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To address the issues of low detection accuracy and poor real-time performance
in existing methods for detecting minor abnormalities such as cracks, oil leaks,
and loose bolts in rotating industrial machinery under dynamic vibration
conditions, this paper proposes a lightweight detection system based on
YOLOv8 (You Only Look Once version 8) with adaptive feature enhancement.
First, this paper employs a temporal motion compensation module based on
optical flow to estimate and correct the vibration displacement between adjacent
frames. Second, this paper designs a lightweight YOLOv8 network, using
depthwise separable convolution instead of traditional convolution. Finally,
this paper employs a weighted fusion strategy to improve the accuracy of
small object detection in complex backgrounds. This model is deployed on
the Jetson AGX Xavier edge computing platform, utilizing FP16 (half-precision
floating-point) / INT8 (8-bit integer) quantization and asynchronous pipeline
inference to ensure real-time processing capabilities on edge devices. The
experimental results show that the method achieves an average detection
accuracy of 97.8% (mAP@0.5) and 86.6% (mAP@0.5:0.95), with an average
inference speed of 29.5 FPS (frames per second). This demonstrates that the
method has reached industrial-grade performance in terms of detection
accuracy, real-time performance, and deployment stability, making it highly
valuable for practical applications.
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1 Introduction

Industrial rotating machinery is the core power unit in key sectors such as energy,
manufacturing, and transportation. Its operating status is directly related to production
safety and efficiency (Zhang P. et al., 2025; Das et al., 2023; Gawde et al., 2023). With the
development of intelligent manufacturing and the Industrial Internet, vision-based anomaly
detection technology has gradually become an important means of equipment status
monitoring (Jiang, 2022; Cui et al., 2023; Tang et al., 2023). However, complex
industrial environments and the high-speed rotation of equipment often cause motion
blur in captured images. Existing models struggle to balance accuracy, real-time
performance, and the detection of minor anomalies like cracks and oil leaks. This limits
the practical development of intelligent operation andmaintenance systems (Li et al., 2024a;
Ren et al., 2022; Li et al., 2024b). Therefore, it is urgent to build a high-precision, low-
latency, and highly robust visual inspection system to achieve real-time and accurate
recognition of abnormal conditions in rotating machinery. For abnormal monitoring of
industrial equipment, Yadav et al. (2025) introduced an extended adaptive neural fuzzy
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inference system method to perform fault diagnosis on rotating
mechanical components using infrared thermal imaging; Xiao et al.
(2025) proposed a multi-level information fusion fault diagnosis
method, which has positive significance for improving multi-sensor
data fusion fault diagnosis; Singh and Desai (2023) constructed a
defect detection framework of machine vision and convolutional
neural network, which can effectively perform image classification
and achieve 100% accuracy for good category components; Suo et al.
(2022) developed a nuclear fuel rod notch defect detection system
based on machine vision to achieve efficient online detection of
nuclear fuel rod notches. Natili et al. (2021) used industrial SCADA
(Supervisory Control and Data Acquisition) and vibration data to
monitor wind turbine bearings at multiple scales. These studies have
promoted the development of rotating machinery condition
monitoring from different dimensions, but most of them rely on
dedicated sensors or offline detection methods, making it difficult to
achieve low-cost, all-weather visual real-time monitoring. Visual
methods are more flexible.

Among vision-based methods, Yang Y. et al. (2024)
improved YOLOv5 for better crack boundary localization.
Zhao et al. (2024) built a lightweight model using
ShuffleNetv2 (ShuffleNet Version 2) and a coordinate
attention mechanism to enhance detection accuracy. Li et al.
(2021) proposed an accurate screw detection method that
combines Faster R-CNN (Faster Region-based Convolutional
Neural Network) and an innovative rotation edge similarity
algorithm, achieving a small positioning deviation of
0.094 mm and a classification accuracy of 99.64%. Zhu et al.
(2023) proposed a Transformer-based model with excellent
feature extraction capabilities that can capture features
directly from raw vibration signals; Khan et al. (2023)
integrated YOLOv3 and MobileNet single-shot detectors to
achieve faster image detection and more accurate positioning.
Some of the models in the above methods have large
computational loads, making it difficult to implement real-
time inference on edge devices. They still have obvious
shortcomings in terms of accuracy, speed, or robustness,
especially in dynamic vibration scenarios, where it is difficult
to balance small target detection capabilities with real-time
inference efficiency.

This paper proposes a real-time detection method for abnormal
conditions in rotating machinery, achieving collaborative
optimization of high precision and low latency through an
integrated “perception-compensation-detection-inference”
architecture. First, this paper uses industrial cameras to capture
video streams and introduces a temporal motion compensation
module based on the Farneback optical flow method to achieve
pixel-level inter-frame alignment and ensure the input quality of
subsequent detection. Second, this paper builds a lightweight
network based on YOLOv8, using depthwise separable
convolution to reconstruct the backbone, compressing the
number of channels to reduce the amount of computation, and
embedding an adaptive spatial-channel attention module in the
Neck layer to enhance the feature response to minor anomalies. The
multi-scale fusion structure of PANet (Path Aggregation Network)
was further optimized, and a weighted fusion mechanism with
learnable weights was introduced. Finally, the model’s FP16/
INT8 quantization and asynchronous pipeline inference were

implemented on the Jetson AGX Xavier platform through the
TensorRT (Tensor Runtime) engine. The system’s overall crash
rate per frame (CRF) was less than 10−6 during continuous 24-h
operation. This method innovatively proposes a collaborative
mechanism combining optical flow compensation and ASCA
(Adaptive Spatial-Channel Attention). It also employs a
lightweight network and a learnable weighted fusion strategy to
significantly reduce model complexity while maintaining accuracy,
enabling efficient, stable, and deployable visual anomaly detection in
industrial scenarios.

2 Algorithm design

2.1 Overall system architecture design

This paper constructs an integrated end-to-end visual inspection
architecture combining perception, compensation, detection, and
reasoning. This architecture uses industrial cameras for visual
perception, introduces an optical flow temporal motion
compensation module to suppress inter-frame jitter, and employs
a lightweight YOLOv8 network combined with the ASCA attention
mechanism for anomaly feature extraction. Finally, the TensorRT
engine enables low-latency reasoning on the Jetson AGX Xavier
platform, forming a closed-loop detection system, as shown
in Figure 1.

Figure 1 illustrates the complete technical process of the
YOLOv8-based real-time detection system for rotating machinery
abnormalities: A high-resolution industrial camera captures RGB
(Red, Green, Blue) video streams, which are fed into the temporal
motion compensation module. Inter-frame displacement is
estimated using optical flow, and back-mapping and bilateral
filtering are used for alignment and denoising, resulting in a
spatially consistent and clear image sequence as output. The
model is then fed into a lightweight YOLOv8 network, with an
ASCA module embedded within the Neck structure. A dual-branch
spatial and channel-wise attention mechanism is used to enhance
feature responses to subtle anomalies, while a weighted fusion
strategy is introduced to optimize multi-scale feature transfer.
The detection model uses an asynchronous inference pipeline on
the Jetson AGX Xavier edge platform, and the final detection results
are uploaded to the host computer monitoring interface, establishing
an industrial-grade intelligent monitoring system with a closed-loop
“perception-compensation-detection-response” process.

2.2 Construction of the temporal motion
compensation module

This paper constructs a temporal motion compensation module
and uses dense optical flow to estimate and correct the pixel-level
motion field between consecutive frames (Pookkuttath et al., 2023;
Li et al., 2023). Based on the principles of the Farneback dense
optical flow algorithm and the real-time requirements of industrial
edge computing, this paper sets the following key parameters to
balance estimation accuracy and computational efficiency: the
Gaussian pyramid scaling ratio is 0.5, and a total of five pyramid
layers are constructed to achieve coarse-to-fine motion estimation
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and effectively handle large displacements; the spatial search
window size is set to 15 × 15 pixels, which is sufficient to
capture local motion patterns while avoiding excessive
computational effort; the number of optical flow field
optimization iterations is set to 3, which can ensure convergence
while controlling latency; the neighborhood size of the polynomial
expansion is set to 5 to fit local image brightness changes; and the
standard deviation of the Gaussian kernel used in the fitting process
is set to 1.2 to ensure sub-pixel estimation accuracy. Assume that the
three consecutive frames in the input video stream are It-1, It, It+1,
respectively. The middle frame It is used as the reference frame, and
motion estimation is performed on the previous and next frames It-1
and It+1 based on Farneback optical flow. For the pixel p � (x, y),
the image intensity function I(p) in its neighborhood can be
expressed as:

I p( ) � pTAp + bTp + c (1)

In Equation 1, A is a quadratic coefficient matrix, b is a linear
term vector, and c is a constant term. Let the displacement field of
the previous and next frames relative to the reference frame be
ut(p) � (ux(p), uy(p)), and the solution is based on the grayscale
invariance assumption and the multi-scale pyramid strategy. At the

scale layer l, the optical flow field ul satisfies the following
minimization objective function:

E ul( ) � ∑
p∈Ω

w p( ) It+Δt p + ul p( )( )-It p( )[ ]
2 + λ‖ ∇ul p( )‖2 (2)

In Equation 2, Ω is the local spatial window, w(p) is the
Gaussian weighted kernel, and λ is the regularization coefficient
used to suppress the violent fluctuations of the optical flow field.
The dense displacement fields ut-1→t and ut+1→t are obtained by
solving the Euler-Lagrange equation through iterative
optimization. The reverse mapping of the previous frame It-1
and the next frame It+1 is performed to achieve image
alignment, as shown in Equation 3:

It-1
′ p( ) � It-1 p + ut-1→t p( )( ), It+1′ p( ) � It+1 p − ut+1→t p( )( ) (3)

The interpolation process uses bilinear interpolation to ensure
sub-pixel accuracy:

I p + u( ) � ∑
i,j∈ 0,1{ }

1-i′( ) 1-j′( )I x + i, y + j( ) (4)

In Equation 4, i′ � ux-�ux� and j′ � uy-�uy�. To suppress the
edge blur and noise accumulation introduced in the optical flow

FIGURE 1
Overall architecture.
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interpolation process, the aligned image I′t is post-processed by
applying bilateral filtering:

Ifiltered p( ) � 1
W

∑
q∈Ω

Gs ‖ p-q ‖( )Gr I′ p( )-I′ q( )
∣∣∣∣

∣∣∣∣( ) I′ q( ) (5)

In Equation 5, Gs is the spatial Gaussian kernel, Gr is the
grayscale similarity Gaussian kernel, and W is the normalization
coefficient. The three aligned output images It-1′ , It, It+1′ serve as the
input of the subsequent detection network to ensure that feature
extraction is performed on a spatially consistent image sequence.

2.3 Lightweight YOLOv8 network
reconstruction

This paper constructs a lightweight YOLOv8 network based on
YOLOv8, achieving efficient model reconstruction through
structural reparameterization and channel compression strategies
(Liu et al., 2025; Liu et al., 2024). Taking the standard convolution
layer as an example, the calculation process of the input feature map
X ∈ RH×W×Cin and the standard 3 × 3 convolution kernel
K ∈ R3×3×Cin×Cout can be expressed as Equation 6:

Yi,j,k � ∑
3

a�1
∑
3

b�1
∑
Cin

c�1
Xi+a-2,j+b-2,c ·Ka,b,c,k + bk, k � 1, . . . , Cout (6)

We replace all standard convolutions in the backbone (except
the first layer) with depthwise separable convolutions. This splits the
operation into two steps: a depthwise convolution (spatial filtering
per channel) and a pointwise convolution (1x1 channel fusion) (Qin
et al., 2025; Zhang et al., 2025a). First, the depthwise convolution
performs spatial filtering on each input channel independently:

X c( )
dw � X c( )*K c( )

dw , c � 1, . . . , Cin (7)

In Equation 7, K(c)
dw ∈ R3×3 is the 3 × 3 depth kernel of the cth

channel, and * represents the two-dimensional convolution
operation. Point-by-point convolution achieves information
fusion between channels through 1 × 1 convolution:

Y � Xdw*Kpw , Kpw ∈ R1×1×Cin×Cout (8)

In Equation 8, the first convolution layer retains the standard
3 × 3 convolution to maintain sensitivity to the underlying texture
and edge features. In the Neck and Head modules, the number of
output channels of each layer is further compressed uniformly. Let
the original number of channels be C, and after compression, it is
shown in Equation 9:

C′ � ⌊C · 1 − α( )⌋, α � 0.15 (9)

The compressed feature fusion layer and detection head were
redesigned based on reduced channels to ensure consistent overall
network width. The standard bottleneck blocks in all C2f modules
were replaced with lightweight versions. Their internal
convolutional layers also adopted a depthwise separable structure,
and cross-layer connections remained unchanged to preserve
gradient paths. The resulting lightweight YOLOv8 network, while
maintaining the native YOLOv8 detection head structure and loss
function, achieves efficient reconstruction of backbone feature

extraction, providing lightweight and effective feature input for
subsequent attention enhancement and multi-scale fusion.

2.4 Adaptive spatial-channel attention
module embedding

This paper embeds an adaptive spatial-channel attention
module after each C2f module in the Neck layer of a lightweight
YOLOv8 network to achieve dual-dimensional joint feature
enhancement (Ding et al., 2024; An and Shi, 2024). Given an
input feature map F ∈ RH×W×C, the ASCA module generates a
joint weight map using parallel spatial and channel attention
branches. The spatial attention branch first performs max
pooling and average pooling on the input feature map along the
channel dimension, generating two spatial descriptors, as shown in
Equation 10:

Mmax x, y( ) � max
c∈C

F x, y, c( ), Aavg x, y( ) � 1
C
∑
C

c�1
F x, y, c( ) (10)

After concatenating Mmax(x, y) and Aavg(x, y) along the
channel, they are input into a 7 × 7 depthwise separable
convolution layer to capture large receptive field spatial context
information. Let the convolution kernel be Ks ∈ R7×7×1, and the
output is activated by the Sigmoid function to generate the spatial
attention weight map ws ∈ [0, 1]H×W×1:

Ws � σ Convdw7 × 7 Concat Mmax, Aavg( )( )( ) (11)

In Equation 11, σ (·) is a Sigmoid function. The channel
attention branch adopts an improved Squeeze-and-Excitation
(SE) structure. First, global average pooling is performed on the
input F to compress the spatial dimension, as shown in Equation 12:

zc � 1
H ·W∑

H

i�1
∑
W

j�1
F i, j, c( ), c � 1, . . . ,C (12)

Then a nonlinear transformation is performed through a two-
layer fully connected network, introducing a dimensionality
reduction ratio, as shown in Equations 13, 14:

q � ReLU W1z( ),W1 ∈ RC/r×C (13)
e � σ W2q( ),W2 ∈ RC×C/r (14)

In Equation 15, the output channel weight vector forms the
channel attention matrix Wc ∈ R1×1×C. The ASCA module adopts
an element-by-element multiplication fusion strategy to jointly
apply spatial and channel weights to the original feature map:

Fout x, y, c( ) � F x, y, c( ) ·Ws x, y, 1( ) ·Wc 1, 1, c( ) (15)
that is:

Fout � F ⊗ Ws ⊙ Wc( ) (16)

In Equation 16, ⊗ represents element-by-element multiplication,
and ⊙ is the outer product expansion operation to ensure the
alignment of weight dimensions. This structure achieves a
synergistic enhancement of spatial positioning sensitivity and
channel semantic selectivity without introducing additional
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branches or complex gating mechanisms, strengthening the
response intensity to low-contrast, small-area abnormal areas,
and providing more discriminative feature representations for
subsequent multi-scale fusion and target detection. The ASCA
module structure is shown in Figure 2.

Figure 2 illustrates the ASCA module’s structural flow: The
input feature map is fed simultaneously into the spatial attention
branch and the channel attention branch. The spatial branch
extracts spatial saliency information through channel-wise
max and average pooling. After concatenation, it undergoes a
7 × 7 depthwise separable convolution to capture the large
receptive field context. Sigmoid activation is then used to
generate spatial attention weights. The channel branch performs
global average pooling on the input, passes it through a two-layer
fully connected network and ReLU (Rectified Linear Unit)

activation, and outputs channel attention weights. Finally, the
spatial weights and channel weights are combined and applied
to the original feature map through element-by-element
multiplication, achieving dual enhancement of spatial
localization and channel semantics. This significantly improves
the model’s responsiveness to low-contrast and small-area
anomalies, providing a more discriminative feature
representation for subsequent detection heads.

2.5 Multi-scale feature fusion optimization

This paper optimizes the original multi-scale feature fusion
structure PANet of YOLOv8 and proposes a weighted feature
fusion mechanism guided by learnable weights (Xu et al., 2024;

FIGURE 2
ASCA module architecture.
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Yang L. et al., 2024). This mechanism is deployed at the key fusion
nodes of the top-down (up-sampling) and bottom-up (down-
sampling) paths, replacing traditional splicing or simple addition
operations to achieve efficient alignment and fusion of high-level
semantic information and low-level detail features. Assume that in a
certain fusion layer, the semantic feature map Fhigh ∈ RH×W×C from
the high layer is up-sampled and fused with the feature map
Flow ∈ RH×W×C from the backbone of the same layer. Traditional
PANet uses channel splicing, as shown in Equation 17:

Fcat � Concat Fhigh, Flow( ) ∈ RH×W×2C (17)

Then the convolution layer is used to reduce the dimension. This
paper proposes a weighted fusion strategy and defines the fusion
output as:

Fout � α · Fhigh + β · Flow (18)

In Equation 18, α and β are learnable scalar weights, which are
automatically optimized through back propagation to ensure that
the network adaptively adjusts the contribution ratio of high- and
low-level features according to the input content. To enhance
stability, a normalization constraint is introduced, and the
Softmax normalization form is adopted:

~a � ew1

ew1 + ew2
(19)

~b � ew2

ew1 + ew2
(20)

In Equations 19, 20, are trainable parameters, initialized to 0 to
ensure balanced fusion in the initial training phase. The fusion
process can be rewritten as:

Fout � ~α · U Fhigh( ) + ~β · Flow (21)

In Equation 21, U (·) represents the upsampling operation. This
weighted fusion module is embedded in each P3, P4, and P5 fusion
node of the Neck part. Since small anomalies have higher spatial
resolution in low-level features but are semantically ambiguous, this
mechanism automatically enlarges the ~β when small targets exist
through training, thereby enhancing the ability to retain details. In
downsampling fusion, the downsampled feature Fdown ∈ RH/2×W/2×C

is fused with the same-layer feature Fmid, and the weighted strategy
is also adopted, as shown in Equation 22:

Fout � γ · Fdown + δ · Fmid, ~γ, ~δ � Softmax w3, w4( ) (22)

All weight parameters wi are embedded in the network as
independent learnable variables and participate in end-to-end
backpropagation optimization. The gradient of the loss function
can be expressed as Equation 23:

∂L
∂wi

� ∂L
∂Fout

· ∂Fout

∂~α
· ∂~α
∂wi

(23)

During the inference phase, all weights are solidified, eliminating
the need for additional computational overhead. This fusion
mechanism improves the semantic consistency and spatial
sensitivity of multi-scale features without significantly increasing
the number of parameters.

2.6 Model quantization and edge
deployment

This paper deploys the optimized lightweight YOLOv8 model
on the Jetson AGX Xavier edge computing platform, employing a
collaborative model compression and hardware acceleration
strategy to achieve efficient migration from the training
domain to the inference domain (Elhanashi et al., 2024; Ling
et al., 2023). First, export the weight model trained in PyTorch to
the ONNX (Open Neural Network Exchange) intermediate
representation format, preserving the complete computational
graph structure. Using the NVIDIA TensorRT engine, the
model is quantized using a mixture of FP16 (half-precision
floating point) and INT8 (8-bit integer). The TensorRT engine
deeply optimizes the computational graph, including layer fusion
(combining convolution, batch normalization, and activation
functions into a single computing unit), memory reuse, and
kernel automatic tuning, to maximize the computing power of
edge devices. During the deployment phase, the model is loaded
into the GPU (Graphics Processing Unit) memory of the Jetson
AGX Xavier, and the CUDA (Compute Unified Device
Architecture) stream mechanism is enabled to implement
multi-frame asynchronous processing (Bai et al., 2024; Zhang
et al., 2025b). The final system uses the GStreamer framework to
achieve video stream acquisition and result visualization. The
detection results are encapsulated in JSON (JavaScript Object
Notation) format, including bounding box coordinates, category
labels, and confidence levels. They are uploaded to the industrial
monitoring center in real time via UDP (User Datagram
Protocol), completing end-to-end closed-loop deployment
(Balogh and Vidács, 2022; Cobanoglu et al., 2025).

3 Experiment and verification

3.1 Experimental design

The experimental platform was equipped with an NVIDIA
Jetson AGX Xavier running Ubuntu 20.04, and image acquisition
was performed using an industrial camera. The experimental data
was derived from field operating data of rotating machinery and
included RGB images of the rotating machinery under four
operating conditions: rated load, overload, high temperature,
and high vibration. Each anomaly category (The Kappa values
of cracks, oil leaks, loose bolts, damaged protective covers, and
broken belts are 0.87, 0.85, 0.91, 0.90, and 0.88, respectively.) was
independently annotated by three engineers with bounding
boxes. If there are significant differences in the annotation
results of the three engineers for the same image, an expert
review meeting will be initiated. The three engineers will
jointly review the image, discuss and compare the device
history and reference standard samples, and ultimately reach a
consensus and determine a unique “gold standard” label. The
dataset was split into training, validation, and test sets with an 8:
1:1 ratio. The dataset is not open to the public. The experimental
setup is shown in Table 1.
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3.2 Detection accuracy: mAP@
0.5 evaluation

As shown in Table 2, on the test set, a confidence score threshold
of 0.5 is used to evaluate the precision and recall of each anomaly
category. According to Table 3, calculating AP@0.5 (Average
Precision @0.5) and summarizing mAP@0.5 (mean Average
Precision @0.5) to comprehensively measure detection accuracy

under different conditions. AP is calculated using the 11-point
interpolation method, as shown in Equation 24:

AP � 1
11

∑
r∈ 0,0.1,...,1{ }

max
~r≥ r

P ~r( ) (24)

Figure 3 shows the AP@0.5 performance of Faster R-CNN,
YOLOv8s, and proposed method for five types of rotating
machinery anomalies under four industrial operating conditions
(rated load, overload, high temperature, and strong vibration). The
overall mAP@0.5 for each condition is also plotted. The horizontal
axis represents the anomaly category, and the vertical axis represents
the average detection accuracy. The paper’s method significantly
outperforms all operating conditions and categories, achieving an
average mAP@0.5 of 97.8% and 98.5% under rated load, far
exceeding Faster R-CNN’s 91.7% and YOLOv8s’s 95.7%. Under
strong vibration conditions, proposed method maintains a mAP@
0.5 of 97.1%, while Faster R-CNN drops to 85.0% and YOLOv8s to
91.7%. For minor anomalies such as “cracks” and “oil leaks,” the
paper’s method achieves 97.3% and 97.9% AP@0.5, respectively,
under high-temperature conditions, while Faster R-CNN’s AP drops
to 87.6% and 85.4%, demonstrating greater environmental
adaptability.

This performance advantage comes from our method’s multi-
layer optimization. The temporal motion compensation module
suppresses vibration-induced blur. This allows feature extraction
on aligned frames, reducing positioning drift. The ASCA
attention mechanism uses joint spatial and channel weighting
to enhance the response of weak features when contrast decreases
due to high temperatures. The lightweight YOLOv8 network,
combined with a weighted feature fusion strategy, reduces
computational overhead while maintaining high sensitivity to
small objects, thus avoiding sudden drops in accuracy caused by
resource scheduling fluctuations. Faster R-CNN is sensitive to
noise due to its two-stage structure, and YOLOv8s lacks a
dedicated enhancement mechanism, resulting in significant
performance degradation under complex working conditions.

TABLE 1 Experimental setup.

Item Description

Hardware
Platform

NVIDIA Jetson AGX Xavier

Camera Model Basler acA 2000-50gc

Operating System Ubuntu 20.04

Image Resolution 1920 × 1080

Operating
Conditions

Nominal Load, Overload, Misalignment, High Temperature,
Dusty Environment

Anomaly Classes Crack, Oil Leak, Bolt Loosening, Guard Damage, Belt
Breakage

Data Split Training: (80%); Validation: (10%); Test: (10%)

TABLE 2 Precision and recall rates for each category.

Anomaly class Precision Recall

Crack 97.00% 97.60%

Oil Leak 97.60% 97.80%

Bolt Loosening 96.80% 97.10%

Guard Damage 98.30% 98.50%

Belt Breakage 98.20% 98.40%

TABLE 3 Ablation experiment.

Experiment
ID

Model
Configuration

Temporal motion
compensation

ASCA
attention

Weighted
fusion

Depthwise
separable

convolution

mAP@
0.5 (%)

mAP@
0.5:

0.95 (%)

(a) Baseline — — — — 93.7 80

(b) Baseline + Motion
Compensation

√ — — — 94.8 81.6

(c) Baseline + ASCA
Attention

— √ — — 94.5 81.3

(d) Baseline + Weighted
Fusion

— — √ — 94.1 80.9

(e) Baseline + Depthwise
Separable Convolution

— — — √ 93.9 80.5

(f) (b) + (c) √ √ — — 95.3 82.2

(g) (f) + (d) √ √ √ — 96.7 83.9

(h) (e) + (c) + (d) — √ √ √ 95.9 82.7

(i) Proposed Method √ √ √ √ 97.8 87
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This method, through a closed-loop “perception-compensation-
enhancement” design, achieves stable detection accuracy in
dynamic industrial environments, demonstrating strong
engineering practicality.

3.3 High accuracy and robustness analysis

Using the mAP@0.5:0.95 metric, the paper calculated and
averaged the AP at 10 levels with an IoU (Intersection over
Union) threshold ranging from 0.5 to 0.95 and a step size of
0.05 to comprehensively evaluate the model’s overall performance
and robustness under high localization accuracy requirements, as
shown in Equation 25:

mAP s( ) � 1
10

∑
10

i�1
AP@0.5 + 0.05i (25)

Figure 4 shows the AP@0.5:0.9 performance of Faster R-CNN,
YOLOv8s, and proposed method for five types of rotating
machinery anomalies under four operating conditions. The
vertical axis represents the anomaly category, and the horizontal
axis represents the detection accuracy. The paper’s method
significantly outperforms all categories and working conditions.
In “crack” detection, the AP reaches 87.6% under rated load
conditions, far exceeding Faster R-CNN’s 78.1%. For the low-
contrast anomaly “oil leakage”, the paper’s method maintains
84.2% under strong vibration conditions, while Faster R-CNN’s
performance drops to 67.5%. The overall mAP@0.5:0.95 is 88.5%
under rated load, and even under strong vibration conditions, it still
reaches 84.5%. Faster R-CNN achieves 77.7% and 69.6%
respectively, and YOLOv8s achieves 83.4% and 76.7%

respectively, showing significant performance degradation. The
average mAP@0.5:0.95 of the paper’s method reaches 86.6%,
indicating that the paper’s method is more robust to minor
defects in complex industrial environments.

This advantage lies in the refined collaborative optimization
achieved by this method between model structure and industrial
scenario adaptability. By deeply integrating a lightweight
YOLOv8 network backbone with the ASCA module, this
approach enables the network to focus on local texture variations
and structural anomalies, rather than relying solely on geometric
outlines. This allows the network to activate responses to minor
defects even under fuzzy conditions. Furthermore, a weighted
feature fusion mechanism assigns higher propagation weights to
underlying high-resolution features, achieving enhanced spatial
fidelity while maintaining semantic richness, effectively alleviating
the feature sparsity problem caused by downsampling. Hybrid FP16/
INT8 quantization maintains accuracy stability at the edge,
preventing low-precision inference from further weakening its
sensitivity to minor anomalies. Faster R-CNN is limited by its
region proposal mechanism’s preference for large objects, and
YOLOv8s struggles to maintain high discrimination for small
objects under resource-constrained conditions without targeted
optimization. This method, through end-to-end reconstruction
tailored to industrial defect characteristics, achieves consistently
reliable detection output in complex and dynamic environments.

3.4 Inference speed measurement

The model was run continuously for 10 min on a Jetson AGX
Xavier, recording the end-to-end processing time (Ttotal) for
1800 frames. This includes the entire process from image

FIGURE 3
Comparison of mAP@0.5 of different methods under four industrial conditions. (a) Rated Load. (b) Overload. (c) High Temperature. (d)
Strong Vibration.
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acquisition, preprocessing, inference, and post-processing. Inference
speed is calculated as Equation 26:

FPS � 1800
Ttotal

(26)

Figure 5 shows the inference speed performance of Faster
R-CNN, YOLOv8s, and proposed method under four typical
industrial conditions in the form of a heat map. The horizontal
axis represents the four conditions (rated load, overload, high
temperature, and strong vibration), and the vertical axis represents
the detection method. The color depth reflects the frame rate. As
can be seen from the figure, proposed method exhibits the brightest

color under all conditions, with an inference speed that remains
stable between 28.6 and 30.4 FPS, averaging 29.5 FPS. This is
significantly higher than the comparison methods, achieving a
stable output of over 30 FPS under rated load, demonstrating its
potential to meet the needs of industrial real-time detection. Faster
R-CNN achieved only 13.1–14.6 FPS, while YOLOv8s achieved
21.1–24.3 FPS. Under strong vibration and high temperature
conditions, the proposed method achieved frame rates of
28.6 and 29.2 FPS, significantly higher than Faster R-CNN’s
13.1 and 13.5 FPS, and YOLOv8s’s 21.1 and 21.8 FPS,
respectively. This demonstrates greater environmental
adaptability and resource scheduling stability, validating its

FIGURE 4
Comparison of mAP@0.5:0.95 of different methods under four industrial conditions. (a) Rated Load. (b) Overload. (c) High Temperature. (d)
Strong Vibration.

FIGURE 5
Comparison of end-to-end inference speed of different methods under four industrial conditions.
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feasibility in achieving real-time response in complex
field scenarios.

This inference efficiency advantage stems from the system-level
collaborative optimization implemented in this paper, from model
structure to deployment strategy. The lightweight YOLOv8 network
significantly reduces computational density through depthwise
separable convolutions, reducing redundant parameters while
maintaining feature extraction capabilities, significantly reducing
the amount of computation per frame. FP16/INT8 hybrid
quantization fully leverages the Tensor Core hardware
acceleration capabilities of the Jetson AGX Xavier to improve
floating-point throughput. The TensorRT engine performs layer
fusion, memory reuse, and automatic kernel tuning on the
computational graph, maximizing the computing power of edge
devices. The lightweight design reduces the risk of thermal throttling
under high temperatures and loads, preventing sudden frame rate
drops due to CPU (Central Processing Unit)/GPU throttling, and
maintaining stable output under dynamic conditions. Faster R-CNN
is difficult to compress due to its two-stage redundant computations,
and YOLOv8, while fast, is still limited by its unoptimized inference
path. This approach, through a three-pronged strategy of
“lightweighting + quantization + engine acceleration,” achieves
efficient and reliable operation of edge intelligence in harsh
industrial environments.

3.5 Model lightweight evaluation

The total number of model parameters was calculated using
PyTorch’s torchsummary tool, as shown in Equation 27:

Params � ∑
l∈ Conv,Linear{ }

kh · kw · Cl
in · Cl

out( ) (27)

Floating Point Operations (FLOPs) are calculated using an
approximate MACs × 2 (two FLOPs per multiplication and
addition), and only the convolutional and fully connected layers
in the forward propagation are counted, as shown in Equation 28:

FLOPSl � 2 ·Hl ·Wl · Cl
in · Cl

out · kh · kw (28)

The total FLOPs is the sum of all layers, which evaluates the
computational complexity of the model.

Figure 6 compares the model complexity of Faster R-CNN,
YOLOv8s, and proposed method, focusing on two key lightweight
metrics: parameter count (params) and floating-point operations
(FLOPs). As can be seen, Faster R-CNN has a high parameter count
of 41.2 million and 158.6 gigabytes of FLOPs, resulting in significant
computational overhead and difficulty meeting the resource
constraints of edge devices. While YOLOv8s has been optimized
to 3.2 million parameters and 8.7 gigabytes of FLOPs, demonstrating
some potential for deployment, it still outperforms proposed
method. The lightweight YOLOv8 network architecture proposed
in this paper, incorporating the ASCAmodule and a weighted fusion
strategy, further reduces the number of parameters to 2.26M and the
number of FLOPs to 6.2G, representing reductions of 29.4% and
28.7%, respectively, compared to YOLOv8s. This significantly
reduces the computational burden while maintaining high
detection accuracy, demonstrating its enhanced lightweight

advantages and providing the structural foundation for real-time
inference on edge platforms such as the Jetson AGX Xavier.

This improvement results from a refined network structure and
module optimization. We replace standard convolutions with
depthwise separable ones, which greatly reduces parameter
redundancy. This allows the backbone network to maintain its
receptive field while significantly reducing computational density.
The ASCA attention module is designed as a lightweight structure,
effectively enhancing the representation of key features and avoiding
the computational explosion caused by traditional attention
mechanisms. The weighted feature fusion mechanism optimizes
information flow through learnable weight scalars without adding
learnable parameters, balancing performance and efficiency. Faster
R-CNN incurs a significant amount of redundant computation due
to its region proposal network and RoI (Region of Interest) pooling.
While compact, YOLOv8s still retains many standard convolutional
modules and lacks specialized compression for industrial edge
scenarios. This method achieves high-precision anomaly
detection with minimal resource consumption through a
collaborative design approach combining streamlined architecture
and enhanced functionality, truly enabling efficient and sustainable
intelligent monitoring of rotating machinery.

3.6 MBR testing

Two test subsets were constructed: one containing clear images
(no blur), and the other simulating motion blur using a Gaussian
convolution kernel. MBR is defined as Equation 29:

MBR � mAPclear

mAPblur
(29)

Figure 7 shows the mAP@0.5 performance of Faster R-CNN,
YOLOv8s, and the paper’s method for clear and blurred images
under four typical working conditions. The Motion Blur Robustness
(MBR) ratio is also plotted for each working condition. The
horizontal axis represents the four working conditions (rated
load, overload, high temperature, and strong vibration), and the

FIGURE 6
Comparison of model complexity of different methods: number
of parameters and floating-point operations.
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vertical axis represents detection accuracy. As shown in the figure,
Faster R-CNN’s mAP@0.5 dropped from 85.0% to 65.4% under
strong vibration, with an MBR of 1.30, indicating significant
performance degradation. YOLOv8s performed even better, but
still saw a drop from 90.3% to 75.6% (MBR = 1.19). However,
proposedmethod only saw a drop from 95.5% to 92.0% under strong
vibration, with an MBR of 1.04, significantly lower than the other
methods. Across all conditions, proposed method’s MBR remained
consistently between 1.03 and 1.05, and the blurred image curve was
nearly parallel to the clear image, demonstrating its strong ability to
suppress vibration-induced motion blur.

This exceptional robustness stems from the proposed system’s
deep optimization of modeling the consistency of spatiotemporal
features. The optical flow temporal motion compensation module
introduced in this paper not only achieves pixel-level alignment
between frames but also reconstructs stable feature inputs through
dense displacement fields, effectively mitigating feature drift and
blurring caused by vibration. The ASCA attention mechanism uses
spatial weights to focus on structural changes in abnormal regions
rather than edge strength, enabling the network to activate key
features such as cracks and oil leaks even in low-resolution
conditions. The weighted feature fusion strategy enhances the
cross-layer transfer of underlying details, preventing the
suppression of small object features caused by blur in deep
networks. Faster R-CNN relies on fixed anchor frames and is
sensitive to clear contours. YOLOv8s, while fast, lacks a dynamic
compensation mechanism. This proposed method, through a
closed-loop design of “motion alignment - feature enhancement -
fusion optimization,”maintains high-fidelity detection performance
in complex industrial vibration environments, truly meeting the
stability requirements for real-time monitoring of abnormal
conditions in rotating machinery.

3.7 Deployment stability evaluation

The system runs continuously for 24 h at the industrial site,
automatically recording its status every 5 min. Failures are defined
as: process crash, memory overflow, or missed detection of three or
more consecutive frames (manually verified). The total number of
detected frames and the number of failures are used to evaluate the
long-term operational reliability of the system, as shown in
Equation 30.

CRF � Nfail

Ntotal
(30)

Figure 8 compares the CRFs of Faster R-CNN, YOLOv8s, and
proposed method under four typical industrial operating conditions.
The horizontal axis represents the four operating conditions (rated
load, overload, high temperature, and strong vibration), and the
vertical axis represents the CRF. Faster R-CNN’s CRF increases from
1.16 × 10-6 under rated load to 6.56 × 10-6 under strong vibration,
indicating poor stability in complex environments. YOLOv8s
performs better, with its CRF increasing from 7.72 × 10−7 to
2.31 × 10-6, but still showing a clear upward trend. The proposed
method achieves a CRF as low as 3.86 × 10−7 under rated load and
overload conditions, and only rises to 7.72 × 10−7 and 1.16 × 10-6

under high temperature and strong vibration conditions,
respectively. These results consistently remain significantly lower
than those of other methods, demonstrating the strongest
adaptability to these conditions. These results demonstrate the
high reliability of proposed method during continuous operation,
meeting the core requirement for long-term stable detection in
industrial settings.

This exceptional stability comes from our system-level robust
design. The lightweight network reduces computational overhead,

FIGURE 7
MBR. (a) Faster R-CNN. (b) YOLOv8s. (c) Proposed method.
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preventing thermal throttling and memory overflow on edge
devices. The TensorRT engine’s efficient memory management
mechanism reduces the risk of resource leakage, ensuring long-
term process operation without crashes. Temporal motion
compensation effectively suppresses continuous missed detections
caused by vibration and avoids the accumulation of misjudgments
caused by inter-frame misalignment. Model quantization and
asynchronous inference mechanisms balance computing resource
scheduling, preventing I/O (Input/Output) blocking or inference
backlogs. The system’s asynchronous CUDA stream mechanism
enables parallel pipeline execution of data acquisition,
preprocessing, and model inference, effectively avoiding task
blocking and resource idling, further improving operational
smoothness and stability. Faster R-CNN, due to its high resource

consumption, easily reaches hardware limits, and YOLOv8s, while
lightweight, lacks dynamic adaptation mechanisms. However, this
method, through its “lightweight structure + edge optimization +
motion robustness” design, achieves extreme failure rate reduction
in complex industrial environments, truly achieving deployable and
reliable intelligent monitoring.

3.8 Fine-grained performance analysis:
precision, recall, PR curve, and
confusion matrix

To further evaluate the fine-grained detection performance of
our proposed method for various rotating machinery anomalies, this

FIGURE 8
Deployment stability evaluation.

FIGURE 9
PR curve.
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section provides additional analysis of the precision, recall, PR curve,
and confusion matrix for each category.

3.8.1 Precision and recall analysis
Proposed method achieved precision and recall exceeding 96.5%

for all five anomaly categories, with an average of 97.6%. The “broken
belt” and “broken guard” categories achieved the highest precision,
reaching 98.2% and 98.3%, respectively, and the highest recall,
reaching 98.4% and 98.5%, respectively, demonstrating that the
model is able to effectively capture these potentially serious faults.

3.8.2 PR curve
As shown in Figure 9, the PR curves of all categories are close to

the upper right corner of the coordinate system, and the area under
the curve (AUC) is close to 1, indicating that the model has excellent
comprehensive performance for all types of anomalies.

3.8.3 Confusion matrix
As can be seen from the Figure 10, the diagonal elements of the

confusion matrix (that is, the number of correctly classified samples)
are much higher than the off-diagonal elements, indicating that the
model has a very strong classification ability.

3.9 Ablation experiment

To deeply analyze the independent contributions of each
proposed module to the final performance, this paper designed a
systematic ablation experiment. Using YOLOv8s as the base model,
the experiment gradually added the key components proposed in
this paper to evaluate their impact on detection accuracy.

This study validated the effectiveness and synergistic gains of the
core components of the proposed “perception-compensation-
detection-inference” integrated architecture through systematic
ablation experiments. Using the standard YOLOv8s with a
mAP@0.5 of 93.7% and a mAP@0.5:0.95 of 80% as a baseline,
the experiments showed that introducing temporal motion
compensation, ASCA attention, weighted fusion, or depthwise
separable convolutions individually all improved performance.

Motion compensation increased mAP@0.5%–94.8%,
demonstrating its key role in suppressing dynamic vibration blur.
ASCA attention and weighted fusion increased mAP@0.5%–94.5%
and 94.1%, respectively, validating their ability to enhance subtle
anomaly features. Finally, lightweight depthwise separable
convolutions increased mAP@0.5%–93.9%, laying the foundation
for subsequent deployment. Further combined experiments showed
that combining motion compensation with ASCA attention
achieved a mAP@0.5 of 95.3%. When the first three enhanced
modules were integrated into the standard network, mAP@
0.5 and mAP@0.5:0.95 jumped to 96.7% and 83.9%, respectively,
fully demonstrating the synergistic effect between the modules.
Ultimately, when all innovative modules were fully integrated
into this method, system performance reached its peak, with
mAP@0.5 and mAP@0.5:0.95 reaching 97.8% and 87%,
respectively. This not only far exceeded the baseline but also
significantly outperformed all intermediate combinations,
strongly demonstrating the comprehensive superiority of this
integrated design in solving the problem of real-time, high-
precision anomaly detection in complex operating conditions of
rotating machinery.

4 Conclusion

This paper proposes a real-time detection method for abnormal
conditions in rotating machinery, building an integrated “perception-
compensation-detection-inference” architecture. It uses optical flow
to compensate for temporal motion and suppress vibration-induced
motion blur. A lightweight YOLOv8 network is designed, embedding
an adaptive spatial-channel attention module to enhance the response
to subtle anomaly features. Learnable weighted fusion is then used to
optimize multi-scale feature transfer. This approach, combined with
the TensorRT engine, implements FP16/INT8 quantization and
asynchronous inference on the Jetson AGX Xavier platform.
Experiments show that this method achieves an average mAP@
0.5 of 97.8% and a mAP@0.5:0.95 of 86.6% under complex
operating conditions, with a stable inference speed of
28.6–30.4 FPS. This approach combines high precision, strong

FIGURE 10
Confusion matrix.

Frontiers in Mechanical Engineering frontiersin.org13

Chen et al. 10.3389/fmech.2025.1683572

mailto:Image of FMECH_fmech-2025-1683572_wc_f10|tif
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2025.1683572


robustness, and real-time performance, providing a reliable technical
solution for the intelligent operation and maintenance of industrial
rotating equipment.
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