −min yreal( ) (30)

This metric provides insight into the fidelity of the digital
representation and supports iterative calibration.

The joint analysis of Δi, Savg, and NRMSE forms the basis of the
system validation. This continuous evaluation loop feeds back into
the configuration and optimization stages, allowing the digital twin
to evolve dynamically in response to both empirical performance
and stakeholder input (Gürdür Broo and Schooling, 2023).

4 Results

The deployment of the digital twin within the metalworking
facility was carried out following the multi-layered methodology
previously described. This included the integration of calibrated
IoT sensor networks, low-latency communication protocols
(MQTT/OPC UA), simulation-validation pipelines, and
predictive maintenance logic. These components ensured
accurate and real-time mirroring of the physical environment
in the virtual model.

The system was fully embedded into the plant’s operational
workflow, interfacing with supervisory control, process scheduling,
and maintenance routines. Through this integration, the digital twin
transitioned from a passive simulation tool to an active cyber-physical
agent capable of anomaly detection, process optimization, and
feedback-based control.

4.1 Operational performance evaluation

The operational impact of the digital twin was evaluated using a
longitudinal dataset spanning 12 months, divided into a baseline
phase (months 1–6) and a post-implementation phase (months
7–12). This temporal segmentation enables a robust comparative
analysis before and after, under equivalent operational conditions.

Operational data were extracted from synchronized sources,
including machine-level IoT sensors, process logs, and supervisory
control and data acquisition (SCADA) reports. The variables
analyzed include average cycle time per unit, system efficiency
rate, and hourly productivity. The data acquisition frequency and
format remained consistent across both periods to ensure
methodological validity. Table 2 summarizes the observed
changes in key performance indicators. The integration of the
digital twin is correlated with improvements in all measured
metrics, including a 20% reduction in average cycle time, a
13.33% increase in efficiency, and a 20% gain in productivity rate.

To statistically validate these differences, an Analysis of
Variance (ANOVA) was performed on grouped monthly values,
confirming that the differences in all metrics between the two phases
are significant at α � 0.05. To ensure comparability, the analysis was
restricted to product families with consistent process flows, and only
production days with standard shift configurations and staffing
levels were considered. The workload volume, line layout, and
scheduling policies remained unchanged during the observation
period. Where minor variations existed (e.g., batch mix), the
regression analysis controlled for these factors by including fixed
effects for product type and time-of-month indicators. Additionally,
independent samples t-tests confirmed that the post-
implementation means for cycle time, efficiency, and productivity
are statistically distinct from the pre-implementation phase
(p-values < 0.01 in all cases).

A linear regression model was used to evaluate the degree of
association between the presence of the digital twin and each
operational metric, adjusting for seasonal effects and production
shifts. Time-series decomposition also revealed inflection points
corresponding to the first whole month of digital twin integration,
reinforcing causal alignment between implementation and
performance improvements.

Figure 4 illustrates the evolution in system faults as a
representative indicator of reliability. The chart presents the
monthly fault counts before and after implementation,
highlighting a marked reduction in fault occurrences. This aligns
with the predictions derived from the predictive maintenance and
anomaly detection modules.

4.2 Product quality analysis

During the pre-implementation phase, baseline metrics were
established using existing quality assurance records, customer
service evaluations, and financial audits. Metrics included
rejection rate, compliance with specifications, response time to
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quality issues, customer satisfaction index, and quality-related
operational costs.

Following the deployment of the digital twin, the same
indicators were systematically tracked, now enhanced by the
system’s real-time analytical capabilities. The digital twin’s
integration enabled continuous monitoring of quality parameters,

root cause analysis via simulation, and predictive modeling to
anticipate deviations from quality standards.

Table 3 summarizes the comparative evolution of quality-
related metrics. Notably, the rejection rate decreased by 60%,
while compliance with specifications improved by 7.78%,
indicating a measurable increase in process precision.

TABLE 2 Comparison of the impact of the digital twin on key operational metrics.

Metrics Before implementation After implementation Change (%)

Cycle Time (y) 10 8 −20%

Efficiency (%) 75 85 13.33%

Productivity (units/hour) 50 60 20%

FIGURE 4
Comparative performance charts pre and post implementation of the digital twin.

TABLE 3 Improvements in quality and customer satisfaction after implementation of the digital twin.

Metrics Before implementation After implementation Change (%)

Rejection Rate (%) 5% 2% −60%

Compliance with Specifications (%) 90% 97% 7.78%

Defect Response Time (hours) 48 24 −50%

Customer Satisfaction (score from 1 to 10) 7 8.5 21.43%

Cost of Quality (% of revenue) 15% 10% −33.33%
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Response time to quality issues was reduced by 50%, reflecting
increased operational responsiveness. Customer satisfaction
scores rose from 7.0 to 8.5 (+21.43%), and quality-related
costs decreased from 15% to 10% of revenue, suggesting better
resource allocation and a decline in rework or waste.

Customer perception was also evaluated through a targeted
satisfaction survey, administered post-implementation to a
representative sample of clients across multiple industry
sectors. The survey captured both quantitative ratings and
open-text feedback on aspects such as product consistency,
support experience, and delivery compliance. To ensure
attribution of changes to the digital twin implementation, the
survey was conducted under the same customer service protocols,
pricing conditions, and delivery schedules as before, with the
digital twin being the only operational enhancement during the
survey window.

Table 4 reports the numerical outcomes of this customer
perception assessment. The average satisfaction score increased
from 7.0 to 8.5, and the perceived quality score rose from 7.2 to
8.7, yielding an improvement of 20.83%. Moreover, the likelihood of
customers recommending the company increased from 70% to 85%,
indicating a substantial enhancement in brand trust and product
value perception.

To complement the quantitative evaluation, qualitative feedback
was analyzed using natural language processing techniques. Figure 5
shows a word cloud generated from customer comments, visually
representing the frequency of key terms mentioned. The survey

covered dimensions such as product durability, service
responsiveness, and process reliability.

To collect representative data, the survey was distributed to
several clients, spanning different market segments and geographies.
The questions were formulated to capture both quantitative
assessments, such as numerical scores on satisfaction scales, and
qualitative responses that offered insights into the customer’s
perception in their own words. Once the surveys were completed,
qualitative responses were compiled and analyzed using natural
language processing techniques.

The resulting word cloud displays the most frequently
mentioned terms, with word sizes proportional to their frequency

TABLE 4 Comparison of satisfaction and perceived quality before and after the implementation of the digital twin.

Metrics Before implementation After implementation Change (%)

Overall Satisfaction (1–10) 7 8.5 21.43%

Perceived Product Quality (1–10) 7.2 8.7 20.83%

Likelihood to Recommend (%) 70% 85% 21.43%

FIGURE 5
Visualizing customer perception: Keywords in post-implementation feedback.

TABLE 5 Top terms in qualitative feedback and associated sentiment
polarity.

Term Frequency Sentiment

quality 42 Positive

support 35 Positive

efficiency 33 Positive

reliable 27 Positive

delays 8 Negative

bugs 5 Negative

customer 18 Neutral
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of occurrence in survey responses. Words such as “quality,”
“efficiency,” and “support” appear prominently, indicating a
positive perception in these areas. However, some neutral or
negative terms, such as “delays” or “software bugs,” highlight
areas where the customer experience may require further attention.

Table 5 presents the most frequently occurring terms along
with their assigned sentiment polarity (positive, neutral, or
negative), determined through a lexicon-based sentiment
model. This analysis provides a quantitative perspective on the
qualitative feedback, confirming the dominance of positive
perceptions while also highlighting specific points of concern
mentioned by customers.

The prominence of these terms suggests that customers
experienced tangible improvements in core quality and support
dimensions, in line with the quantitative gains reported. In contrast,
less frequent mentions of terms like “delays” and “bugs” were
classified as negative, representing residual areas for optimization,
particularly in software stability and logistics performance.
Interestingly, the term “customer” was often associated with
neutral sentiment, typically appearing in generic statements or
suggestions rather than evoking strong emotional valence.

4.3 Impact on machine maintenance and
reliability

The implementation of the digital twin introduced a predictive
maintenance and failure analysis approach, substantially enhancing
equipment operation and maintenance practices. Before
deployment, the machinery park recorded an annual downtime
of 500 h and a failure frequency of 30 events per year. These figures
reflected the limitations of reactive and scheduled maintenance
strategies, which lacked the real-time adaptability necessary to
respond to equipment conditions.

Upon integration, the digital twin enabled a continuous
monitoring infrastructure that supported predictive modeling
based on sensor data, operational logs, and simulation feedback.
This shift toward predictive maintenance resulted in measurable
operational improvements, as summarized in Table 6. Annual
downtime decreased by 40%, from 500 to 300 h, indicating a
significant gain in equipment availability and overall plant
efficiency. The failure frequency also declined by 40%, resulting
in a reduction from 30 to 18 breakdowns annually. Additionally,
equipment reliability, defined as the proportion of operational time
without failure, improved from 85% to 95%, which corresponds to
an 11.76% increase.

To reinforce the validity of these findings, control charts (X-bar
and R) were used to monitor the stability of process variability and
verify that the observed improvements were not due to random

fluctuations. In parallel, the Mean Time Between Failures (MTBF)
was calculated to assess operational consistency:

MTBFbefore � 8760 h − 500 h
30

≈ 276.7 h,

MTBFafter � 8760 h − 300 h
18

≈ 470 h

This 69.9% increase inMTBF confirms a substantial extension of
failure-free operation time, consistent with the reliability
improvements measured.

Case 1: Welding Section Failure Reduction In the welding area, a
high incidence of process failures had previously been detected,
including cold joints, porosity, and inadequate penetration. These
issues contributed to a rejection rate of approximately 20 defective
welds per month, creating significant inefficiencies in production
and quality assurance. After the deployment of the digital twin,
which enabled root cause analysis through thermographic and
sensor data, corrective actions were simulated and validated
before application. These included adjustments to heat input and
arc travel speed. Toward the end of the evaluation period, failures in
this section were reduced to an average of five per month,
demonstrating a 75% improvement in process reliability.

Case 2: Milling Process Optimization In milling operations,
dimensional deviations and surface roughness inconsistencies led
to a high rejection rate of manufactured parts. Analysis by the digital
twin identified irregularities in feed rates and spindle speeds. Virtual
simulations revealed that lowering the pass depth and increasing
cooling flow would reduce tool vibration and wear. After applying
these modifications, the rejection rate of milled components
decreased by 40%. Quality audits confirmed improved geometric
accuracy and surface consistency, supporting the effectiveness of
data-driven process refinement.

Case 3: Injection Molding Material Efficiency For plastic
components, excessive material waste during injection molding
was a persistent issue. The digital twin modeled the molding
process using real-time temperature and pressure data, detecting
suboptimal mold fill dynamics. After adjusting thermal profiles and
injection pressure curves based on digital simulations, the plant
observed a 30% reduction in material waste without compromising
part integrity. This not only improved sustainability indicators but
also contributed to operational cost reductions.

4.4 Process optimization and
resource efficiency

The evaluation process was based on analyzing operational and
production data collected before and after implementing the digital
twin to determine improvements in several key areas. The analysis

TABLE 6 Improvements in downtime, failure frequency, and machine reliability after digital twin implementation.

Metrics Before implementation After implementation Change (%)

Downtime (hours/year) 500 300 −40%

Failure Frequency (failures/year) 30 18 −40%

Machine Reliability (%) 85 95 +11.76%
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began by quantifying material waste, usage, and energy
consumption before digital twin integration, as presented in
Table 7. This data established a baseline to compare post-
implementation changes. The introduction of the digital twin
enabled detailed monitoring and analysis of processes, resulting
in significant optimization. For example, the 30% reduction in
material waste and 8.24% improvement in material use efficiency

were achieved through precision in production processes and
minimization of surpluses and defects.

Additional metrics evaluated were production line efficiency and
the OEE. These metrics reflect the teams’ performance and the
processes’ overall efficiency. A 12.5% increase in production line
efficiency and a 13.33% improvement in OEE were observed,
evidencing that the digital system allowed for more effective
production management, reduced downtime, and improved
productivity process quality.

4.5 Feedback from operators and
technicians

For the Operator and Technician Comments section, a word
cloud was generated based on the qualitative comments collected
from digital twin users. Figure 6 presents a word cloud that includes
a variety of terms representing user perceptions, including positive,
negative, and neutral. The qualitative evaluation of the feedback
from operators and technicians was carried out through surveys and
interviews, focused on the simulations’ usability and precision and
their impact on operational decision-making. Participants provided
ratings and feedback on their experience with the digital twin,
covering aspects such as ease of use, precision of data and

TABLE 7 Improvements in production efficiency and sustainability after the implementation of the digital twin.

Metrics Before implementation After implementation Change (%)

Material Waste (tons/year) 100 70 −30%

Use of Materials (efficiency %) 85% 92% 8.24%

Energy Consumption (MWh/year) 5000 4500 −10%

Production Line Efficiency (%) 80% 90% 12.50%

OEE (%) 75% 85% 13.33%

FIGURE 6
Operator and technician feedback word cloud: key insights into digital twin implementation.

TABLE 8 Most common terms in operator and technician feedback and
sentiment classification.

Term Frequency Sentiment

intuitive 12 Positive

efficient 10 Positive

accurate 10 Positive

reliable 8 Positive

cumbersome 4 Negative

confusing 3 Negative

complex 3 Neutral

supportive 2 Positive

demanding 2 Negative
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simulations, and effectiveness of the system in supporting
operational decisions.

Table 8 presents a structured summary of the most frequently
mentioned terms in operator and technician feedback, categorized
by sentiment. The predominance of terms such as “intuitive,”
“efficient,” and “accurate” reflects a generally positive perception
of the system’s usability and technical performance, particularly in
terms of data clarity and interface responsiveness. These findings are
consistent with high usability scores collected through structured
Likert-scale items in the survey.

Conversely, terms such as “cumbersome,” “confusing,” and
“demanding” were reported with lower frequency but still reveal
specific friction points. These comments were primarily related to
advanced simulation controls and the interpretation of real-time
analytics, indicating a learning curve in more complex operational
contexts. Interestingly, the presence of both positive and negative
sentiment terms indicates a realistic and balanced user perspective,
reinforcing the credibility of the evaluation.

4.6 Return on investment analysis

When evaluating the return on investment (ROI) for digital twin
implementation in a budget-constrained environment, an analysis
was performed to capture the associated costs and benefits realized.
This included a detailed breakdown of implementation and
operation expenses and a quantitative evaluation of the savings
and improvements generated by the technology (Madubuike et al.,
2022). The process began with identifying and quantifying digital
twin implementation costs, including software and hardware
acquisition and integration services, adjusting to $250,000 to
reflect the limited purchasing power of factories in the study
region. An annual operating cost of $25,000 was estimated,
covering maintenance, upgrades, and system operations.

At the same time, the tangible benefits of the digital twin for the
organization were analyzed. This analysis revealed that predictive
maintenance and process optimization resulted in significant
savings and improvements in production efficiency. Annual
maintenance savings were estimated at $50,000, while reduced
downtime and improved production efficiency contributed
$75,000 and $100,000 annually, respectively. Additionally,

implementing the digital system led to a reduction in waste,
valued at $25,000 annually. Adding the benefits over 5 years and
subtracting the total costs accumulated over the same period
calculated a return on investment of 233%. This result was
obtained using the standard return on investment formula, which
divides the difference between benefits and total costs by the total
costs and then multiplies by 100 to get a percentage, as presented
in Table 9.

It is essential to note that the ROI estimation is specifically
tailored to the case of a chemical treatment and surface finishing line
for flat steel products, operating under a discrete production model.
The analysis considers only direct costs and quantifiable benefits,
while excluding indirect expenses such as temporary production
halts during system deployment, testing efforts, and internal labor
reallocation. These factors were either minimal due to the modular
integration strategy or absorbed within existing operational buffers.
As such, the ROI figure provides a simplified economic approximation
that enables benchmarking rather than a comprehensive financial
projection. Caution is advised when extending these results to
plants with higher operational interdependencies or continuous
production constraints.

4.7 Discussion of case studies or
specific examples

Implementing the digital twin has transformed several industries,
solving complex operational problems, improving process efficiency,
and supporting strategic decisions. For example, inefficiencies in the
automotive component manufacturing sector were identified on the
assembly line, resulting in delays and high operating costs (Kenett and
Bortman, 2022). Introducing a digital twin made it possible to simulate
and optimize the assembly process, reducing cycle time by 25%, from
4 to 3 h per unit, and increasing production by 20%, raising monthly
output from 1,000 to 1,200 units. This translated into annual operating
cost savings of $500,000.

In the oil refining space, a refinery faced high energy costs and
excessive emissions. The digital twin was used to perform a detailed
analysis of energy consumption and emissions, facilitating
operational adjustments that improved energy efficiency by 15%
and reduced emissions by 18%, decreasing energy costs from

TABLE 9 Cost-benefit analysis of digital twin implementation: Value and return on investment.

Concept Type Value (USD) Grades

MImplementation Cost Cost 250,000 Includes software, hardware, and integration services

Annual Operating Cost Cost 25,000 Maintenance, updates, and operations

Maintenance Savings Benefit 50,000/year Cost reduction due to maintenance efficiency

Reduction of Downtime Benefit 75,000/year Less downtime, more production

Improvement in Production Efficiency Benefit 100,000/year Increase in production and sales

Waste Reduction Benefit 25,000/year Less waste of materials and resources

Total Costs (5 years) Cost-benefit 375,000 250,000 implementation +5 years of operation at 25,000

Total Benefits (5 years) Cost 1,250,000 The sum of all benefits over 5 years

ROI Cost 233% (Benefits - Costs)/Costs * 100
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10 million to 8.5 million dollars annually and guaranteeing
compliance with environmental regulations. In the railway
transport sector, a company experienced frequent breakdowns in
its fleet, resulting in high corrective maintenance costs (Pang et al.,
2021). By implementing a digital twin for monitoring and predictive
analysis, it was possible to reduce breakdowns by 30%, reduce
maintenance costs by 40%, and increase fleet availability by 15%,
thus improving reliability and customer satisfaction.

Another case study illustrating the transformative influence of
digital twins is the optimization of dilution tanks used in chemical
treatment processes. These tanks presented inefficiencies related to
flow patterns and mixing quality. By simulating various operating
scenarios, the digital twin identified stagnation zones and
suboptimal blade configurations. Adjustments were proposed to
the paddle geometry and deflector placement, which enhanced
homogenization and improved energy efficiency.

Table 10 presents the quantified impact of these modifications.
A 20% reduction in the time required to achieve product
homogeneity was observed, accompanied by a 19.4% decrease in
energy consumption. Additionally, the frequency of unscheduled
shutdowns associated with the tank system decreased by 35%,
highlighting the reliability gains and operational continuity
enabled by the digital twin.

This case study demonstrates how the practical and focused
application of the digital twin can yield significant improvements in
the operation and design of industrial equipment. Not only were
tangible financial savings achieved, but operational efficiency was
also improved, thus demonstrating the value of digital twins as
innovation and optimization tools in Industry 4.0.

5 Discussion

The integration of digital twin technology in the chemical
treatment subsystem analyzed in this study has proven to be a
transformative element in improving operational performance,
aligning process behavior with the objectives of sustainability,
precision, and efficiency. The digital twin enabled accurate
diagnosis and correction of inefficiencies related to flow
dynamics, mixing quality, and energy consumption. These
outcomes are consistent with prior research that underscores the
utility of digital twins for simulating, analyzing, and refining
complex systems to minimize waste and elevate product quality
(Ferko et al., 2022).

All improvements reported in this section derive specifically
from the case implemented by the authors, which involved the
design, deployment, and validation of a digital twin in a real-world
industrial environment. Among the most notable results, a 20%
reduction in homogenization time and a 19.4% decrease in energy

consumption per batch were achieved. These improvements
confirm the system’s ability to model complex behaviors and
optimize operational parameters through virtual experimentation
and predictive adjustments.

The relevance of this case is further reinforced by the 35%
reduction in unscheduled shutdown frequency, which indicates
increased reliability and improved planning capabilities. These
findings align with the literature that supports the strategic use of
digital twins to enhance resilience and system availability in
dynamic production environments (Sacks et al., 2020; Javaid
et al., 2023). Financially, the deployment demonstrated strong
viability. The ROI analysis, strictly based on data from the
implemented case, showed a return of 233% over 5 years. This
reinforces the potential for digital twins to deliver value not only
through technical improvements but also through long-term
economic gains (Croatti et al., 2020).

Beyond the empirical data, the discussion highlights the digital
twin’s role as an enabler of adaptive innovation. The ability to
simulate process conditions in real-time and test hypothetical
changes enables dynamic reconfiguration of operations to
respond to evolving production demands (Singh et al., 2022; Li
et al., 2021). This adaptive capacity not only improves quality and
efficiency but also fosters greater resilience and agility in competitive
and volatile industrial contexts.

Ultimately, the adoption of the digital twin reflects a
paradigmatic shift in operational management. It transitions
decision-making from a reactive to a predictive approach,
grounded in accurate digital representations of physical systems.
This approach enables early identification of anomalies, virtual
validation of corrective actions, and optimized resource
management (van Dinter et al., 2022), representing a significant
advancement in industrial engineering and process optimization.

6 Conclusion

This study presents compelling evidence that implementing a
digital twin in a real-world metalworking subsystem yields
substantial operational improvements and strategic advantages.
By enabling real-time simulation, data-driven parameter
adjustments, and predictive diagnostics, the proposed digital twin
contributed to a 30% reduction in material waste and a 40%
improvement in the rejection rate of machined components.
These outcomes confirm the system’s ability to dynamically
refine production parameters, reduce variability, and maintain
consistent product quality at scale.

The return on investment analysis, which reported a 233% ROI
over 5 years, reinforces the digital twin’s ability even in resource-
constrained environments. These results underscore not only the

TABLE 10 Impact of digital twin deployment on dilution tank system.

Metric Before implementation After implementation Change (%)

Time to Homogenization (min) 50 40 −20%

Energy Consumption (kWh/batch) 360 290 −19.4%

Unscheduled Shutdown Frequency (events/year) 20 13 −35%
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technological but also the financial justification for integrating
digital twins into modern industrial operations. In addition,
feedback from operators and technicians revealed a high degree
of usability and perceived value, reinforcing the system’s alignment
with on-site operational needs.

Beyond performance metrics, the digital twin catalyzed strategic
transformation, shifting management practices from reactive
troubleshooting to proactive and adaptive optimization. The
system enabled the convergence of physical processes with virtual
experimentation, fostering a more agile and intelligent production
environment aligned with Industry 4.0 principles.

Future efforts will aim to expand the digital twin’s scope of
integration with AI-based diagnostic and control modules, allowing
for continuous learning and autonomous adaptation. Moreover,
research will explore the interoperability of multiple digital twins
within interconnected production ecosystems, addressing challenges
such as coordination, emergent behavior, and systemic resilience. These
directions will support the scalability and long-term sustainability of
digital twin technologies in diverse industrial settings.
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