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The spread of biofilm-related diseases in developed countries has led to increased

mortality rates and high health care costs. A biofilm is a community of microorganisms

that is irreversibly attached to a surface, behaving very differently from planktonic cells

and providing resistance to antimicrobials and immune response. Oral diseases are

an excellent example of infection associated with the formation of highly pathogenic

biofilms. It is generally accepted that, when the oral homeostasis is broken, the

overgrowth of pathogens is facilitated. Among them, Porphyromonas gingivalis and

Aggregatibacter actinomycetemcomitans are the main etiological agents of periodontitis,

while Streptococcus mutans is strongly associated with the onset of dental caries.

Other microorganisms, such as the fungus Candida albicans, may also be present and

contribute to the severity of infections. Since the common antibiotic therapies usually

fail to completely eradicate biofilm-related oral diseases, alternative approaches are

highly required. In this regard, the topical administration of probiotics has recently gained

interest in treating oral diseases. Thus, the present mini-review focuses on the possibility

of using Lactobacillus spp. as probiotics to counteract biofilm-mediated oral infections.

Many evidence highlight that Lactobacillus living cells can impede the biofilm formation

and eradicate mature biofilms of different oral pathogens, by acting through different

mechanisms. Even more interestingly, lactobacilli derivatives, namely postbiotics (soluble

secreted products) and paraprobiotics (cell structural components) are able to trigger

anti-biofilm effects too, suggesting that they can represent a novel and safer alternative

to the use of viable cells in the management of biofilm-related oral diseases.

Keywords: lactobacilli, probiotics, postbiotics, paraprobiotics, biofilm, oral diseases

INTRODUCTION

Among virulence factors for pathogens, biofilms are associated with a broad array of topical
infections, including periodontal diseases, chronic wounds, and vaginosis (1). The burden of
biofilm-related disease contributes to patient morbidity and increased mortality rates, thus
representing a major public health issue in developed countries, which adds over $1 billion to US
hospitalization costs annually (2, 3). Biofilm is a structured community of microorganisms that
irreversibly adhere to an abiotic surface or biological tissue and represents a phenotypically distinct
state from the planktonic counterpart, particularly in terms of growth rate and gene expression
(1, 4).
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Biofilms are morphologically distinguishable by the presence
of a self-produced extracellular polymeric matrix that encloses
microbial cells, offering great protection against chemical
disinfectants, antimicrobials, and human immune response. The
host immune system is not only ineffective in fully eradicating
mature biofilm, but the presence of antibodies in the surrounding
environment can contribute to tissue damage (5). Moreover,
sessile microbial biofilm cells are up to 1,000-fold more resistant
to antibiotics than planktonic cells, mainly due to the difficulty
of high-molecular-weight antibiotics to penetrate the viscous
matrix and to reach the deeper layers of biofilm (6, 7). The
antimicrobial tolerance can be also ascribed to the presence in
the biofilm core of a subpopulation of persistent cells, which
in virtue of their dormant nonproliferative phenotype are not
susceptible to mechanisms of action of common antibiotics (6,
8). Other factors, such as the slow growth rate, the presence
of multidrug efflux pumps, and stress response regulation,
and the peculiar biofilm microenvironment characterized by
differences in pH, pCO2, and pO2, contribute to reducing the
susceptibility of biofilm to antimicrobials (9). Furthermore, the
higher cell density in biofilms favors the horizontal gene transfer,
which in turn, increases the probability of emergence of strains
with resistance or altered virulence profiles (10, 11). Although
antimicrobial treatment can alleviate the symptoms of infection
by killing the free-floating microorganisms disseminated from
the adherent population (12), it usually fails to completely
eradicate pathogens in the biofilm. As a result, when antibiotic
therapy stops, the persistent cells can revert to their phenotype
(13), causing a relapse of the condition and potentially leading
to recurrent or chronic infections (5). Given the importance
of clearance of mature biofilm for the successful resolution of
such infections, alternative strategies to the use of antibiotics
are highly desirable. These may include the use of plant-
derived compounds, antimicrobial peptides from various sources
and probiotics (14). Traditionally, probiotic microorganisms,
mainly lactic acid bacteria (LAB) and bifidobacteria, have been
orally administered to treat or prevent several gastrointestinal
disorders, including diarrhea, gastritis, Crohn’s disease, colitis,
allergies, food intolerances, and obesity (15). In the last
years, there has been an increased interest in the topical
administration of probiotic cells to overcome the biofilm-related
problem of antibiotic resistance. Probiotics are defined as “Live
microorganisms which, when administered in adequate amounts,
confer a health benefit to the host” (16). Among LAB bacteria,
Lactobacillus is the largest genus and comprises the most widely
used probiotic species (i.e., L. rhamnosus, L. acidophilus, L. casei,
L. plantarum, L. reuteri, L. delbrueckii). Lactobacilli are gram-
positive, nonsporing, nonrespiring rods, and they are considered
as Generally Recognized As Safe (GRAS) (17). In the present
mini-review, we explored the possibility of using lactobacilli,
intended both as living cells and as derivatives, in the treatment
of biofilm-mediated oral infections.

BIOFILM-MEDIATED ORAL DISEASES

Oral diseases (i.e., periodontitis, gingivitis, and dental caries) are
an excellent example of infection associated with the formation
of a highly pathogenic biofilm (18, 19). Periodontitis is one

of the most prevalent diseases worldwide and is caused by
gram-negative bacteria, such as Porphyromonas gingivalis and
Treponema denticola (20), able to form polymicrobial dental
plaque biofilms and to produce virulence factors responsible
for an exacerbated inflammatory response, which leads to the
destruction of the supporting periodontal tissue and eventually
teeth loss (19). Severe forms of periodontitis are also associated
with the colonization of subgingival sites by Aggregatibacter
actinomycetemcomitans and the concomitant reduction of
commensal bacteria (21).

The treatment of periodontitis includes hygiene practices,
mechanical debridement, and eventually the use of
antimicrobials. However, these interventions are not enough to
achieve long-term stability, especially in more severe cases, and
regular maintenance care based on biofilm control is essential to
preserve the equilibrium of the oral microbiome (22). This aspect
is also pivotal in the management of dental caries. Members of
the Streptococcus genus, such as S. gordonii, S. oralis, S. sanguinis,
and S. salivarius, promote the initial colonization on dental
pellicle and thus allow for subsequent binding of S. mutans
(23). S. mutans is the main etiological agent of dental caries
owing to its ability to produce exopolysaccharides (EPS) such as
glucan and to rapidly form a mature biofilm on the tooth surface
(22). Besides bacteria, the fungal pathogen C. albicans can be
present in mixed-species biofilms in dental plaque together
with S. mutans (24) and is a frequent cause of stomatitis in
children, elderly, and immunocompromised patients (25). In
oral candidiasis, the switch of Candida from budding yeast to
filamentous hyphae allows for covalent attachment to the oral
mucosal surface, followed by biofilm formation, invasion, and
tissue damage.

LACTOBACILLI: PROBIOTICS TO
COUNTERACT ORAL PATHOGENIC
BIOFILMS

The use of probiotics to face up to biofilm-mediated oral
diseases has been studied during the last 20 years (26).
Examples of lactobacilli exerting anti-biofilm activity against
pathogens causing oral diseases are reported in Table 1. The
oral cavity is densely colonized by approximately 1,000 bacterial
species. The current understanding is that the overgrowth
of cariogenic microorganisms in dental caries is driven by
a shift in the oral homeostasis toward less diversity (37),
favored by acidic production from sugars that create optimal
microenvironmental conditions to support the proliferation and
biofilm formation of acid-tolerant S. mutans. Although in the oral
cavity, certain strains of lactobacilli can be cariogenic due to their
acidogenic and aciduric features, several studies have reported
the therapeutic potential of other beneficial Lactobacillus strains
(38–40). It has been proposed that lactobacilli may hamper
oral pathogens in different ways, even if the exact mechanisms
are still poorly understood and could vary among different
strains (41). However, lactobacilli can interfere with harmful
bacteria and fungi through competition for nutrients, co-
aggregation, production of antimicrobials (i.e., bacteriocin,
hydrogen peroxide, and organic acids), and modulation of the
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immune system (42). Moreover, there are few studies showing
that lactobacilli are able to integrate into the target biofilm
and transiently colonize the oral cavity, thus, competing with
pathogens for adhesion sites (43). As an example, Romani et
al. demonstrated that L. reuteri PTA5289 can be temporarily
incorporated in oral microbiota during a 6-weeks intervention,
causing a delay in the regrowth of S. mutants after full-mouth
disinfection with chlorhexidine (44). Some authors reported that
commercially available Lactobacillus strains (L. rhamnosus GG,
L. plantarum 299v, L. reuteri PTA5289 and SD2112, L. paracasei
DSM16671) reduced biofilm formation of S. mutans clinical
isolates on both smooth glass surface (27) and saliva-coated
hydroxyapatite (28). The persistent presence of a Lactobacillus
strain potentiates its interference with pathogens. For this reason,
Wu et al. evaluated the anti-biofilm activity of Lactobacillus
salivarius, a species frequently found in human saliva and tooth
surface of healthy subjects (45). They observed that the co-
cultivation of S. mutans with a panel of 64 strains of L. salivarius
resulted in a reduction of biofilm formation up to 69%, which was
higher than that obtained with the reference strain L. rhamnosus
GG. Moreover, L. salivarius reduced the expression of genes
(gtfB, gtfC, and gtfD) encoding for three glucosyltransferase
(Gtfs) involved in the synthesis of exopolysaccharide matrix,
and consequently crucial for S. mutans biofilm formation (29).
Similarly, Lee at al. demonstrated that L. rhamnosus GG exerted
an anti-biofilm activity by decreasing the expression of gtfs
in S. mutans but it was not able to integrate into the oral
biofilm model. Contrariwise, L. acidophilus ATCC4356 and L.
reuteri ATCC334 integrated into S. mutants biofilm without
affecting glucan production (30). S. mutans produces proteins
anchored in the cell walls to facilitate binding to C. albicans,
which in turn, supports streptococcal colonization and caries
progression of the formed biofilm (46, 47). Krzyściak et al.
showed that L. salivarius (HM6 Paradens) not only reduced
the biomass of mono-species biofilms of S. mutans and C.
albicans clinical strains, but also the multispecies biofilm.
Interestingly, SEM images revealed that the addiction to viable
probiotics inhibited the formation of hyphae and germ tubes
in C. albicans, consequently hindering the fungal pathogenesis
(32). Other authors supported this observation. In particular,
three Lactobacillus strains isolated from the saliva of caries-
free subjects were able to reduce biofilm development when co-
incubated with two oral strains of C. albicans (35). The anti-
biofilm activity seemed to be related to the downregulation of
Candida biofilm-specific genes, including HWP1 (a glycoprotein
located in the hyphal surface), ALS3 (a protein similar to
alpha-agglutinin that is essential for the adhesion of Candida),
and CPH1 (a regulator of morphogenesis implicated in the
maintenance of cell wall organization, pseudohyphal formation
in response to oxidative stress, and biofilm development) (39, 40).
Viela et al. demonstrated that L. acidophilus ATCC4356, a strain
widely employed as food supplements, inhibited the formation
of C. albicans ATCC18804 biofilm (57%) and filamentation in
vitro, with the best results achieved after 24 h of incubation;
the reduction in the number of fungal hyphae produced after
probiotic treatment was also observed in Galleria mellonella
infection model (48). James et al. have found that a multistrain

TABLE 1 | Probiotic Lactobacillus spp. exhibiting in vitro anti-biofilm activity

against pathogens involved in oral biofilm-related diseases.

Target biofilm Lactobacillus

species

References

S. mutans L. casei,
L. paracasei,
L. plantarum,

L. reuteri,
L. rhamnosus,
L. salivarius

(27–31)

Multispecies

(S. mutans and C.
albicans)

L. salivarius (32)

Multispecies

(P. gingivalis, S. oralis,
S. gordonii)

L. acidophilus,
L. rhamnosus,
L. reuteri

(33)

A.
actinomycetemcomitans

L. acidophilus,
L. casei,
L. fermentum,

L. johnsonii,
L. plantarum,

L. sake,
L. paracasei

(34)

C. albicans L. fermentum,

L. helveticus
L. paracasei,
L. plantarum,
L. rhamnosus

(35, 36)

probiotic combination (Lactobacillus helveticus CBS N116411,
L. plantarum SD57870, S. salivarius DSM14685) was effective
at both preventing the formation of (>67%) and removing
preformed (>63%) C. albicans biofilms (36). Moreover, the
combination of two lactobacilli supernatant significantly reduced
the expression of several C. albicans genes involved in the yeast–
hyphae transition, such as ALS3, EFG1 (hyphae-specific gene
activator), SAP5 (secreted protease), and HWP1, in agreement
with the results of Rossoni et al. (35).

Regarding periodontal disease therapy, in a study carried out
by Jaffar et al., different species of lactobacilli were sought for
their ability to eradicate preformed biofilm of three strains of
A. actinomycetemcomitans, with promising results. In particular,
biofilms of A. actinomycetemcomitans Y4 (serotype b) and A.
actinomycetemcomitans OMZ 534 (serotype e) were effectively
dispersed after the addiction of lactobacilli, with reduction
rates up to 90% and, interestingly, the authors identified three
probiotic enzymes, namely protease, lipase, and amylase, that
may be responsible for the anti-biofilm activity (34).

BEYOND PROBIOTICS: LACTOBACILLUS
DERIVATIVES

Beneficial outcomes of lactobacilli can be obtained not only
by living cells, but their byproducts (cell components or
metabolites) may be also able to trigger probiotic effects (49).
The terms “postbiotics” and “paraprobiotics” have emerged
recently and have gained increasing interest since they can
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TABLE 2 | Postbiotics/paraprobiotics from Lactobacillus spp. exhibiting in vitro anti-biofilm activity against pathogens involved in oral biofilm-related diseases.

Postbiotics/paraprobiotics Dosage Lactobacillus

species

Target biofilm References

Lipoteichoic acid 10-30 µg/mL L. plantarum S. mutans (55)

30-50 µg/mL L. plantarum Multispecies

(A. naeslundii, L. salivarius,
S. mutans and E. faecalis)

(56)

Polysaccharide Na L. reuteri S. mutans (57)

Biosurfactant 2.51–0 mg/mL L. acidophilus S. mutans (58–61)

2.5 mg/mL L. casei

1–10 mg/mL L. paracasei

1–10 mg/mL L. reuteri

1–10 mg/mL L. Rhamnosus

10 mg/mL L. acidophilus,
L. paracasei,
L. reuteri,
L. rhamnosus

S. oralis (58)

Cell-free supernatant L. casei,
L. fermentum,

L. johnsonii,
L. kefiranofaciens,
L. paracasei,
L. plantarum,

L. rhamnosus

S. mutans (31, 62–64)

L. brevis S. salivarius (65)

L. johnsonii,
L. kefiranofaciens,
L. plantarum,

L. rhamnosus

S. sobrinis (63)

L. plantarum Multispecies

(S. mutans and C. albicans)
(64)

L. reuteri,
L. rhamnosus

Multispecies

(P. gingivalis, S. oralis, S.
gordonii)

(33)

L. acidophilus,
L. casei,
L. fermentum,

L. johnsonii,
L. rhamnosus,
L. plantarum,

L. sake,
L. paracasei

A. actinomycetemcomitans (34, 66)

L. casei,
L. fermentum,

L. paracasei,
L. plantarum,

L. rhamnosus

C. albicans (35, 64, 67)

Na, not available.

exert a wide range of positive effects on the host, such as
immunomodulatory, antitumor, and antimicrobial activities, as
well as preservation of intestinal barrier (50). Postbiotics are
defined as soluble products or metabolites secreted by probiotics
capable of providing physiological benefits through direct
or indirect mechanisms. They include metabolic byproducts
of live probiotic cells, such as cell-free supernatant (CFS),
secreted proteins, bacteriocins, organic acids, and secreted
biosurfactants (BS) (51). The term paraprobiotics is used to
indicate nonviable probiotics (inactivated or dead intact cells),
or their cell structural components that can be recovered

after cell rupture. The latter comprise peptidoglycans, teichoic
acid, cell wall polysaccharides, surface proteins, and cell wall-
bound BS (52). Concerns about the administration of living
probiotics have been described in experimental models, clinical
trials, and case reports (50, 53). Postbiotics/paraprobiotics
display prolonged shelf life and good stability (54) and, in
this regard, can be potentially employed in oral therapy as
a safer alternative to the use of viable cells. Lactobacilli
postbiotics/paraprobiotics with anti-biofilm properties toward
oral pathogens are listed in Table 2 and briefly described in the
following sections.
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Lipoteichoic Acid
Teichoic acids are the second main constituent of cell walls of
lactobacilli and can be covalently linked to peptidoglycan as
wall teichoic acid or anchored to the cytoplasmic membrane
as lipoteichoic acid (LTA) (68). L. plantarum LTA is known
to possess anti-biofilm activity against Staphylococcus aureus
(69) and Enterococcus faecalis (70). Ahn et al. demonstrated
that it was also able to prevent the biofilm formation of S.
mutans on polystyrene plates, hydroxyapatite disk, and dentine
slices without affecting streptococcal growth, but interfering
with sucrose decomposition essential for the production of EPS
(55). Furthermore, L. plantarum LTA disrupted preformed oral
multispecies biofilm (Actinomyces naeslundii ATCC12104, L.
salivarius ATCC11741, S. mutans KCTC3065, and E. faecalis
ATCC29212) in a dose-dependent manner and potentiated the
effectiveness of common intracanal medicaments (i.e., calcium
hydroxide and chlorhexidine digluconate) (56).

Polysaccharides
Themost studied polysaccharides are EPS. Since their production
is highly strain-specific and depends on several variables (i.e.,
medium, pH, age of culture), EPS greatly varies in the degree of
branching and monosaccharide composition. EPS mediates the
interactions between bacteria and the environment and protects
against hostile conditions and immune response. On the other
hand, Lactobacillus-derived EPS revealed antimicrobial and anti-
biofilm activities toward a broad range of pathogens, including E.
faecalis, S. aureus, Escherichia coli, and Pseudomonas aeruginosa
(71). Moreover, L. reuteri BM53-1 was found to produce a short
extracellular polysaccharide with a molecular weight of about
30 kDa that impeded the production of sticky β-glucans by S.
mutans and consequently the biofilm formation. In particular, the
authors suggested that it acts by lowering the expression of gtfD
that is necessary to give sickness to insoluble glucans produced in
large amounts during the initial attachment of S. mutans on the
surface (57).

Biosurfactants
Biosurfactants are secondary metabolites consisting of complex
polymeric mixtures (i.e., glycolipids, lipopeptides) that can be
secreted extracellularly or bounded to the cell wall. In virtue of
their amphiphilic nature, BS exhibits emulsification properties
and may assist in the dispersal of preformed biofilms or
preventing the onset of pathogenic biofilms (52). Some studies
highlighted that BS may be used as an alternative to antibiotics
to decrease the chance of dental caries by acting as anti-
biofilm agents toward S. mutans. For instance, the anti-adhesive
activity of L. paracasei BS against several bacteria, including
S. mutans and S. oralis, was reported by Gudiña et al. (72).
Furthermore, excreted BS purified from cultures of L. reuteri
DSM17938, L. acidophilus DDS-1, L. rhamnosus ATCC53103,
and L. paracasei B21060 reduced the adhesion and biofilm
formation on the titanium surface of S. mutans and S. oralis in
a dose-dependent manner (58). Evidence shows that the anti-
biofilm behavior of both excreted and cell-bound Lactobacillus
BS can be ascribed to the downregulation of Gtfs genes, mainly
gtfB and gtfC, as previously described for living probiotic cells

(59–61). In addition, the expression of ftf, a proadhesive gene
encoding for S. mutans fructosyltransferase, resulted significantly
reduced in the presence of BS produced by L. acidophilus
DSM20079 (59), L. casei ATCC39392 (60), and L. rhamnosus
ATCC7469 (61).

Cell-Free Supernatant
Cell-free supernatant of lactobacilli is a consortium of low
(i.e., organic acids, hydrogen peroxide, and reuterin) and
high molecular weight (i.e., bacteriocins and bacteriocin-like
polypeptides) metabolites (52). Several findings suggested that
Lactobacillus-derived CFS acts as bio-liquid-detergent reducing
the adhesion and biofilm formation of pathogens to abiotic and
biotic surfaces. The formation of biofilms of multidrug resistant
superbugs, namely P. aeruginosa and S. aureus, were successfully
mitigated by CFS recovered from different Lactobacillus species,
including L. casei, L. fermentum, L. gasseri, L. plantarum, and
L. salivarius (73–77). Several authors investigated the effects
of CFS deriving from Lactobacillus spp. commonly used as
dietary products on the development of dental caries. As an
example, Lactobacillus brevis FF2, isolated from fermented
oil, exerted anti-biofilm activity against S. salivarius. Clinically
isolates belonging to L. paracasei and L. fermentum species
significantly reduced the number of cariogenic S. mutans UA159
cells in biofilm grown on hydroxyapatite (62), while Lin et
al. found that CFS from five lactobacilli inhibited the biofilm
formation of the same pathogen on the glass surface. The acidic
environment produced by CFS seemed to be important to elicit
the anti-biofilm effects since the activity was lost for three
strains out of five after adjusting the pH of CFS to 6.5 (31).
Moreover, Jeong et al. observed that Lactobacillus-derived CFS
caused a variation in streptococcal expression of three classes
of biofilm-formation associated genes, namely those involved
in carbohydrate metabolism, adhesion, and biofilm structure
(63). Srivastava et al. reported that L. plantarum 108 CFS
inhibited the formation of S. mutans and C. albicans mixed
biofilm by 85%, and also reduced preformed biofilm by 33%.
As observed for living cells, probiotic CFS downregulated the
expression of S. mutans genes associated with Gtfs activity
(gtfB, gtfC, and gtfD) and C. albicans genes involved in
adhesion (ALS3 and ALS1) and hyphae formation (HWP1)
(64). Furthermore, Lactobacillus-derived CFS altered biofilm
formation and the transcription of virulence-associated genes
of periodontal pathogens. The anti-biofilm activity exerted by
L. rhamnosus (Lr32 and HN001) and L. acidophilus (LA5 and
NCFM) CFS was associated with a diminished expression of
two exotoxins of A. actinomycetemcomitans (leukotoxin and
CDT) and with the downregulation of katA, encoding a catalase,
which promote Aggregatibacter survival under oxidative stress
(66). L. acidophilus LA5 CFS also reduced the abundance
of P. gingivalis in multispecies biofilm along with S. oralis
and S. gordonii. In this case, a panel of P. gingivalis genes
resulted downregulated, including fimA (encoding the main
fimbriae), MFA1 (involved in auto-aggregation), kgp and rgp
(involved in EPS accumulation), and Lux6 (pivotal in quorum
sensing) (33).
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CONCLUSIONS

Therapies for periodontal diseases are costly and may not be
sufficiently effective. Findings explored in the present mini-
review highlighted that lactobacilli can behave as anti-biofilm
agents against a variety of microorganisms responsible for oral
diseases, although the activity strongly varies among different
Lactobacillus strains. Notably, not only living cells but also
Lactobacillus derivatives may exert antipathogenic effects. Thus,
the employment of postbiotics, paraprobiotics, or a mixture of
both can represent a novel bio-therapeutic approach to face
biofilm-related oral diseases, favoring the formulation stability
and safety. It is also a step forward in the search for alternative

solutions to the use of antibiotics, in the perspective of containing
the spread of antibiotic resistance.
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