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The capacity and affordability of data storage rapidly increased over the past century (1). In the
twentieth century, punch cards were widely used by controlling a loom to punch holes in a paper
tape. In the 1960s, the magnetic storage replaced the punch cards. In 1947, a practical random-
access memory (RAM) was invented in the form of “Williams tube.” The earliest RAM can store
1,024 bits data. IBM sold the first floppy disk in 1971. The most common 51/4-inch diskette
allows a 360KB storage. Optical disks come to the use by Sony and Phillips in mid-1980s. Its first
version has a capacity of 650MB data, while the latest Blu-ray disc can hold 25 GB storage. We
also have flash drives nowadays for portable storage, with capacity varying from 8 to 128 GB. In
the field of persistence storage, the hard disk drive (HDD) is dominant. The typical capacity of
HDD varies from 60 GB to 8 TB. Another device is called solid-state drives (SSD), which does not
use the conventional spinning disks and movable heads. SSDs store data in semiconductor cells,
and are more resistant to physical shock. All those innovations are the basis of our current data
abundant society.

The appearance of data silos and cloud computing storage all facilitate the use of big data.
Data silos are insular data repositories which work under the control of one organization and is
isolated from the rest. If data silos are plant-specific electric generators, then cloud computing is
the electricity grid. Cloud computing facilitates the provision of on-demand resources and helps
utilize the data more efficiently. All those techniques lay a solid foundation for the popularity of big
medical data (2).

The first grand challenge is the “heterogenous” data. The available medical data to us today
are a mixture of structured, semi-structured, and unstructured data (3). Data sources include
medical imaging, genomic sequencing, patient engagement platforms, e-health records, mobile-
phone apps, health-care social media, monitoring, and wearable devices, etc. One possible solution
to this heterogeneity in data analysis is to use “data fusion” methods (4), Data fusion integrates the
heterogeneous data in attempts to create better-performing analytical models compared to models
using data of single modality.

The second grand challenge is how to handle the “big” medical data. International Data
Corporation (IDC) once predicted that “the global datasphere will grow from 33 zettabytes in 2018
to 175 zettabytes by 2025” (5). Recall that 1 zettabyte is 10 to the power of 21 bytes (6). Those vast
amounts of mixture data bring challenges: the lack of data standardization, the concern of privacy
and security issues, the speed-limitation and eavesdrop possibility of data transfer, the reliability
of data storage, etc. These challenges have slowed the process of leveraging healthcare data and
deployment of existing analytics models. High-speed computer servers with the integration of high
distributed computing, streaming algorithms, or cloud computing (7) are possible solutions to
this challenge.

The third grand challenge is to generalize a clear “definition” of MedTech data analytics, an
interdisciplinary field that builds upon big data, health data analysis, data-driven model, artificial
intelligence, etc. A clear definition is necessary so that the users can know what MedTech is and is
not, and how to approach it appropriately. Prof. Dan Ariely once said, “Big data is like teenage sex:
everyone talks about it, nobody really knows how to do it, everyone thinks everyone else is doing it, so
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everyone claims they are doing it...”(8). This ambiguity of “big
data” applies to AI, to deep learning, to almost all the emerging
techniques that are currently being or will be applied toMedTech
data analysis. A potential solution is to create an accurate and
exact methodology framework so users can easily understand
those concepts.

The fourth grand challenge is “small-size.” Although the
medical data are often heterogeneous and substantial for a single
subject, the size of the patient cohort is usually quite small
compared to healthy controls. This commonly seen categorical
imbalance, i.e., unbalanced datasets, will cause the so-called
“overfitting” problem to not only classical AI models but also
modern deep learning models. In training, models can become
too closely related to the datasets’ majority of healthy controls.
Some remedies were proposed to avoid overfitting, such as cost
matrix, early stopping, oversampling, sensitivity analysis (9), etc.

The fifth grand challenge is the “reproducibility crisis”
(10). Currently, hold-out and k-fold cross-validation (11) are
the commonly accepted methods by statisticians working on
medical data. However, in practice, a slight change on the
hyperparameters (e.g., the value of hold-out ratio or number of
folds) can lead to different performance results. Authors even
reported inconsistent results to published literature using the
same dataset and the same configuration. Hence, it is desired
to have more reliable validation techniques that go beyond the
current statistical validation techniques. We may need to use
more robust experimental designs, better mentorship, and more
reliable statistics.

The sixth challenge is the “privacy” and “ownership”
problem. We need to maintain the confidentiality of patients’
records from their employers, insurance company, and society.
Current electronic health records (EHR) (12) and patient care
management systems (PCMS) can protect medical information
to some degree. However, there are significant public concerns
in the lack of strategies to deal with privacy threats such
as nature/environment, hackers, technology failures, etc.
Furthermore, the development of new artificial intelligence
techniques may increase the threat to privacy. For example,
recent research have shown advanced facial AI reconstruction
techniques can reconstruct facial appearance from MRI images
(13). The General Data Protection Regulation (GDPR) help and
regulate scientists and technicians in the protection of medical
data privacy while also emphasizing the shortcomings of current
health data management. More strict laws are expected to take

effect by legislatures, and more reliable encryption methods

are needed by IT technicians to help protect the privacy of
medical data.

Although we come across the challenges as stated, MedTech
data analysis is going through a rapid change every passing day.
The section “Medtech Data Analytics” is part of the journal
“Frontiers in Medical Technology.” Our goal is to help solve the
above challenges. The orientation of this section is toward papers
that facilitate the generation of data-driven models for medical
data. This section will highlight leveraging emerging techniques
to help explore analytics in big medical data applications, with
welcome to traditional signal processing techniques and novel
artificial intelligence methods are welcomed. The techniques and
methods of interest include: data mining, artificial intelligence,
machine learning, deep learning, knowledge discovery, predictive
analysis from medical data, disease diagnostic data-driven
models, healthcare workflow mining, hospital readmission
and patient length of stay analytics, medical IoT and sensor
data quality and reliability, disease profiling and personalized
medicine, healthcare cost/service modeling, social media and
cloud-computing based analytics for public health, medical
expert system and decision support system, natural language
processing and text mining, generating medical imaging labels,
evidence-based recommender systems, clinical phenotyping,
surgery planning, and real-time visualization techniques for the
query and analysis of medical data.

Furthermore, Medtech Data Analytics aims to find new
biomarkers, improve our understanding of disease mechanisms,
increase the efficiency in healthcare delivery, reduce the overall
cost for patient/family/hospital, and facilitate clinical decision
support. This section encourages submissions of scientific or
technical findings from both academia and healthcare industry
to accelerate the addressing of all these challenges.

We have made an influential start, especially by inviting
a remarkable team of world-famous associate editors, and
by leveraging on the abundant resources of the new coming
Frontiers in Medical Technology of the leading Frontiers
academic press. We look forward to seeing how this journal and
this section will grow.
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