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Introduction: Intensive care unit (ICU) patients exhibit erratic blood glucose (BG)
fluctuations, including hypoglycemic and hyperglycemic episodes, and require
exogenous insulin delivery to keep their BG in healthy ranges. Glycemic control
via glycemic management (GM) is associated with reduced mortality and
morbidity in the ICU, but GM increases the cognitive load on clinicians. The
availability of robust, accurate, and actionable clinical decision support (CDS)
tools reduces this burden and assists in the decision-making process to improve
health outcomes. Clinicians currently follow GM protocol flow charts for patient
intravenous insulin delivery rate computations.

Methods: We present a mechanistic model-based control algorithm that
estimates the optimal intravenous insulin rate to keep BG within a target
range; the goal is to develop this approach for eventual use within CDS
systems. In this control framework, we employed a stochastic model
representing BG dynamics in the ICU setting and used the linear quadratic
Gaussian control methodology to develop a controller.

Results:We designed two experiments, one using virtual (simulated) patients and
one using a real-world retrospective dataset. Using these, we evaluated the safety
and efficacy of this model-based glycemic control methodology. The presented
controller avoids hypoglycemia and hyperglycemia in virtual patients, maintaining
BG levels in the target range more consistently than two existing GM protocols.
Moreover, this methodology could theoretically prevent a large proportion of
hypoglycemic and hyperglycemic events recorded in a real-world
retrospective dataset.

Discussion: The current version of the methodology shows potential usefulness
in GM of ICU patients. However, it is limited to a subgroup of the ICU patient
population, who are fed through and enteral tube and delivered intravenous
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insulin. After extending to a broader ICU patient population who can consume oral
nutrition and are delivered subcutaneous insulin for GM, themethodology could be
tested with pilot studies and clinical trials for eventual use as a CDS tool.

KEYWORDS

personalized stochastic model, modeling blood glucose dynamics, glycemic management
in the intensive care unit, clinical decision support, reducing cognitive burden of
healthcare professionals

1 Introduction

Glycemic management (GM) in the intensive care unit (ICU) is
a challenging and crucial task. The rapidly changing health
conditions of patients and frequent interventions result in highly
nonstationary blood glucose (BG) behavior, which means that when
considered as a time series, their mean, variance, and covariance
change over time. Maintaining BG levels in a target range is
associated with reduced morbidity and mortality. However,
performing GM in the ICU is a demanding job for caregivers.
Thus, providing efficient clinical decision support (CDS) can
potentially improve GM outcomes and reduce the workload of
caregivers. ICU patients often receive fluids and medications,
such as glucocorticoids, pressors including norepinephrine and
epinephrine, fluoroquinolones, and beta-blockers, which affect
their insulin sensitivity. All these factors make the GM of ICU
patients very challenging. An efficient and actionable model-based
GM strategy must address these ICU-specific challenges and
limitations.

Our goal is to develop a personalized model-based glucose
control method for eventual use as a CDS tool in the ICU. Since a
multitude of factors which generate the resulting nonstationary
BG behavior cannot easily be incorporated into mechanistic
models, we aim to model the BG dynamics at a sufficient
resolution to provide useful GM strategy in settings where
these factors are simply represented as stochastic uncertainty.
We developed a linear quadratic Gaussian (LQG) controller
based on a linear stochastic BG model, the Minimal Stochastic
Glucose (MSG) model (Sirlanci et al., 2023). This model was
developed specifically for the purpose of glycemic management
in ICU. Thus, we use the MSG model as the basis of this control
methodology because (i) it can be used for all patients regardless
of their diabetic status, (ii) it has an analytical solution that allows
use in online settings, (iii) it mitigates parameter identifiability
issues that occur mostly when an unmeasured system component
(e.g., interstitial insulin) is included as a state of the dynamical
system model, (iv) its stochasticity allows for robust control, and
(v) its ability to track the mean BG behavior and the amplitude of
BG oscillations provides clinical interpretation.

We designed different experiments with simulated and real
retrospective data to evaluate this controller. The pipeline can
easily be adjusted for different GM strategies, i.e., the LQG
controller can be tuned to address different target glycemic
regions and account for factors such as nutritional intake. The
structure of the simulated data experiment can be used to test
the safety and efficacy of different model-based GM strategies,
providing a tool for the investigation of new GM strategies. The
developed methodology addresses ICU-specific challenges, such as
rapidly changing BG behavior and sparse data. In this sense, the

methodology is transferable to other ICU settings, such as
hemodynamic management, with appropriate modification of
relevant mechanistic models.

Our contribution in this paper is summarized below.

• We build the control methodology using the LQG control
technique based on the previously developed MSG model for
personalized GC of ICU patients who require IV insulin
delivery and are fed through an enteral tube.

• We develop the retrospective data evaluation framework to
test the potential effectiveness of the model-based GC
methodology using previously collected real-world ICU data.

1.1 Background

Healthcare professionals follow flow charts, called GM
protocols, to maintain patient BG levels within a specific target
range. These protocols vary across ICU types (e.g., medical or
neurological) and between institutions. The flow chart uses
recent BG values and the intravenous (IV) insulin rate at the
intervention time to calculate the new IV insulin delivery rate
and subsequent BG measurement time. These protocols were
developed based on clinical trials designed to regulate ICU
patient BG behavior in response to glycemic control (GC)
regimens and may expose controversial GM differences in the
ICU amongst institutions.

Some clinical trials showed that the intensive insulin therapy
(IIT) reduced mortality and/or mortality among ICU patients when
compared to conventional insulin therapy (CIT) (Van den Berghe
et al., 2001; Van den Berghe et al., 2006). Even though these results
changed how GM performed in the ICU, these results could not be
replicated by follow-up clinical trials (Arabi et al., 2008; Brunkhorst
et al., 2008; De La Rosa et al., 2008; Preiser et al., 2009; Annane et al.,
2010; Coester et al., 2010; Green et al., 2010; Macrae et al., 2014). A
comprehensive clinical trial, the NICE-SUGAR trial (Nice-Sugar
Study Investigators, 2009), showed that the IIT increased mortality
among adult ICU patients.

Although there is no definitive explanation for these disparate
results, potential hypotheses have been offered (Clain et al., 2015),
the most widely accepted of which is that increased hypoglycemia
clouds the benefits of tight glycemic control (TGC). Besides causing
dangerous complications such as coma and death, hypoglycemia
may also result in irreversible complications such as neuronal
damage and cardiac arrhythmia. Therefore, a crucial feature of a
glycemic controller is its ability to avoid hypoglycemia.

These GM protocols were developed with a one-size-fits-all
approach. However, recent research emphasizes the potential of
personalized healthcare (Mathur and Sutton, 2017; Nardini et al.,
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2021). Several studies showed that GM results in significantly
different outcomes between different patient groups, such as
those with or without diabetes, (Leibowitz et al., 2010; Green
et al., 2012; Krinsley et al., 2013; Lanspa et al., 2013; Kaukonen
et al., 2014). These differences in response to the same therapy
among different patient groups could be one of the reasons for the
contradictory results of TGC in clinical trials. One study (Suhaimi
et al., 2010) comparing TGC performance in two different ICUs
concluded that TGC protocols should be developed using intra- and
inter-patient variability as well as carbohydrate administration. So
far, there has been no clinical trial to investigate these differences
between patients. Using computational modeling tools to develop
glycemic controllers, including baseline evaluation by virtual trials,
may reveal BG behavior in different patient populations and aid the
development of patient group-specific GC strategies.

The GC problem has been widely investigated in the artificial
pancreas (AP) project, which focuses on automatic and semi-
automatic insulin delivery via model-based control algorithms in
the type 1 diabetes mellitus (T1DM) context (Sorensen, 1985;
Hovorka et al., 2004; Dalla Man et al., 2007; Weinzimer et al.,
2008; Hovorka, 2011; Ghorbani and Bogdan, 2014; Man et al., 2014;
Goharimanesh et al., 2015; Pinsker et al., 2016; Delavari et al., 2019;
Moon et al., 2021). Translating similar ideas to the ICU requires
addressing specific challenges: dynamic BG behavior, insulin
secreted by the body independently of external insulin delivery,
viz., endogenous insulin, and data sparsity. Perhaps the most
significant challenge to GC in the ICU is highly variable BG
behavior. This variability is caused by the body’s stress response
to severe illness, interventions, constant feeding, and exogenous
insulin delivery when needed. Even though the factors affecting BG
levels, such as corticosteroids, are known, the resulting dynamics are
generally not. Therefore, these factors are not incorporated into
physiology-based mechanistic models of the glucose-insulin system
in the ICU, which increases model error. Moreover, even if the
mechanistic relationship between these factors and BG levels is
known, inclusion in the model increases complexity and causes
computational intractability.

Another data-related limitation is sparse BG measurement data
(e.g., ~10–15 measurements per day). The highly fluctuating nature
of BG levels means that ~10–15 measurements are not enough to
accurately track patient glycemic dynamics, and continuous glucose
monitors are not routine in the ICU. Therefore, an effective model-
based glycemic controller for ICU patients must: (a) be safe,
i.e., avoid hypoglycemia and hyperglycemia; (b) account for
inter- and intra-patient variability; and (c) address challenges
specific to the ICU setting. In every step of the glycemic
controller development process presented here, we aim to
address all these challenges.

1.2 Literature review

Researchers have investigated GM in the ICU setting from various
perspectives. This literature review is organized according to different
aspects of GC in the ICU, and concludes with some observations about
the use of ideas from control in personalized medicine.

Many research groups designed clinical trials to test the safety
and efficacy of IIT compared to CIT. Depending on the specific ICU

setting, the target BG ranges can vary. Some of these trials reported
benefits of IIT over CIT (Van den Berghe et al., 2001; Van den
Berghe et al., 2006) and some resulted in the opposite conclusions or
failed to confirm previous results (Arabi et al., 2008; Brunkhorst
et al., 2008; De La Rosa et al., 2008; Nice-Sugar Study Investigators,
2009; Preiser et al., 2009; Coester et al., 2010; Green et al., 2010;
Macrae et al., 2014). Also, some studies suggested that moderate
glycemic control (MGC) could be more beneficial for all or certain
patient groups than TGC (Leibowitz et al., 2010; Lanspa et al., 2013;
Clain et al., 2015).

None of these GM protocols account for nutrition or for inter-
and intra-patient variability. However, researchers claimed these
protocols should account for these types of variability among
patients, (Suhaimi et al., 2010; Chase et al., 2011). In (Lonergan
et al., 2006b; Chase et al., 2007), the authors developed a GM
protocol that regulates both the exogenous insulin and nutrition
delivery. They 117 tested the efficacy and feasibility of this protocol
in a pilot study (Lonergan et al., 2006a).

Some researchers developed physiological mechanistic models
(Van Herpe et al., 2006; Haverbeke et al., 2008; Hovorka et al., 2008;
Pielmeier et al., 2010b; Lin et al., 2011; Zhou et al., 2023), and
control-theoretic algorithms based on these models to optimize and
personalize the IV insulin rate for more effective GM, (Chase et al.,
2018). In (Stewart et al., 2016; Knopp et al., 2021), the authors
compared the efficacy of GM protocols using retrospective data.
Virtual or in silico clinical trials provide a means to test the safety
and efficacy of these algorithms before pilot studies and clinical
trials. Several studies found in silico testing useful, advantageous and
safe to test the efficacy and feasibility of GM approaches and for
validation purposes (Wilinska et al., 2008; Chase et al., 2010;
Wilinska et al., 2011; Fisk et al., 2012; Stewart et al., 2018;
Uyttendaele et al., 2020).

Some of these control algorithms have been further tested in
pilot studies (Pielmeier et al., 2010a; González-Caro et al., 2022) and
in clinical trials (Hovorka et al., 2007; Pachler et al., 2008; Pielmeier
et al., 2012; Van Herpe et al., 2013; Dubois et al., 2017; Uyttendaele
et al., 2019; 2021; 2023). In all these studies, the algorithm-based GC
approaches provided safe GM and resulted in improved GC
evaluated by several different measures including time spent in
target range, mean BG values, and number of adverse events. These
results show evidence that personalized treatment could increase the
success rate at the individual level compared to standard one-fits-all
approaches.

Finally, a recent research program studies the statistical
foundations of personalized approaches to medicine (Liang and
Recht, 2023); building on this it includes study of a personalized
control-theoretic approach to drug delivery, in the specific context of
how to diminish delivery of addictive drugs (Gradu and Recht,
2023). Similar ideas are relevant in our work.

1.3 Outline

Section 2.1 describes the retrospective ICU dataset; Section 2.2
provides the details of our computational methodology; Section 2.3
describes the experiments designed for simulated and real-world
data settings, and Section 2.4 presents the evaluation metrics used to
test safety and efficacy of the model-based controller. Then, Section 3
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presents the results. Finally, Section 4 discusses the strengths,
advantages, and limitations of this personalized model-based GC
methodology and Section 4.10 summarizes our findings.

2 Materials and methods

2.1 Data

The data were extracted from the University of Colorado Health
Data Compass Clinical DataWarehouse between 2010 and 2019 and
represent six units, including medical, burn, surgical/trauma,
neurological, cardiothoracic, and cardiac ICUs. The inclusion
criteria for this study were patients on a tube-feed who were in
the ICU for at least 3 days and whose interval between the first and
last recorded IV insulin delivery was at least 1 day. If a particular
patient has two intervals that satisfy these criteria, broken up by the
removal and insertion of the enteral tube, then we treat these data as
two separate experiment time intervals (and similarly for multiple
such intervals). We excluded patients who were pregnant. Notably,
we did not exclude anyone based on their diabetes status. These data
resulted in a collection of 106 experiment time intervals drawn from
106 patients since none of the patients had multiple ICU stays that
met the inclusion criteria. Note that the insulin delivered via the IV
route is typically short-acting. All of these 106 patients were
delivered short-acting IV insulin. For evaluation purposes, we
also focused on a subset of these data, restricted to patients with
at least one hypoglycemic or hyperglycemic episode. These data
included 126 adverse events, including 19 hypoglycemic and
107 hyperglycemic events. These refined data represented
23 time intervals belonging to 23 different patients. Detailed
information about the patient cohort can be found in Table 1.
We also provide this information for all 106 patients in
Supplementary Material. This study was approved by the
Colorado Multiple Institutional Review Board with protocol
number 18-2519 on 10 January 2023.

2.2 Computational methodology

We parse the control problem into two sub-problems: (i) the
estimation of the unknown model parameters in a personalized way
based on the available data (model identification), and (ii) the
estimation of the personalized optimal controller based on the
identified model. In the language of control theory these
correspond to system identification and optimal control. We will
establish a methodology combining several algorithms to solve each
sub-problem efficiently. We use the MSG model, introduced in
(Sirlanci et al., 2023), to represent BG dynamics. We use an
optimization approach to identify the unknown model
parameters and use the LQG control method to estimate the
optimal IV insulin rate to keep BG level in the desired range.

The MSG model used to represent the BG dynamics is a
variant of the well-known Ornstein-Uhlenbeck stochastic
process and is analytically solvable. We use the discrete-time
form of the model for compatibility with the available data; in this
form, the output becomes a multivariate normally distributed
random variable. The model consists of two components: a
deterministic and a stochastic component. The deterministic
component describes the body’s own effort to reach the basal
glucose level and incorporates the effects of nutrition and
exogenous insulin on the BG level. This component aims to
model the dynamics that can be resolvable with the available data,
e.g., it does not aim to model the detail of BG oscillations.
However, since BG levels are known to oscillate, the stochastic
component of the model quantifies the magnitude of BG
oscillations. This is merely a technical choice that allows us to
resolve the dynamics at a level enough for BG forecasting and
control with sparsely available data.

2.2.1 Identification problem
We estimate unknown model parameters using patient-

specific data to obtain a personalized BG model. Let {yi}Ki�0
and {xi}Ki�0 represent the BG measurement data and the model

TABLE 1 Demographic and ICU stay-related health record information of patients included in the real-world dataset.

Mean Stdev min Median Max

Age (years) 56.4 13.5 25.0 60.0 78.0

Length of ICU stays that contain an interval meeting the inclusion criteria (days) 12.5 11.6 4.8 8.8 51.7

Number of BG measurements 142.6 94.4 48.0 114.0 462

Length of tube feed administration (hours) 163.0 90.1 73.7 126.3.0 447.0

Length of IV insulin administration (hours) 140.3 90.5 33.2 115.1 444.0

Race American Indian and Alaska Native: 1

Asian: 1

Black or African American: 3

White or Caucasian: 18

Ethnicity Hispanic: 2

Non-Hispanic: 21

Sex Female: 10

Male: 13
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output, respectively, collected at time points {ti}Ki�0. Denoting data
and the model output as vectors, y � [yi]Ki�0 and x � [xi]Ki�0, we
have x ~ N (μ,Σ) where μ ∈ RK+1, Σ ∈ RK+1×K+1, and N refers to
normal distribution. Note that μ and Σ are functions of the
unknown model parameters, θ ∈ Θ where Θ is the set of
admissible parameters. Then, we formulate the parameter
estimation problem as follows:

θ* � arg min
θ∈Θ

1�������
detΣ θ( )√ exp −1

2
y − μ θ( )( )TΣ θ( )−1 y − μ θ( )( )( ).

This is a specific example of the more general system
identification problems, (Åström, 2012; Bechhoefer, 2021; Åström
and Murray, 2021). We use MATLAB’s fmincon function to solve
this constrained optimization problem. More details can be found in
(Sirlanci et al., 2023).

2.2.2 Control problem
We estimate the optimal controller, i.e., the input we can

adjust, to maintain desirable system behavior. Several control-
theoretical approaches can be used in this setting. To start with
the most straightforward method that meets our requirements
and to exploit the fact that the MSG model is linear and
stochastic, we use an LQG controller (Anderson and Moore,
2007; Murray et al., 2009; Åström, 2012). Consider the linear
input/output system

_x � Ax + Bu + ξ, ξ ~ N 0, Cξ( ),
y � Cx + η, η ~ N 0, Cη( ), (1)

where A ∈ Rn×n, B ∈ Rn×p, C ∈ Rq×n. ξ represents the disturbances
to the system (Cξ ∈ Rn×n) and η represents the measurement noise
(Cη ∈ Rq×q), and they are assumed to be uncorrelated. In this
system, x is the state that we aim to “control” by adjusting the
variable u appropriately based on the observed y. In our case,
n, p, q � 1 because the BG is the only model state, the

exogenous insulin is a single-valued function, and the only
collected measurements are BG values.

The LQG controller is the combination of the linear quadratic
regulator (LQR) and linear quadratic estimator (LQE or Kalman
filter) (Murray et al., 2009). The optimal controller for system
(Equation 1) has the form

_̂x � Ax̂ + Bu +Kf y − Cx̂( ),
u � −Kc x̂ − xr( ) + ur,

where xr is the reference value (the target BG value), and ur is the
shift in the controller (IV insulin input) to ensure convergence to the
reference value. The separation principle for this formulation states
that Kf is the optimal observer gain (or Kalman gain) ignoring the
controller, and Kc is the optimal controller gain ignoring the noise
(Anderson andMoore, 2007; Åström, 2012). This principle allows us
to perform the state and controller estimation consecutively and
incorporate the result of one into the other in the computation
process. We provide more details about the algorithmic structure of
this process in Section 2.3.

2.3 Design of the control framework

We evaluate the efficacy of our BG control strategy by using both
simulated and real-world data. This strategy allows us to investigate
different aspects of this control methodology. The simulated data
experiment is essential for two reasons. First, we can simulate any
number of patients for robust evaluation. Second, we can observe
and fairly compare the implication(s) of any IV insulin rate by
simulating the resulting BG level. The real data experiment allows us
to evaluate how the developed control strategy performs with the
limitations of real-world data, including data sparsity, measurement
noise and rapidly changing BG behavior. Also, using retrospective
data required significant changes to the algorithmic structure and
evaluation techniques. This is because unlike the simulated data

FIGURE 1
These timelines show the protocol, LQG controller intervention times, and corresponding evaluation times for each intervention time. The LQG
controller intervention times are the union of the protocol intervention times and the nutrition change times over the ETW.
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case, we cannot “deliver” the predicted amount of insulin to observe
its effect. So, we have to devise a method to evaluate the controller’s
performance based on delivered IV insulin to the patients.

We use two different GM protocols in both the simulated data
and the real-world data cases. One of them is used in the
neurological ICU at the New York - Presbyterian Hospital
(NYPH) and can be found in (Hripcsak and Albers, 2022). The
other protocol is based on the Yale insulin infusion protocol and is
used in several ICUs at the UCHealth University of Colorado
Hospital (UCH). These two protocols have different target
ranges, 140–180 mg/dL and 120–150 mg/dL. Our aim in using
these protocols is to evaluate the performance of our model-based
GMmethodology. Since we do not aim to compare the effectiveness
of these two protocols, we will not name them in presenting our
results. We will call them Protocol A and Protocol B without
identifying which one is which.

2.3.1 Simulated data experiment
We used the ICUMinimal Model (ICUMM) introduced in (Van

Herpe et al., 2006; Herpe et al., 2007) to generate virtual patient data
that have the same elements as real-world data (tube-fed nutrition
rate, IV insulin rate, and BG measurements). Using a different
model from the MSG model, which is the basis of the control
algorithm, is crucial to evaluate controller efficacy. Using the same
model to simulate patient data and for the control algorithm would
provide a perfect representation of actual BG dynamics with very
accurate BG control, but would not mimic real-world conditions or
allow for a realistic evaluation of the control algorithm.

For each patient, data from the first 24 h, the training time
window (TTW), is used for model estimation (generate the
personalized model). We define the intervention times as the
times at which the IV insulin rate is determined using either the
protocol or the machinery developed here. The evaluation times
are the BG measurement times occurring after an intervention.
We use these BG measurements at the evaluation times to assess
“decision” efficiency (i.e., the IV insulin rate delivery at the
intervention times). We define the time window encompassing
these evaluation time points as the evaluation time window

(ETW). The intervention times for the LQG controller are the
collection of protocol intervention times and nutrition change
times over the ETW to account for the nutrition changes in our
control approach. A visual description of this experimental
design can be seen in Figure 1.

2.3.1.1 Data generation
Let N denote the total number of virtual patients and M

denote the number of different simulated nutrition and IV insulin
data. We select M to be smaller than N to mitigate the effect of
simulated nutrition and IV insulin data on the results. Then, we
randomly create M groups of patients, each group containing
N/M patients who are delivered the same nutrition over both the
TTW and ETW and IV insulin over only TTW. First, we
simulated the nutrition and IV insulin rates using the
estimated distribution of these inputs from a real-world
dataset. To generate these data, we estimated the distributions
of the lengths of time intervals over which the nutrition and
insulin rates were constant and the distributions of delivered
nutrition and insulin rates. Based on these estimated
distributions, we generated M different nutrition and IV
insulin delivery data. Then we create the patient profiles as
follows. We generate each ICUMM model parameter using a
uniform distribution over the given feasible range for each
parameter. Then, we pair these parameters to create N sets of
random model parameters, representing N different virtual
patient profiles. Next, we estimated the distribution of the
length of time between consecutive BG measurement times

FIGURE 2
We show IV insulin administration and BGmeasurement times to describe our experimental design with the retrospective dataset. Recording times
are shown in this figure only for illustration. Also, although this patient had four hypoglycemic/hyperglycemic measurements, we do not use the first one
as it occurs before the second IV insulin administration time. So, there are three hypoglycemic/hyperglycemic measurements that we can use for
evaluation of the GM approaches.
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and generated BG measurement times for each patient based on
this distribution. Finally, we randomly paired the virtual patients
and the nutrition-insulin data and simulated the resulting BG
values at the generated BG measurement times over the TTW for
each patient (with ICUMM). This process produced the
simulated data ready to apply control algorithms.

2.3.1.2 Performing control
We start with applying the GM protocol to each patient. At

each intervention time, we identify and deliver the protocol-
suggested IV insulin rate to the virtual patient by simulating their
BG value at the next protocol-suggested intervention time (using
ICUMM). Note that this is an evaluation time for the most recent
intervention time. We perform this process over the whole ETW,
recording all the intervention times at this step to use for the
LQG control.

For the LQG control, we first define the set of intervention times. As
mentioned above, it is important to incorporate the effect of nutrition
into the control algorithm. The nutrition rate at the time of intervention
is naturally included in the computation of the optimal IV insulin rate via
the LQG controller. If a change in the nutrition rate occurred between
two protocol-suggested intervention times, we added that nutrition-
change time as an intervention time for the LQG control approach.

The LQG control algorithm requires specifying a target value to
estimate the optimal IV insulin rate. To avoid hypoglycemic episodes,
we set this value to be the upper bound of the respective protocol
(150mg/dL and 180mg/dL). In addition, another precautionwe took to
avoid hypoglycemia was to set a threshold for the LQG controller
suggested IV insulin rate. If the controller suggested a rate higher than
25 U/hr, the optimal IV insulin rate was set to 25 U/hr, where U
represents the unit of insulin.

At each intervention time, we use the most recent 24-h data to
obtain the personalized MSG model. Then, using this model with the
LQG controller, we estimate the optimal IV insulin rate and deliver this
insulin rate to the virtual patient by simulating their BG value at the next
intervention time (using ICUMM). We perform this process over the
entire ETW. The process is described in Algorithms 1, 2.

2.3.2 Real data experiment
In this case, we use retrospective real-world data, described in

Section 2.1, to investigate the applicability and evaluate the model-
based controller’s performance in a real-world setting. We designed
this experiment by addressing the real-world retrospective data

limitations, e.g., intervention times are defined by data, which are
the recorded IV insulin change times. Also, we evaluate the
performance of the GM techniques by comparing the suggested
IV insulin rates and the actual IV insulin rate at the time of
interventions, which caused a hypoglycemic or hyperglycemic event.

We need IV insulin to be administered over any TTW to quantify its
effect on the patient through the MSGmodel. We need this information
to estimate the optimal IV insulin rate using the LQG controller. So, we
first define the time interval starting from the second to the last IV insulin
administration times. We identify the times of hypoglycemic and
hyperglycemic events over that time interval. Finally, the collection of
the latest IV insulin administration times before each hypoglycemic or
hyperglycemic measurement is the set of intervention times. The reason
why we choose the intervention times before the hypoglycemic or
hyperglycemic measurements is to evaluate and compare the
efficiency of GM approaches in avoiding these hypoglycemic and
hyperglycemic episodes. A visualization of this process is shown in
Figure 2 and an algorithmic description is given in Algorithm 3.

2.4 Evaluation techniques

In this section, we describe the evaluation metrics that we use to
compare the efficiency of the LQG control and GM protocols in the
simulated and real data settings. Note that the target region for the
protocols are 120–150 mg/dL and 140–180 mg/dL. Since our goal is
to evaluate the safety of the LQG controller and compare its
efficiency with these GM protocols, we adjusted the desired BG
level for the controller for each comparison. We show the target
region, hypoglycemic regions, and hyperglycemic regions for each
protocol in Table 2.

TABLE 2 Target region, hypoglycemic and hyperglycemic regions with the
color codes used in the presentation of the experimental results. The BG
values are in the unit of mg/dL.

Clinical Meaning Protocol A Protocol B

Severe hyperglycemia (400,∞) (400,∞)

Moderate hyperglycemia (250,400] (250,400]

Mild hyperglycemia (150,250] (180,250]

Target region [120,150] [140,180]

Mild hypoglycemia [70,120) [70,140)

Moderate hypoglycemia [40,70) [40,70)

Severe hypoglycemia [0,40) [0,40)
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The first priority of GM in the ICU is to avoid life-threatening,
severe hypoglycemia. However, whilst severe hyperglycemia is
typically more manageable, GM approaches that avoid
hyperglycemia are preferable to improve longer-term patient
health status. Finally, maintaining BG levels in the target range is
the most optimal outcome of GM as it is known to be the most
beneficial for patients’ health. We used the color scheme in Table 2
to represent the BG levels to be avoided or targeted. For example, a
GM approach should avoid resulting BG levels in severe
hypoglycemia and hyperglycemia (red) regions. The moderate
(yellow) regions are not as risky but should still be avoided.
While the target (green) region is the most preferable, the mild
hypoglycemia and hyperglycemia (blue) regions are unlikely to pose
any health risk for patients.

2.4.1 Evaluation for simulated data
In this case, since we simulate the patient behavior by using

ICUMM, we can “deliver” the LQG-suggested and protocol-suggested
IV insulin rates to “observe” their effect on the BG level. We denote
the evaluation time points by {ti}Pk

i�1 for protocol and {ti}Lki�1 for LQG
controller where Pk and Lk are the number of evaluation times for the
kth patient for k � 1, 2, . . . ,N. The BG measurements at these time
points are denoted by {yprotocol

i }Pk

i�1 and {ylqg
i }Lki�1, respectively, for

k � 1, 2, . . . ,N. For each patient, we compute the minimum,
maximum, and average of these BG measurements resulting from
the IV insulin rates suggested by the protocol and LQG controller.
Then we compare the resulting BG values by boxplots and hypothesis
testing. Since we have resulting BG values for each patient by two
different control approaches in this simulated data setting, we use
paired sample t-test for comparing the mean difference in minimum,
maximum, and average BG values. Note that the collection of
minimum (resp. maximum) values provides the opportunity to
compare the effectiveness of these two approaches for avoiding

hypoglycemia (resp. hyperglycemia). Comparing average values
helps us understand how well each approach keeps BG values in
the target range on average.

2.4.2 Evaluation for real data
In this case, we use a different evaluation approach because of

retrospective real-world data. We develop a comparison method
for the protocol-suggested, Iprotocol, and the LQG controller-
suggested, Ilqg, rates through the IV insulin rate that was
delivered to the patients, Ireal. We perform this comparison
only at the latest intervention times before moderate and
severe hypoglycemic and hyperglycemic events. In this way,
since we know the implication of Ireal (either hypoglycemia or
hyperglycemia), by comparing Iprotocol and Ilqg through Ireal, we
can test the efficacy of the LQG controller. Comparison of these
three values could happen in different ways. Which are grouped
as shown in Table 3 for a meaningful comparison. Note also that
the meaning of these comparison groups changes depending on
the resulting BG measurement. For example, Iprotocol < Ireal < Ilqg

means that the LQG controller gives more appropriate advice
than the protocol if the resulting BG is hyperglycemic, but the
protocol gives more appropriate advice than the LQG controller
if the resulting BG is hypoglycemic.

For the case when Ilqg � Iprotocol � Ireal, the value at which these
IV insulin rates agree makes a difference for the clinical outcome if
the resulting BG measurement is hypoglycemic. This is because if
both the LQG controller and the protocol suggest no IV insulin
administration and the real IV insulin rate is also 0 U/hr, even
though the resulting BG is hypoglycemic, the advice is appropriate
since they suggested the possible minimum IV insulin rate. On the
other hand, if that value is larger than 0, this is considered
inappropriate advice. Finally, since there is no definite upper
bound for IV insulin rate, the case when Ilqg � Iprotocol � Ireal is

TABLE 3 All the possible comparisons of Ireal, Iprotocol, and Ilqg and their clinical meaning are shown.

Clinical Outcome of Insulin Dosage Hypoglycemia Hyperglycemia

Both the LQG controller and the protocol give appropriate advice Ilqg � Iprotocol < Ireal Ireal < Ilqg � Iprotocol

Ilqg < Iprotocol < Ireal Ireal < Ilqg < Iprotocol

Iprotocol < Ilqg < Ireal Ireal < Iprotocol < Ilqg

The protocol gives more appropriate advice than the LQG controller Iprotocol < Ireal � Ilqg Ilqg � Ireal < Iprotocol

Iprotocol < Ireal < Ilqg Ilqg < Ireal < Iprotocol

Iprotocol � Ireal < Ilqg Ilqg < Ireal � Iprotocol

The LQG controller gives more appropriate advice than the protocol Ilqg < Ireal � Iprotocol Iprotocol � Ireal < Ilqg

Ilqg < Ireal < Iprotocol Iprotocol < Ireal < Ilqg

Ilqg � Ireal < Iprotocol Iprotocol < Ireal � Ilqg

Both the LQG controller and the protocol give inappropriate advice Ireal < Ilqg � Iprotocol Ilqg � Iprotocol < Ireal

Ireal < Ilqg < Iprotocol Ilqg < Iprotocol < Ireal

Ireal < Iprotocol < Ilqg Iprotocol < Ilqg < Ireal

The LQG controller, protocol and real insulin rates are inappropriate Ilqg � Iprotocol � Ireal > 0 Ilqg � Iprotocol � Ireal

The LQG controller, protocol and real insulin rates are appropriate Ilqg � Iprotocol � Ireal � 0 N/A
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considered inappropriate regardless of their specific value when it
results in hyperglycemic BG.

3 Results

This section presents the results of comparing the LQG
controller and protocol in the simulated and real data settings.

Recall that we use two different GM protocols (protocol A and
protocol B) in simulated and real-world data cases.

3.1 Simulated data results

We created virtual patients using ICUMM to evaluate and
compare the effectiveness of the LQG controller to keep BG levels

TABLE 4 This table shows the 95% CIs for the paired sample differences of the minimum, maximum, and average BG values resulting from LQG controller
and protocol, computed separately for each virtual patient over their ETW. The LQG controller provides more appropriate IV insulin administration
recommendations resulting in BG levels in or closer to the respective target ranges (CIs for minimum and maximum BG).

LQG and protocol A LQG and protocol B

BGlqg − BGprotocol

Minimum Blood Glucose [3.5,8.4] [5.6,10.7]

Maximum Blood Glucose [-9.4,-4.2] [-10.0,-5.6]

Average Blood Glucose [1.7,4.5] [0.2,2.4]

FIGURE 3
The figure shows minimum, maximum, average, and all BG values “measured” resulting from an intervention for all virtual patients. Minimum
(resp. maximum) BG shows if the patient had any hypoglycemic (resp. hyperglycemic) event. The average BG shows the overall performance of a GM
approach in keeping BG levels in the target range. All BG shows all the BG values “measured” for all patients. LQG controller is tuned for the respective
protocol’s target region, using the same intervention times with each protocol together with the nutrition change times. This color scheme is
described in Section 2.4. (A): Protocol A. (B) Protocol B.
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in the respective target range. We generated N = 200 patients
and M = 20 different nutrition and IV insulin rate data. This
means that there are 20 groups of patients, each consisting
of 10 patients who received the same amount of nutrition
over the entire time window (TTW and ETW) and IV insulin
rate over their TTW. We set the lengths of TTW and ETW to
be 24 h each. We used the algorithmic structure (Section 2.3.1)
for each LQG controller-protocol pair and performed
the comparison separately. The resulting plots of applying
the LQG controller and one protocol are shown in the
Supplementary Material.

We performed hypothesis testing to quantify the statistical
significance of the difference between the resulting minimum,
maximum, and average BG levels for each patient by the pairs of
LQG controller and the protocols. Our null hypothesis is that
there is no difference between the minimum (resp. maximum,
average) BG values. The alternative hypothesis is that the
difference between the minimum (resp. maximum, average)
BG values is nonzero. We used MATLAB’s ttest function to
test these hypotheses. We checked the normality assumption by
using MATLAB’s kstest function for all samples. The test
failed to reject the null hypothesis stating that the sample comes
from a standard normal distribution, against the alternative that
it does not come from such a distribution, at α � 0.05 significance
level for all three samples of minimum, maximum, and average
BG values (respective p-values are 0.27, 0.61, 0.34). Then, using
ttest, we concluded the statistical significance of the
differences between the minimum (resp. maximum, average)
BG values under the significance level α � 0.05 (respective
p-values are 1.2p10−9, 5.7p10−11, 0.03). We show the 95% CIs
for these paired differences in Table 4.

Our results show that the LQG controller provided more
appropriate IV insulin dose recommendations than the GM
protocols resulting in a great fraction of measured BG levels in,
or close to, the target region. All 3 GM approaches avoided severe
and moderate hypoglycemia and severe hyperglycemia for all virtual
patients. Moreover, the LQG controller avoided moderate
hyperglycemia for all virtual patients.

First, even though all 3 GM approaches avoided severe and
moderate hypoglycemia (below 70 mg/dL) at any time over the
ETW, the LQG protocol results in slightly higher minimum BG
levels that are closer to the target region (first-row panels of Figure 3).
The 95%CIs for the paired difference of minimum of the resulting BG
values (the first row of Table 4) shows that the LQG controller
maintains BG values further from the hypoglycemic region than
both protocols.

Second, while all 3 GM approaches can avoid severe
hyperglycemia, the LQG controller also avoids moderate
hyperglycemia as shown in the second-row panels of Figure 3. In
the LQG controller - protocol B comparison (the second-row right-
hand panel of Figure 3), we see that the LQG controller results in
only one maximum BG value (250.7 mg/dL) on the boundary
between mild and moderate hyperglycemia and all the remaining
maximum BG values lie either in the mild hyperglycemia region or
the target region. In addition, the 95% CIs for the difference between
the paired maximum BG values (the second row of Table 4), when
considered together with the resulting BG values (the second-row
panels of Figure 3), show that the difference in avoiding severe and

moderate hypoglycemia is statistically significant, i.e., the LQG
controller results in BG values further from the severe and
moderate hyperglycemia regions than both protocols.

Third, the LQG controller maintains a larger number of average
BG values in the target region compared to protocols (third-row
panels of Figure 3). The average BG levels over the ETW for each
patient obtained by an LQG controller-suggested IV insulin rate
mostly lie on the respective target region for each protocol. The 95%
CIs for the paired difference of average BG values (third row of
Table 4) show that the difference is statistically significant. Notably,
the LQG controller, when using protocol B-suggested intervention
times, resulted in almost all BG levels in the target region. This
supports that the LQG controller indeed learns the patients’ BG
dynamics through the relatively simple yet still physiological BG
model, the MSG model, and suggests appropriate IV insulin rates.

Finally, the fourth-row panels of Figure 3 show the collection of all
BG values over the ETW for all 200 patients. These boxplots show that
the collection of BG values obtained as the result of the LQG controller-
suggested IV insulin rates cover a slightly narrower BG range
compared to each protocol. In this case, since the LQG controller is
developed to account for the nutrition change times, the resulting BG
values cannot be paired and we cannot perform similar hypothesis
testing to quantify the statistical significance of the difference.

These results show that the mechanistic model-based
personalized GM approach provides efficient IV insulin
administration to avoid adverse events and maintains a larger
fraction of BG values in or closer to the desired target regions.

3.2 Real data results

Now, we use retrospective data to evaluate the performance of
the LQG controller. Unlike a prospective study, with retrospective
data, we cannot observe the direct implications of alternate GM
strategies on patients. This limitation shaped our evaluation
approach as discussed in Section 2.4.2. We compared the efficacy
of the LQG controller and the protocols based on their suggestions at
the latest intervention times before the recorded hypoglycemic and
hyperglycemic events.

Our results show that the LQG controller recommended IV
insulin administration rates at least as effective as the protocol for
avoiding hypoglycemic and hyperglycemic events. This result is
reflected in the values shown in Table 5, which were obtained by
the comparison of the LQG controller-suggested (Ilqg) and protocol-
suggested (Iprotocol) IV insulin rates through the real IV insulin rate
(Ireal) as shown in Table 3. Since we compared the LQG controller
with each protocol separately and the relative difference between IV
insulin values affects the resulting values in Table 5, we only compare
the performance of the LQG controller with the protocols separately
rather than comparing the efficacy of the protocols.

First, the LQG controller provided more appropriate advice than
protocol A for six out of the 19 hypoglycemic measurements. This
shows that with the IV insulin rate suggested by the LQG controller, a
large portion of the hypoglycemic events could be potentially avoided.
On the other hand, when compared with protocol B, 16 out of 19 times
both the LQG controller and the protocol gave useful advice to avoid the
larger portion of the hypoglycemic events. For these cases, it is
impossible to know which (LQG controller or protocol) was more
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accurate because the data are retrospective. We also note that for 3 out
of 19 hypoglycemic events, the three IV insulin rates (Ilqg, Iprotocol, and
Ireal) agreed at the rate of 0, which still caused hypoglycemia. So, we
conclude that the suggested rates were still reasonable since it is not
possible to suggest an IV insulin rate that could avoid hypoglycemia.

Second, the LQG controller gave more helpful advice than protocol
A at 56 and protocol B at 52 out of all 107 hyperglycemic
measurements. This is because we set the desired BG level to be the
upper bound of the respective target region for each protocol to avoid
hypoglycemic episodes.Whenwe consider the distribution of the values
of all five possible outcomes for hyperglycemic events, we see that the
event LQG controller providing more appropriate IV insulin rate
suggestion than both protocols is the most likely outcome. In
around 18–19 out of 107 hyperglycemic events, the protocols
outperformed the LQG controller, and 20–23 out of the total
107 hyperglycemic events, both the protocols and the LQG
controller gave reasonable advice that could potentially avoid
these events.

Third, the value of events that both the LQG controller and
protocol gave inappropriate advice is around 8–12 times out of all
the hyperglycemic events, which indicates that all the GM
approaches could be further improved to avoid these adverse events.

These results show that a model-based GM strategy can
potentially avoid all hypoglycemic events and reduce the
incidence of hyperglycemic events to much lower rates by
providing personalized IV insulin administration suggestions.

In summary, these results exhibit the potential improvement
that the LQG controller we developed based on the MSG model
could improve the GM outcomes by avoiding a large portion of
hypoglycemic and hyperglycemic events.

4 Discussion

4.1 Overview of findings

We developed a model-based GC approach accounting for the
limitations of routinely collected ICU data. The controller requires 1) a
mechanistic model describing BG behavior and 2) a control algorithm.
Because of the aforementioned challenges, such as unmodeled
interventions and sparsely collected data, ICU patients’ BG behavior

cannot be resolved accurately enough to be used for model-based
control methodologies. To address these challenges, we used the MSG
model, a linear and stochastic BG model. The model’s simplicity
allowed us to overcome data sparsity limitations and track the mean
BG behavior accurately while its stochasticity helped quantify
phenomena excluded from the model and, in particular, resolve the
BG variance providing useful insight for GM strategies. Then, we
developed an LQG controller based on the MSG model. We
designed simulated and real-world retrospective data experiments to
evaluate the performance of this methodology by comparing its
effectiveness with operational GM flow charts. By mimicking the
conditions of a prospective study, the simulated data experiment
provided a ground for a fair comparison of different GM
approaches. The real-world retrospective data experiment provided
an opportunity to understand how well the GM approaches can handle
real-world data limitations. Our results showed that it is possible to
implement an efficient, actionable, and safemodel-based GM technique
based on a simple stochastic mechanistic BG model paired with a
suitable control algorithm.

4.2 Potential benefits of using the
MSG model

We used the MSGmodel as the basis of this control theoretical GM
approach to exploit the computational advantages of such a simple and
analytically solvable yet physiological model. A linear (stochastic) model
with an analytical solution is advantageous because (1) it reduces
computation time significantly, making this control framework
applicable in an online setting as a CDS tool; (2) it avoids errors
affecting predictive performance due to using numerical
approximations when an analytic solution does not exist; and (3) it
allows us to use a simple and efficient control technique, LQG controller,
enhancing the computational effectiveness of the whole framework.

4.3 Differences between the protocols and
their effect on the LQG controller

Our results with simulated data showed that both protocols
resulted in similar GM performance. One significant difference

TABLE 5 We show the performance of the pairs of LQG controller - protocol using retrospective real-world data. We use the same dataset for both LQG
controller - protocol pair. The LQG controller gave more appropriate advice than protocol A to avoid hypoglycemia in most of the cases. When compared
with protocol B, it is not possible to distinguish the effectiveness. For the hyperglycemic events, the LQG controller gavemore appropriate advice than both
protocols in most of the cases.

Clinical Outcome of Insulin Dosage Hypoglycemia (19 events) Hyperglycemia (107 events)

Protocol A Protocol B Protocol A Protocol B

Both the LQG controller and the protocol gave appropriate advice 6 16 23 20

The protocol gave more appropriate advice than the LQG controller 0 0 18 19

The LQG controller gave more appropriate advice than the protocol 13 0 56 52

Both the LQG controller and the protocol gave inappropriate advice 0 0 8 12

The LQG controller, protocol and real insulin rates were inappropriate 0 0 2 4

The LQG controller, protocol and real insulin rates were appropriate 0 3 N/A N/A
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between the protocols is their performance in avoiding lower BG
values. Even though both protocols place BG values in safe regions,
the Minimum Blood Glucose plots of Figure 3 show that protocol B
results in a larger number of minimum BG values in or closer to its
target region. Since the LQG controller uses the corresponding
intervention times for each protocol (in addition to patients’
nutrition change times), the difference between the suggested
intervention times by the protocols might be a contributing
factor in avoiding lower BG values. We will investigate the
reasons causing this difference in the development of a more
effective GM controller.

4.4 Different insulin types and delivery
routes in the ICU

Insulin for GM in the ICU is delivered intravenously during
acute illness. As their health status improve, they are transitioned to
subcutaneous insulin. IV insulin is typically only short-acting.
However, depending on the needs of patients, subcutaneous
insulin could be rapid-acting, short-acting, intermediate-acting,
long-acting, or ultralong-acting. We developed this methodology
to estimate the optimal IV insulin amount to evaluate the
applicability in the ICU setting. Including the subcutaneous
insulin with all possible different types in this methodology will
pose additional complexity, which will be addressed in a
future work.

4.5 Results of our conservative approach in
the controller development

The 95% CIs for average and all BG values for virtual patients,
shown in Table 4, show that all the CIs for the LQG controller
represent a higher range than the corresponding CI of the
protocol. This behavior results from our conservative
approach, i.e., setting the target value to be the upper bound of
the respective target range and bounding IV insulin rate by 25 U/
hr from above for the LQG controller. This result indicates that
our specific constraints in developing the LQG controller are
reflected in the GM results.

4.6 Potential benefits of personalized
glycemic management

A common behavior observed in Figure 3 is that the LQG
controller results in less variability than protocols in the BG values.
Unlike the protocols, which follow a one-size-fits-all GM approach,
the LQG controller provides personalized interventions based on the
information extracted from patients’ data via the MSG model.
Personalized GM toward the same target value for all patients
might be the reason for the reduced variability in the resulting
BG values. Importantly, a GM approach could be even more
personalized by setting a unique target range for each patient.
Such a controller is beyond the scope of the approach we
develop here and requires investigation by clinicians. However, a
patient-specific BG range is very straightforward to include in this

control algorithm. This easily adjustable feature of the model-based
control approaches makes them practical and desirable within CDS
tools once they are externally validated.

4.7 Potential benefits of virtual patient
cohorts for evaluation

Creating a cohort of virtual patients for the initial investigation
of an intervention or treatment strategy provides a useful platform
for evaluating the safety of the intervention and for a fair
comparison of different intervention strategies. We used these
features in the evaluation of our control approach. For example,
while the amount of IV insulin delivered to patients in the real ICU
setting is constrained by situational factors, with virtual patients we
can simulate the delivery of any amount suggested by the LQG-
controller or a protocol without worrying about safety. This showed
us the possible range of resulting BG levels. Also, comparing two
different intervention strategies on virtual patients mimics the case
of comparing two intervention strategies on two identical patients,
which is impossible in any real-world setting. In this way, we aim to
isolate the effect of the interventions from other factors.

4.8 Generalizability

The underlying mathematical approach of this GM
methodology shows some similarities with the AP project.
However, there are some fundamental differences between this
methodology and the AP. The AP is developed to deliver insulin
automatically via an insulin pump based on continuous glucose
monitoring (CGM) data for GM of T1DM patients. This
methodology can work with CGM data, but does not require that
data. Also, the AP does not typically incorporate the nutritional
intake of patients into the model-based control system. This
methodology was not developed for automatic insulin delivery
but for use as a CDS tool for GM of ICU patients regardless of
their diabetic state, which is captured and accounted for by patient-
specific model estimation. In addition, the way this methodology
accounts for ICU-specific challenges, such as the rapidly changing
BG behavior and data sparsity can be transferred to other ICU
settings with similar limitations. Also, the control pipeline is not
specific to GM. It could easily be transferred to other healthcare
settings requiring clinical decision support, such as optimal timing
of drug delivery for oncology patients (Martinez-Garcia et al., 2021).

4.9 Limitations and future work

The methodology is developed based on the MSG model. While
this model has advantages for GC purposes in the ICU setting, it also
has some limitations. The mean component of the stochastic model
output only provides information about the mean behavior of the
system and generally cannot forecast the complex dynamical behavior.
In this sense, the MSG model might oversimplify the system. We lose
the ability to track the exact trajectory by using this stochastic MSG
model. Therefore, if the exact details of the complex system behavior are
important to capture, we cannot do this by the MSG model.
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Using retrospective data poses certain limitations to the effective
evaluation of GM strategies. Unlike a prospective study, it is
impossible to observe the effect of suggested interventions.
However, it still provides useful insight into the effectiveness of
the GC approaches. Another limitation of the real-world
retrospective dataset is the total number of patients included in
it. Note that the dataset contains all patients satisfying the inclusion
criteria described in Section 2.1. This limitation is because of the
current version of the methodology accounting for IV insulin
delivery and tube-fed nutrition as it restricts the number of
patients that can be included in the dataset. Additionally, our
evaluation method greatly reduced the number of patients
because it required the presence of an adverse event. For
example, most patients require subcutaneous insulin in addition
to or instead of IV insulin. These patients were not included in our
study. Including these cases is a goal of future work. In addition, the
physiological variants that occur in 10% (resp. 5%) of the time have a
91% (resp. 69%) chance of being represented in this subgroup with
23 patients. Therefore, while not capturing all possible physiological
variants, we would get most of the common human variants. Also,
using retrospective data for evaluation prevents measuring
improvements in patient outcomes, which can be possible with
prospective studies. The current version of this methodology is not
ready for prospective studies since it needs to be expanded to be used
for a broader ICU patient population, which will be addressed in
future studies.

We used ICUMM to generate the profile and data of virtual
patients, as described in Section 2.3.1. We generated model
parameters independently using a uniform distribution over
the given range for each parameter to represent the patient
profiles. A more realistic scenario would be to account for the
correlation between these parameters. Unfortunately, the
correlation level, in the form of a covariance matrix, to
generate more realistic virtual patient profiles is unknown.
Further, setting the model parameters constant while
generating time-varying ICUMM parameters could better
reflect the non-stationary BG behavior of ICU patients. We
will address these limitations in future work.

Other future studies will focus on the expansion and
improvement of this methodology to the broader ICU patient
population. Exogenous insulin is delivered through different
routes (IV and subcutaneous) and in different types (e.g.,
rapid-acting, short-acting, and long-acting). We will
incorporate subcutaneous delivery component and the impact
of other insulin types into the model. Also, we will adjust the
model to account for the effect of orally consumed nutrition on
BG levels. The LQG control algorithm will immediately be
applicable to estimate optimal exogenous insulin amount after
these modifications in the model. Therefore the methodology will
be available to provide GM decision support for most of the ICU
patients. Also, some medications used in ICU (e.g.,
glucocorticoids, fluoroquinolones, and beta-blockers) are
known the affect BG dynamics of patients, but these effects
are not accounted for in the GM protocols, as the protocols
suggest insulin dose adjustments after observing the changes in
the BG levels. We will incorporate the effect of these medications
into the MSG model to adjust exogenous insulin delivery in
advance to avoid BG levels deviating from the target BG region.

The LQG controller requires at least one insulin administration
data for training, which might be considered a limitation.
However, with any model-based controller, one needs to
“learn” the effect of the exogenous insulin on BG dynamics
through the estimated model parameters and reflect this
information to the predicted amount of optimal exogenous
insulin. In practice, the LQG controller would be activated
once the first insulin dose is given according to a local
protocol. Finally, we will use qualitative methodology tools to
investigate how we can integrate these quantitative GM
techniques into the clinical workflow for efficient and
actionable CDS tools. Completion of these modeling studies
will position us to design prospective studies to evaluate the
effectiveness of this methodology for GM in the ICU and for
improving patient outcomes. For example, we will perform a
multi-site clinical trial with healthcare professionals on the
control group following the state-of-the-art GM protocol
flowchart and the healthcare professionals in the experimental
group being aided by the clinical decision support developed
based on the resulting methodology.

5 Conclusion

We investigated the effectiveness of a model-based controller
developed using a physiology-based linear stochastic model
representing BG dynamics in the ICU setting. The BG
behavior of ICU patients is highly non-stationary due to these
patients’ critical illness, constant tube feeding, and frequent
interventions. In addition, the routinely collected data in the
ICU is sparse, making it more difficult to use for control
purposes. This model-based GM approach provides real-time
safe and efficient intervention strategies using routinely collected
data. Moreover, the methodology is easily adjustable to achieve
other BG target ranges for different GM strategies. These features
of this methodology make it useable for CDS tools within EHR
systems. Also, the general structure of this control framework is
transferable to other ICU settings, such as ventilation and
hemodynamic management that pose similar characteristic
challenges. We will address the limitations listed in Section 4
before an extensive evaluation in a pilot study.
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