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Introduction: In themedical and veterinary fields, understanding the significance of
physiological signals for assessing patient state, diagnosis, and treatment outcomes is
paramount. There are, in the domain of machine learning (ML), very many methods
capable of performing automatic feature selection. We here explore how such
methods can be applied to select features from electroencephalogram (EEG) signals
to allow the prediction of depth of anesthesia (DoA) in pigs receiving propofol.

Methods: We evaluated numerous ML methods and observed that these algorithms
canbeclassified intogroupsbasedon similarities in selected feature sets explainableby
themathematical basesbehind those approaches.We limit ourdiscussion to thegroup
ofmethods that have at their core the computationof variances, such as Pearson’s and
Spearman’s correlations, principal component analysis (PCA), and ReliefF algorithms.

Results:Our analysis has shown that from an extensive list of time and frequency
domain EEG features, the best predictors of DoAwere spectral power (SP), and its
density ratio applied specifically to high-frequency intervals (beta and gamma
ranges), as well as burst suppression ratio, spectral edge frequency and entropy
applied to the whole spectrum of frequencies.

Discussion:We have also observed that data resolution plays an essential role not
only in feature importance but may impact prediction stability. Therefore, when
selecting the SP features, one might prioritize SP features over spectral bands
larger than 1 Hz, especially for frequencies above 14 Hz.
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1 Introduction

In the medical and veterinary fields, understanding the significance of physiological signals
for assessing patient state, diagnosis, and treatment outcomes is paramount. A notable example
is the use of electroencephalogram (EEG) signals to estimate depth of anesthesia (DoA). In this
context, transcutaneous electrodes are positioned on the patient’s forehead to capture EEG
activity emanating from the frontal cortex. Analysis of the raw EEG signal involves computing
specific features, such as the burst suppression ratio (BSR), spectral powers (SP), or spectral edge
frequency (SEF), which are believed to correlate with DoA (Purdon et al., 2015; Lee et al., 2019;
Connor, 2022; Hwang et al., 2023). Subsequently, clinical practice often employs an index that
amalgamates these parameters into a single value, quantifying DoA from 0 (deep anesthesia) to
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100 (full wakefulness). Various commercial devices, including the
Bispectral (BIS) (Johansen, 2006), Narcotrend (NI) (Kreuer and
Wilhelm, 2006), or Patient State (PSI) indices (Drover and Ortega,
2006), have been developed for this purpose, although the details of the
features used in their computation are proprietary and have not been
entirely published.

However, there is a recognized need to enhance the specificity of
these indexes (Lobo and Schraag, 2011; Fahy and Chau, 2018),
particularly considering their development primarily for specific
groups of human patients. Moreover, flexibility is required to
customize computed features and their relationships to patients’ or
animal species’ specificities. Machine learning (ML) and deep learning
(DL) strategies have been proposed to aid in this endeavor (Afshar
et al., 2021; Schmierer et al., 2024). Crucially, feature selection is an
initial step in model optimization and conservation of computational
resources. Identifying the most representative features for DoA
evaluation may also facilitate their separate display alongside the
index, aiding clinical interpretation.

Correlation analysis is commonly used to evaluate the prediction
performance of specific features. In the realm of ML and DL, there are
numerous methods for automatic feature selection. These include
filter methods, which assess feature relevance based on statistical
properties independent of the chosen training algorithm, and
embedded methods, which incorporate feature selection within the
training process. These methods can be further categorized as suitable
for classification and regression problems, whichmay be supervised or
unsupervised, all aiming to discern feature importance and the nature
of their relationship (e.g., linear, quadratic, logarithmic).

EEG-based DoA estimation, relying on features extracted from
EEG signals, is an inherently regressive problem with imperfect data
labeling, making precise quantitative reference to the DoA index
challenging. Therefore, the present study explores several algorithms
for feature selection in regression problems, including Pearson’s and
Spearman’s correlations, principal component analysis (PCA)
(Jolliffe and Cadima, 2016) as an example of an unsupervised
method, decision trees, particularly Random Forest Trees (RFT),
capable of capturing non-linear dependencies, L1 and L2 regularization
methods as classical embedded methods, a representative of recurrent
neural networks (RNNs) such as long short-term memory (LSTM)
networks (Hochreiter and Schmidhuber, 1997), and two filter methods:
ReliefF (Robnik-Šikonja and Kononenko, 2003) and Minimum
Redundancy Maximum Relevance (mRMR) (Long et al., 2005). The
main objective of the present study is to report the EEG features
estimated as best candidates from various methods, to be included in an
algorithm for evaluation of DoA in pigs under general anesthesia with
propofol alone. Although the results are specific for the data set of the
present study, this intends to improve understanding of EEG-derived
DoA monitoring and its methodologies.

2 Materials and methods

2.1 Data collection

The dataset used for algorithm evaluation is composed of EEG
signals collected on pigs undergoing propofol general anesthesia.
The EEG signals were collected in Mirra et al. (2022a) and Mirra
et al. (2024a) and re-analyzed retrospectively for the present

investigation. Details of data collection and anesthetic protocols
can be found in these studies. In brief, propofol was administered
intravenously in 18 otherwise non-medicated juvenile pigs (mean age
10 weeks, 28 kg body weight). A first group of five pigs was
anaesthetized on three independent occasions (at least 36 h wash-
out) and received the same treatment, resulting in 15 different
experiments. Under oxygen supplied via a face mask, propofol was
administered to induce general anesthesia with a first IV bolus
(4–5 mg/kg) followed by smaller doses (0.5–1 mg/kg) repeated
every 30–60 s, until successful endotracheal intubation. A
continuous propofol IV infusion was started at 20 mg/kg/h and
later increased every 10 minutes by 6 mg/kg/h together with an
additional IV bolus of 0.5 mg/kg. This was intended to produce a
nearly continuous increase in the propofol plasmatic concentration.
Once BSR reached a value of 10–30%, the propofol infusion was
interrupted and the pig was allowed to recover. On two occasions,
methylphenidate was administered during the recovery phase for the
purpose of another investigation (Mirra et al., 2024b), so data collected
after this time were excluded in these subjects. A second group of
15 pigs was treated similarly but only on one occasion while propofol
infusion was started at 10 mg/kg/h without bolus and then increased
by 10 mg/kg/h every 15 min. Oxygen supplementation was always
provided via a face mask. Endotracheal intubation was performed
when deemed appropriate by the anesthetist, and volume-controlled
mechanical ventilation was provided that targeted an end-tidal carbon
dioxide partial pressure (EtCO2) between 4.6 and 5.9 kPa (35 and
45 mmHg). The propofol infusion was stopped once BSR reached
80%, and the pig was allowed to recover. These drug delivery protocols
guaranteed that a large range of DoA was included in the analysis.

The dorsal part of the skull was prepared in the awake pigs and a
pediatric RD SedLine EEG-sensor (4 electrodes) was placed, as
described by Mirra et al. (2022a). Eight additional surface EEG
electrodes (Ambu®NeurolineTM 715; Ambu, Ballerup, Denmark)
were used. Four were positioned on the same sagittal line as the
sedline sensor (two just rostral to the caudal margin of the occipital
bone and two in the middle parietal region). The other electrodes were
positioned between the eyes (frontal) and 1 cm further rostral
(prefrontal). The signal collected from these electrodes was sent to
an amplifier (EEG100c, Biopac Systems Inc., California, United States)
and a data acquisition module (MP160, Biopac Systems Inc.,
California, United States—BIOPAC Systems Inc., 2023). If the
electrode impedance was too high or the signal judged inaccurate,
the data were excluded. A total of 31 independent datasets were
analyzed, three of which were completely excluded and others only
partially because of obviously corrupt EEG signals.

As a result, our dataset contains a total of 358 EEG time-series
with ~ 3 · 106 samples (with 200Hz sampling rate, ~3 h for each
experiment) representing values in the mV range corresponding to
the measured electric activity on the surface of the scalp. The Sedline
device also recorded the PSI value for each pig and anesthetic event,
providing one reference PSI signal for each event. For the present
investigation, the signals recorded at different cortex regions from
the same individual were integrated, as well as bilateral recordings.
Each EEG signal was considered unique and as potentially
contributing supplementary information to the system. Therefore,
the analysis is global at this stage and not specific for one electrode
placement. Therefore, our final dataset contains 358 EEG time-
series, each associated with one reference DoA index.
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2.2 Development of a ground-truth DoA
trend curve

In order to use supervised methods for feature evaluation, a
definition of a reference ground-truth signal indicating the genuine
DoA values is needed. It may create a paradox to base the reference
signal on EEG-derived features in order to select those features
correlating to the reference. A pharmacokinetic-pharmacodynamic
(PKPD) model was developed for the subjects of the study. Variability
in both PK and PD parameters was shown to be large for humans
(Eleveld et al., 2018) and is expected to be large for animals as well.
Therefore, individual parameters were obtained from a population
model including random effects. The output variable for DoA was
oriented by the individual PSI values (Mirra et al., 2022b).
Pharmacokinetic parameters were aligned to a previously published
model as initial parameters (Egan et al., 2003). Finally, for each subject,
an individualized DoA effect curve based on the history of propofol
delivery and PSI signal was used as reference method.

2.3 DoA relevant EEG features

EEG signal features used for the evaluation of anesthesia can be
generally classified into those computed in the temporal domain, such
as burst suppression ratio (BSR) and entropy, or the frequency
domain—for example, Fourier-transformed temporal signals—such
as spectral power (SP) density for the chosen frequency band and their
ratio (SPR), spectral edge frequency (SEF), and peak frequency (PF).

• BSR: a measure of the amount of time a patient’s brain has low
amplitude activity. The proportion of time spent in suppression
increases with the anesthetic dose. BSR provides values between
0% (no suppression) and 100% (full suppression).

• Entropy: provides an estimation of the complexity of EEG
signals. It has been observed that during the deeper phases of
anesthesia, entropy will be lower than in the wakened phase.
This paper evaluates the entropy over the EEG signal in the
temporal domain, albeit for different frequency bands after
band-pass-filtering the original temporal signal.

• SP density and SP density ratio (SPR): features allowing the
comparison of the SP density of different frequency bands of
the EEG signal and their ratio. One often sees in the literature a
classic division of frequency bands as Delta (δ) (0–4 Hz),
Theta (θ) (4–8 Hz), Alpha (α) (8–12 Hz), Beta (β) (12–30 Hz),
and Gamma (γ) (30–100 Hz) (Saby and Marshall, 2012). Since
there can be multiple combinations of ratios, including ratios
of band sums (Bustomi et al., 2017), these features populate
the EEG feature set. The original units of SP density are V2/Hz;
however, in the signal processing domain, it is often the dB
units that are used to express SP, which is 10 log10 of the
original value. Our study investigates SP features in both scales
and concludes that those in 10log10 have a higher correlation
with the DoA. Therefore, the results will be presented for these
values in 10log10 scale of the original values, and only the
median score for the non-log version will be indicated in the
figures, to show the actual difference.

• SEF: a frequency below which a defined percentage of the
signal’s power is located. Usually, 95% of power (SEF95), 90%

(SEF90), or 50%—median spectral frequency (MSF) —are
investigated to estimate DoA.

• PF: the location of the signal peak frequency—that is, the
frequency value at the maximal power in the spectrum. Since
the greatest signal power is located in a very low-frequency
band (below 1 Hz) to be able to capture the variability of the
PF, the resolution of Fourier transformation along the
frequency axis must be high. Here we use the resolution of
1/4 Hz.

Since the division into frequency bands is still a matter of scientific
debate, we have evaluated SP density first with a granularity of ~ 1 Hz,
as well as the full spectrum, from 0.5 Hz to 100 Hz (limited by the
sampling rate of 200 Hz, even though frequencies above 35 Hz are
usually considered non-essential). In addition, various frequency
bands follow the classic division of δ, θ, α, β, and γ. We have also
selected an additional band of 25–35 Hz, that we can call an “Eta (η)
band”, which includes parts of β and γ, that we indicate as β− and γ−.
After the first evaluation of results, we observed that frequencies
between 0.5 and 14 Hz correlate less with the reference signal than
frequencies between 14 and 35 Hz. Therefore, we have grouped those
two bands into two the new bands Φ and Ψ, respectively.
Consequently, we have also investigated the possibility of band
division only into larger groups that can be beneficial in terms of
computation, since it implies a reduced number of signal filtering,
with a possibility of lowering the filter order.

The complete list of evaluated features is present in each figure of
this paper. The mnemonics of each feature’s name follows the general
rule of first naming the feature type, such as SP, SPR, and Entropy, and
then the frequency band over which it was computed. The PF feature
was computed only over the full frequency band. Among the SPR
features, we have selected the ratio of SP density of the abovementioned
frequency bands vs. full SP density. Thus, SPR 0.5–4 Hz would mean
the ration of SP 0.5–4 Hz and 0.5–100 Hz.We also include classic SPRs
often mentioned in the literature, such as α/β (SPR ABR), δ/α (SPR
DAR), and (δ + θ)/(α + β) (SPR DTABR). As features of the temporal
domain, we have included BSR computed for the full spectrum and
entropy values for each of the above-mentioned frequency bands.

To verify the quality of feature evaluation, we have also added four
artificial signals: three sinusoidal signals of 1/5 Hz (baseline 1/5 Hz), 1/
25 Hz (baseline 1/25 Hz), 1/50 Hz (baseline 1/50 Hz), and a signal
composed of random values between 0 and 1 (baseline random). While
we know that these signals are not all correlated with the reference DoA
signal, sinusoidal signals carry similar information among them since
they present three different harmonics of the sinus signal.

2.4 Normalization of time-series

Time-series of the features and DoA will elicit a different range
of absolute values. To unify the results, two different normalization
methods were tested: Min-max and Z-normalization. Min-max
scaling is computed as follows:

Xnorm t( ) � X t( ) −min

max −min
,

where X(t) is one of the time-series, while min and max are the
minimum and maximum values found in the series, respectively.
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Such normalization results in data values of [0; 1] interval. The
Z-normalization is computed as follows:

Xnorm t( ) � X t( ) − μ

σ
,

where μ is the mean of all values in time-series X(t) and σ is the
standard deviation. Note that such a normalization does not
guarantee that all values of normalized time-series will belong to
the [-1; 1] interval. Moreover, since the values of the time-series in
our study may not have a particular distribution, it is not even
expected that at least ~ 68% of values in the normalized time-series
will be in [-1; 1] interval. In some cases, we noticed outliers with
norms much greater than 1, even after normalization. That is the
reason why min–max normalization may not always be the best
choice, since, in presence of large outliers, all values of the Xnorm will
be generally penalized.

2.5 Algorithms for feature selection

To truly understand the outcomes of feature evaluation across
various algorithms, it is essential to investigate the mathematical
intricacies of each. In this section, we provide the crucial
mathematical framework for every method employed in feature
evaluation.

2.5.1 Correlation
There are two main approaches for computing the correlation

between two time series. Pearson’s correlation (CORRp) coefficient,
often denoted “r”, is a measure of the linear relationship between two
variables or time series. The formula for Pearson’s correlation
coefficient between variables X (one of our features time-series)
and Y (our reference DoA signal) with n (number of samples in each
time-series) data points is given by

r � ∑n
i�1 Xi − �X( ) Yi − �Y( )�����������������������∑n

i�1 Xi − �X( )2∑n
i�1 Yi − �Y( )2√ .

Here, Xi and Yi are the individual data points, and �X and �Y are the
means of X and Y, respectively. The numerator computes the
covariance between X and Y while the denominator normalizes
the covariance by the product of the standard deviations of X and Y.
Spearman’s rank (CORRs) correlation coefficient is a measure of
monotonic, non-linear correlation between two variables, or time
series, computed as follows:

ρ � 1 − 6∑ d2
i

n n2 − 1( ),

where di is the difference in rank for each pair of corresponding data
points, and n is the number of data points.

Although Pearson’s correlation coefficient is a measure of
linear correlation, Spearman’s correlation captures the strength
and direction of the monotonic relationship between the ranks
of data points in two variables, such as time series of feature
values X and reference DoA index Y. Monotonicity implies that
as one variable increases (or decreases), the other tends to
consistently increase (or decrease) but not necessarily at a
constant rate.

2.5.2 Principal component analysis (PCA)
PCA is an example of an unsupervised algorithm for feature

evaluation. It works by transforming the original features into a new
set of uncorrelated features, called “principal components”, which
are ordered by the amount of variance they capture in the data.
Although PCA does not explicitly select features, it provides a means
of identifying the most informative components and can be used for
indirect feature selection.

First, this algorithm calculates the principal components. To do
so, it first computes the covariance matrix of the original features.
Then, it calculates the eigenvalues and eigenvectors of the covariance
matrix and sorts the eigenvalues in descending order and chooses
the top k eigenvectors corresponding to the largest eigenvalues to
form the principal components. Furthermore, it projects the original
data onto the selected principal components. This results in a new
set of feature component that are linear combinations of the original
features. After that, m principal components that capture a
significant portion of the total variance in the data are chosen.
The amount of variance captured by each component is reflected in
its corresponding eigenvalue.

Mathematically, if one has p original features and m principal
components, the weight, or loading, of the ith feature in the jth

principal component is denoted by wij. The linear combination
for the jth principal component is then calculated as follows:

PCj � w1j ·X1 + w2j ·X2 +/ + wpj ·Xp.

These loadings formmatrixW, where each column corresponds to a
principal component and each row to a feature. The ranking of
features is then performed on evaluation of their weights, loading to
each principal component. Features with higher loadings contribute
more to the corresponding principal component and are, therefore,
considered more important.

2.5.3 ReliefF algorithm
The ReliefF algorithm (Robnik-Šikonja and Kononenko, 2003)

is a feature selection algorithm applicable to classification problems
(ReliefF function of MATLAB). However, it was later modified to
apply to continuous data and is suitable for regression problems
(RReliefF function of MATLAB).

Let X be one of the input features, Y be the continuous DoA
output time-series, and Wj be the weight assigned to jth feature
initially set to 0. For each feature algorithm, iteratively select an
observation Xj

i , having k neighboring values from the feature time-
series. In a simplified interpretation of the algorithm, for a given
instance i, the weight Wj for feature Xj is updated thus:

Wj
i � Wj

i−1 −
∑n

k≠i X
j
i −Xj

k( ) · Yi − Yk( )/ n − 1( )
max Y( ) −min Y( )( ) max Xj( ) −min Xj( )( ),

where n is the total number of nearest neighbors, Xj
k is the value of

feature Xj for neighbor k, and Yk is the output value corresponding
to neighbor k.

2.5.4 Minimum redundancy maximum relevance
Minimum redundancy maximum relevance (mRMR) (Long

et al., 2005) aims to select features based on their mutual
information; the chosen features should have the maximum
relevance to the target variable and minimum redundancy among
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themselves using the computation of mutual information as between
two time-series X and Z:

I X;Z( ) � ∑
x∈X

∑
zinZ

p x, z( )log p x, z( )
p x( )p z( )( ),

where the joint probability p (x, z) is estimated as follows:

p x, z( ) � Count X � x andZ � z( )
Total number of observations

.

The marginal probability p(z) is estimated as follows:

p z( ) � Count Z � z( )
Total number of observations

, and

p x( ) � Count X � x( )
Total number of observations

.

Relevance VS of feature X out of a set of S features with the
observations Y is then computed as follows:

VS X;Y( ) � 1
|S| ∑X∈S

I X;Y( ).

However, redundancy is computed as follows:

WS Xi;Xj( ) � 1

|S|2 ∑
Xi,Xj∈S

I Xi;Xj( )
mRMR thus minimizes WS/VS by ranking features through the
forward addition scheme.

3 Results

When evaluating feature relevance, all the algorithms presented
typically provide only one value associated with each feature’s
importance rank. In most cases, this value is the median of all
coefficients computed for each individual feature across all
experiments, forming a score vector. It is generally assumed that
these scores follow a normal distribution, with the median
representing the most expected value. If the score vector does not
follow a standard normal distribution, the result of this feature
evaluation becomes more random and consequently less credible.

We have examined the distribution and variability of score
values for all features a step before the final score is provided by
each algorithm. To do so, we computed one coefficient for each EEG
feature in each experiment separately, resulting in a set of
358 values/scores for each of the 65 features in the dataset and
thus forming 65 score vectors for each evaluated algorithm. Since
each algorithm uses its own scale for score evaluation, we also
normalized the score values by the maximum median value among
all features.

3.1 Distribution of feature scores among
experiments

First, we have tested whether score vectors come from a standard
normal distribution by running a K-S test and visually comparing
the score vector cumulative distribution function (CDF) with
standard normal CDF with 0 mean and standard deviation 1.

Figure 1 depicts the results of visual comparison for some
selected features, such as SP 25–35 Hz, as the best evaluated
features (see Section 3.4), Entropy 25–35 Hz as the worst, and
BSR and SEF95 as the two classic features.

The score vectors of best evaluated features have passed the K-S
test, while the features that received lower scores, such as Entropy
25–35 Hz, did not. Even visual evaluation of distribution normality
of Entropy 25–35 Hz features on Figure 1 has the least normal
distribution; this is expected since it was evaluated as the least
relevant feature. If one compares the distribution of evaluated scores
by CORRs and ReliefF algorithm, ReliefF score vectors better
resemble the standard normal CDF than those of CORRs. This
corroborates the results of the ReliefF algorithm compared to the
CORRs since it is expected that if the evaluation of feature relevance
is correct, the answer must be similar among all experiments and,
therefore, must be normally distributed with the mean values as the
most expected evaluation result.

The results of CORRp and CORRs correlations were very similar
to each other, suggesting that EEG features are largely linearly
correlated with the reference DoA signal. Therefore, in this
paper, we only present the results of CORRs in Figure 2, 7, and
8, as it may also capture more general, non-linear correlations. The
distribution of score values for all features evaluation by CORRs
correlation, PCA, ReliefF, and MRMR algorithms are presented in
Figures 2–6 using a box-and-whisker diagram for each feature.

The box in such a representation represents the interquartile
range (IQR) between lower Q1 (0.25) and higher Q3 (0.75) quartiles,
thus covering 50% of the values. The upper (lower) whisker will have
a maximum length of 1.5 of IRQ drawn up (down) from the Q3 (Q1)
quantile. The red crosses indicate the farthest outliers. The mean
value is marked with a green diamond while a median value is
represented with a small horizontal bar of red color. All scores for SP
features are represented in 10log10 scale. However, to compare the
score evaluation results of SP features in non-logarithmic scale, we
also provide median values of those feature’s scores as a violet
asterisk on each graph.

It is also notable that, as expected, all graphs representing score
distributions (e.g., Figures 2–6) show that the four baseline signals
received very low scores, indicating their non-relevance to DoA.
This underscores the appropriateness of evaluating other signals.

3.2 Final score computation

The complete set of feature rankings, along with their scores
normalized with the maximum score value from each set defined by
one algorithm (CORRs, PCA, and ReliefF) as well as their average
score, can be accessed online via1. The rankings are presented
visually in Figure 7. We excluded the evaluation of feature
rankings using mRMR as it employs a different principle for
ranking, considering not only feature relevance but also reducing
information redundancy. Nevertheless, the results of the mRMR

1 https://gitlab.hevs.ch/alena.simalats/rt-doai-vet/- /blob/main/Features

Selection.xlsx
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feature are depicted in Figures 5 and 6 and discussed further
in Section 3.3.

Here are some intuitive rules that we believe are relevant while
evaluating the coefficients using the distribution representation.

• Higher values of mean and median correspond to generally
higher scores that can be given to the feature.

• If the mean and median values are different, then the
distribution is skewed toward the median value, such that
on the side of the mean value we have some outliers, values
that are very different from the majority of the data.

• A smaller rectangle indicates smaller variability among the
values and therefore higher confidence in the mean value of
the coefficient.

• If the score given to the baseline signals is low, then the
algorithm performed a correct evaluation of the features. The
only algorithm where the baseline signal may legitimately
receive a high score is mRMR since it will also give higher
scores to the features carrying new non-redundant information.

Consequently, different scores unifying formulas can be derived.
Here, we present the results of final score evaluation based on the
following most obvious formula:

Xj/total
alg � θ · ~Xj

alg exp( )
ϵ · IRQ Xj

alg exp( )( ),
where Xj/total

alg is the final unified score for feature j for a selected
algorithm alg, ~X

j
alg(exp) and IRQ(Xj

alg(exp)) are the median and
the IRQ for scores for feature j among all experiments; θ and ϵ are
the parametrization coefficients, allowing change of the relative
importance of median and standard deviation scores.

3.3 Analysis of score distributions

There has also been some significant disagreement among
algorithms, albeit only regarding one feature from the extensive
list: peak frequency (PF). The ReliefF algorithm assigned a very high

FIGURE 1
Visual comparison of the selected score vector CDF, blue line, with standard normal CDF with 0 mean and standard deviation 1, red dashed line.
Selected score vectors are produced by CORRs, PCA, ReliefF, and MRMR algorithms for BSR, SEF95, SP 25–35 Hz, and entropy 25–35 Hz features,
respectively.
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score to PF, while correlations and PCA did not consider it
important at all. We believe that PF values in this evaluation set
have low credibility since they do not provide enough resolution to
yield reasonable results. Often, the values of PF range from 0 to 1 Hz,
as the maximum signal power is at low frequencies. Although we

increased the granularity of the PF values to 0.25 Hz, this is still
insufficient, judging from the scores given by most algorithms, as a
significant portion of the PF values equals 0. Therefore, we have
excluded this feature from the analysis presented in this paper.
However, we do not rule out the possibility that with improved

FIGURE 2
Distribution of Spearman’s coefficient for each evaluated EEG feature.

FIGURE 3
Distribution of the PCA coefficient for each evaluated EEG feature.
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resolution these features may receive more consistent score
evaluations and have the potential to be included in the list of
most important features.

Among all the methods that we have examined, mRMR
algorithm is the only one that selects features based on their

mutual information at the same time, aiming to reduce
information redundancy. Since the probabilities p(x), p(y), and p
(x, y) of the mRMR algorithm are based on counts of variable X and
Z equal to exact values x and z simultaneously, it is clear that the
resolution of numerical data will have an essential influence on the

FIGURE 4
Distribution of the ReliefF coefficient for each evaluated EEG feature.

FIGURE 5
Distribution of the coefficient for each EEG feature ranked by the mRMR algorithm running over the data with a full resolution.
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result, since resolution here can be seen as a size of the bin of an
histogram that should be neither too big nor too small in order to see
a correct probability distribution. We have thus applied the mRMR
algorithm first to the data with the full resolution, such as bin size
too small (see Figure 5), and then, since all numerical values of time-
series are normalized, we have run this algorithm with a resolution
of 0.01, equivalent to 1% (see Figure 6). This resolution was chosen
since the DoA index is usually represented with values between
0% and 100%.

An evaluation of features with mRMR algorithm with different
granularity of the data has shown that SP over 14 Hz have low
importance, with some exceptions like SP 17–18Hz and SP 22–23Hz.
This is because, oncewe round the values down to amaximumof their
second decimal, we drastically reduce the data variability in small
numbers. This has raised an important observation: data resolution
plays an essential role not only in feature importance but generally in
algorithm performance. It is also probable that SP of higher
frequencies have never been considered since their values are so
small that, when they are visualized on a classical density spectral
array, it is difficult to notice their correlation with DoA. Having
features with such small values naturally leads to the question of how
reliable those features would be in a real setting in the presence of
electrical noise that can easily alternate their values, leading to an
unpredictable impact on DoA estimation.

We have observed a slight difference in feature selection results
depending on the data normalization method, such as min-max
normalized vs. Z-normalization. For example, some neighboring
features could swap their ranking positions. However, if sets of best
features, like best-10 or best-20 were selected, those sets would
be identical.

Figure 7 presents the visualized ranking of final feature scores for
ReliefF, CORRs, and PCA algorithms over z-normalized data. In this

table, columns 2–5 represent the scores computed using the formula
presented in Section 3.2 with θ and ϵ equal to 1, and columns
6–9 represent ranking of features based only on their median values.
All features are sorted in descending order from up to down based
on their score.

To assist the reader in following our feature evaluation, we
have implemented color coding for features. First, we have used
similar colors to group SP features based on their frequency. SP
features representing frequency ranges larger than 1 Hz are
additionally highlighted in bold font. Moreover, some other
unique features are regrouped with similar color codes, such as
BSR, SEF90, and SEF95.

3.4 Ranking of best features for DoA
estimation

Thanks to the visualization of Figure 7, it can be observed that SP
of the signal for frequencies above 14Hz has similarly higher
correlation with DoA, evaluated by all algorithms, compared to
the SP of signals with frequencies below 14Hz. The spectral power of
the frequency bands above 14Hz per se has not been mentioned as
essential in the literature. However, Ra et al. (2021) showed that
spectral entropy from the 21.5 to 38.5 Hz frequency bands show the
highest correlation with BIS, indicating that SP of higher frequencies
could have a high potential in DoA estimation.

If we examine features in the temporal domain, such as BSR and
Entropy, we observe that BSR exhibits a strong correlation with
DoA, a well-established phenomenon in EEG signal processing for
anesthesia. Entropy has also attracted significant attention in DoA
evaluation. The entropy calculated over a specific component of the
time-domain signal, representing the Ψ frequency range (e.g.,

FIGURE 6
Distribution of the coefficient for each EEG feature ranked by the mRMR algorithm over the data with 1% resolution.
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15–35 Hz), appears to be a more robust predictor than just the η

band (e.g., 25–35 Hz), as demonstrated by three algorithms.
However, these results may not be directly comparable to the
present study because entropy was here calculated in the time-
domain, measuring signal amplitude in [V], while Ra et al. (2021)
investigated spectral entropy (SE), which measures entropy over the

squared signal amplitude in [V2]. Nevertheless, based on our
evaluation, Entropy 0.5–100 Hz exhibits the highest correlation
with DoA, followed by Entropy 15–35 Hz. Conversely, Entropy
over lower frequencies and narrower bands, such as Entropy 4–8 Hz
or Entropy 8 Hz–12 Hz, demonstrates lower importance among all
evaluated features.

FIGURE 7
Final features ranking by each algorithm. Left side presents feature ranking based on the formula presented in Section 3.2, while the right side based
onmedian score values sorted in descending order from up to down. To help the reader, we have used similar colors to group SP features based on their
frequency. SP features representing frequency ranges larger than 1Hz are additionally highlighted in bold font. Some other unique features are regrouped
with similar color codes, such as BSR, SEF90, and SEF95.
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3.5 Strategies for feature selection

As explained in Section 3.1, selecting the most relevant features
using the mRMR algorithm would not be conclusive in our case, as
all features are derivatives of the same EEG signal and to some
extend carry similar information. Therefore, to summarize the
results of this paper, we have devised two strategies for selecting
the best features for DoA estimation.

3.6 Strategy 1

If we examine Figure 7, we notice that SP features with higher
frequencies within the 1 Hz range (e.g., SP 29–30 Hz or SP 31–32 Hz)
are ranked higher than SP features covering larger frequency ranges
(e.g., SP 25–35 Hz or SP 15–35 Hz). However, the ranking changes for
lower frequencies. For instance, SP 12–25 Hz is ranked higher than SP
14–15 Hz, SP 13–14 Hz, and so forth. Consequently, to reduce
information redundancy, for frequencies above 15 Hz one might
choose SP features with a 1 Hz range and exclude SP and SPR
features with larger ranges. Conversely, for lower frequencies, it may
be preferable to retain SP and SPR features with larger ranges and
exclude those with a 1 Hz range. An exception among lower-frequency
SP featuresmight bemade for SP 0–1Hz, SP 1–2Hz, SP 2–3Hz, and SP
3–4 Hz, since three of them are ranked higher than SP and SPR
0.5–4 Hz. The results of feature pruning following this strategy applied
to averaged scores computed based on the formula in Section 3.2
(column 5 of Figure 7) are presented in columns 2 and 3 of Figure 8.

3.7 Strategy 2

However, considering the crucial observation in Section 3.3 that
data resolution may significantly impact prediction stability, one might,
when selecting the SP features, prioritize SP features over spectral bands
larger than 1 Hz, especially for frequencies above 14 Hz. We may
include SP features over narrow frequency bands only for frequencies
between 0 and 4 Hz, as they exhibit maximum spectral power. As
illustrated in Figure 8, we first prune the SP features for frequencies
above 12 Hz. It is noteworthy that SP 15–35 Hz encompasses
information of both “SP 25–35 Hz” and “SP 12–25 Hz” features.
Additionally, SP and SPR features over the same frequency band are
likely to convey similar information, as SPR can be considered a
normalized SP signal. Following this rationale, we further select the
best 26 and best 10 features. The visualization of each phase of feature
pruning is summarized in columns 5–8, Figure 8.

4 Discussion

Application of ML/DLmethods for the selection of best features,
regardless of the domain of application, has been described
previously, and there exists a large list of methods that can be
applied. A comprehensive review of feature selection methods has
been presented by Theng and Bhoyar (2024). Both general methods
and more specific applications have been reported. General methods
are as various as principal component analysis (PCA), linear
discriminant analysis (LDA), mutual information-based,

correlation-based, wrapper-based, embedded, multi-objective,
fuzzy, evolutionary, random probes-based, and evaluation
measure. The most promising techniques from this list have been
included in the present investigation—PCA, mutual information-
based, correlation-based, and embedded—and have been applied to
a specific case study of EEG signal features.

Similar to the approach presented in this paper, Anand et al.
(2023) applied feature selection specifically on EEG signals for the
purpose of DoA estimation. However, they extracted features only in
the time domain and used only one feature selection method—a tree
classifier. They then trained multiple DoA classifier methods using
selected features and concluded that random forest had the best
performance among chosen algorithms. Such a conclusion is
expected since features were selected by an embedded method
based on a tree classifier. There are also many studies which
have focused on evaluating specific EEG features as predictors of
DoA. For example, entropy has received much attention, being
examined for ability to estimate the DoA.

In human anesthesia, it is known that different parts of the brain
may provide distinct EEG signatures, thus carrying different
information in response to general anesthesia (Yeom et al., 2017).
The PSI index, for example, accounts for changes in symmetry and
synchronizations between brain regions and the inhibition of frontal
cortex regions (Drover and Ortega, 2006). Special attention has also
been given to phase lag entropy (Shin et al., 2020; Jun et al., 2019; Kim
et al., 2021), a measurement of temporal pattern diversity in the phase
relationship between two EEG signals from prefrontal and frontal
montages. This study worked with veterinary data, and the difference
in EEG signal between prefrontal and frontal montages was less
pronounced. We have not therefore differentiated between signal
collected from different scalp locations and thus have evaluated the
entropy of each collected EEG signal separately. Moreover, we
compute entropy over temporal domain EEG signal, even though
in some research spectral entropy (SE) correlated with BIS (Ra et al.,
2021) has been investigated. The biggest difference in the two
approaches to entropy computation is that the SE is computed
over the squared amplitude values of the temporal domain. The
main reason for choosing the entropy of the temporal domain over the
SE is in the goal of implementing DoA estimation in real-time where
one entropy value would be expected every 1s. This is clearly possible
when entropy is computed, for example, over 200 samples of EEG
signal (200 Hz sampling rate). In the case of SE, the time-frequency
conversion of the EEG signal first occurs, which in turn would reduce
the number of SP values per second and only after SE can be
calculated, which risks providing values only every several seconds.

All these studies evaluate the importance of only one feature, such
as different types of entropy, while the importance of other features/
predictors in parallel is not investigated. Like Anand et al. (2023), this
paper investigates the relative importance of EEG features by evaluating
a larger set of features from both time and frequency domains while
evaluation is performed by a larger set of selection algorithms.

The results presented here must be interpreted against the
limitations of the methodology. As all EEG signals from bilateral
acquisition and from the placement of different electrodes on the
skull have been included, the proposed feature selection is global and
not specific for a particular electrode setting. Similar information
may have been carried by EEG signals reported from close electrodes
recording EEG activity in the same animal, potentially leading to
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data duplication. However, this is not expected to impact feature
selection and may allow confirmation of feature relevance over
signals of various amplitudes and noise contamination. The use
of a PK-PD-derived predicted effect curve based on the information
from propofol delivery rates as a reference signal for supervised
algorithms can be questioned. Most publications applied BIS

measurements for this purpose. Although this was not available
for the pigs in the present investigation, BIS values are not validated
in pigs. Moreover, it was the authors’ intention to use a reference
signal not essentially based on EEG to avoid the paradox of selecting
EEG features referenced by their own signal. There is no recognized
gold standard for using genuine values as a reference for DoA, and

FIGURE 8
Feature pruning following the two presented strategies.
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the PKPD approach presented here was considered a fair attempt,
given its own limitations.

5 Conclusion

In this paper, we presented an approach for measuring the
prediction capability of EEG features for DoA estimation in pigs.
The results of feature evaluation, conducted with essentially four
algorithms, were presented along with two strategies for pruning the
feature set. These algorithms (correlation, PCA, ReliefF, and mRMR)
include variance computation in their core. The choice of algorithms
in this paper was driven by the idea of linking upcoming results with
the established practice of DoA estimation using BIS and PSI, where
formulas for DoA estimation are arithmetic combinations of features
with higher correlation with DoA.

However, we also evaluated other algorithms such as Random
Forest and L1/L2 regularization, which have a loss function at their
core. They presented slightly different rankings for the same set of
features. For example, they ranked lower the SP of frequencies
between 8 and 25 Hz, although they were consistent with the
presented algorithms regarding SP of frequencies higher than
25 Hz as well as lower than 8 Hz. It is also clear that the choice
of feature selection algorithm must take into account the algorithm
planned for use with the DoA estimation. However, the results of
this paper should be seen as a first step toward selecting the best
performing machine learning/ deep learning algorithm for DoA
estimation.
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