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Next-generation medicine encompasses different concepts related to healthcare
models and technological developments. In Latin America and the Caribbean,
healthcare systems are quite different between countries, and cancer control is
known to be insufficient and inefficient considering socioeconomically
discrepancies. Despite advancements in knowledge about the biology of
different oncological diseases, the disease remains a challenge in terms of
diagnosis, treatment, and prognosis for clinicians and researchers. With the
development of molecular biology, better diagnosis methods, and therapeutic
tools in the last years, artificial intelligence (AI) has become important, because
it could improve different clinical scenarios: predicting clinically relevant
parameters, cancer diagnosis, cancer research, and accelerating the growth of
personalized medicine. The incorporation of AI represents an important
challenge in terms of diagnosis, treatment, and prognosis for clinicians and
researchers in cancer care. Therefore, some studies about AI in Latin America
and the Caribbean are being conducted with the aim to improve the
performance of AI in those countries. This review introduces AI in cancer care
in Latin America and the Caribbean, and the advantages and promising results
that it has shown in this socio-demographic context.
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Introduction

Despite advancements in knowledge about the biology of the different oncological

diseases, complex interactions between the tumor and the microenvironment, the

cellular heterogeneity, and Darwinian evolution of tumors; it continues to be a big

challenge in terms of diagnosis, treatment, and prognosis for clinicians and researchers

(1). To solve this complexity, technologies such as Artificial Intelligence (AI) have

continued to develop. This computer science-derived technology encompasses a wide

variety of potential functions that could improve different aspects like predicting
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clinical or molecular parameters for prognosis, cancer diagnosis,

cancer research, and personalized medicine (2).

AI, a term coined in the 1950s, is defined as a machine’s

ability to learn, recognize and relate patterns for decision-

making. AI use has increased in medical oncology over the

last decade, reflecting the major impact that computer systems

and artificial neural networks can have. Inside this kind of

technology, we can find Machine learning (ML) derived from

AI and Deep Learning (DL) a subfield of ML (3). The first

one is based on the performance of mathematical and

statistical operations inside artificial neural networks that have

the potential to transmit signals between them. That

information transmission allows encoding and decoding of

data. These ML models can be supervised or unsupervised.

The second one represents a more recent technique with

better performance compared with previous AI algorithms in

different disciplines, related to complex inputs analysis using

complex structures (neural networks) which gives it a new

potential for the resolution of some of the more complex

problems of oncology, like cancer image analysis radiological

and digital pathology included (4). Those systems simulate

human data processing and sometimes overcome it in certain

tasks. Based on a large and diverse set of information

collected through minimally invasive techniques, AI has

shown an unquestionable potential for care and impact on the

path of early cancer detection, risk control, relapse, and

guidance of therapeutic options (3).

The amount of new literature in these areas is undeniable

and points to the widespread and possible applicability of

cancer solutions and precision medicine (5). However,

although AI has provided a suitable solution to some

drawbacks, its implementation has some intrinsic problems.

These problems include data standardization, interpretability,

validation and utility, integration of these technologies with

healthcare professionals, and regulatory and legal issues,

among others (6). Other issues correspond to cancer-related

challenges that are not easily resolved by these technologies

and require an updating process (ex. Reinforcing algorithms)

to exploit clinically feasible utility (7). Finally, some additional

disparities in the research and execution are prevalent and

more evident in low and medium-income countries (LMIC),

such as Latin America, due to socio-economic imbalances

which can affect funding for critical areas for the development

and integration of these models (8).
Impact of precision oncology in
cancer care

With the development of molecular biology, diagnosis, and

therapeutic tools in the last few years, the paradigm of “one-

size-fits-all” therapies for malignant neoplasms has been

completely revoked. Precision oncology (PO) is one of the
Frontiers in Medical Technology 02
reasons for that change in the therapeutic approach. PO

involves a series of diverse strategies that try to understand

the biology and pathophysiology of patient-specific

malignancy (9). The genomic landscape of cancer cells is the

focus of PO, but not the only one. Understanding the

complex genomic interactions of malignant cells has been

used as the base for the development of targeted therapies,

and these therapies have become the new and personalized

approach for oncologic patients.

However, several previous requirements must be fulfilled

to finally select the right and precise therapy: correct

diagnosis, molecular profiling, and proper staging. All these

variables represent data (sometimes complex). That’s when

AI can play an important role. Integration of clinical and

genomic information can be challenging, especially, when

specific data of genomic characteristics are present to the

clinician and an important number of therapeutic options

could be considered (10).

Although the implementation of PO can be challenging due

to the costs of molecular techniques and diagnosis tools, it has a

significant effect on oncological patients, improving survival, life

quality, and optimizing therapy. For example, one study by

Quinn et al., found that among one thousand patients with

different oncologic diagnoses, 25% showed a partial response

rate to treatment and almost 18% presented a stable disease

(11). The impact of PO on patient outcomes is promising and

it could be the next guide for decision-making in a clinical

context. Also, Haslem et. al, analyzed nearly 1,800 patients

and their data showed a reduction of almost 7% reduction in

general costs in the last three months of life among patients

who received targeted therapy (12). Here, the study suggests

that PO could improve not only survival in oncologic disease,

but also optimize the healthcare costs among these patients,

both important variables for the healthcare system.
Artificial intelligence and
precision oncology

The development of advanced informatic tools, the

progressive improvement in genomic sequencing, and related

technologies have allowed a constant growth in the body of

information that we can obtain from patients (genomics,

transcriptomics, proteomics, metabolomics, and epigenomics).

We face big obstacles managing, organizing, and processing

the vastness of these data, but also encounter great

opportunities as this information will be valuable for a better

understanding of patient populations in a more personalized

and precise way (13). AI is a set of informatic algorithms and

computing frameworks that are usually used to simulate,

enhance, and or even replace human reasoning in the form of

decision-making, speech recognition, language understanding,

visual perception, and pattern recognition (14). The final goal
frontiersin.org

https://doi.org/10.3389/fmedt.2022.1007822
https://www.frontiersin.org/journals/medical-technology
https://www.frontiersin.org/


Sussman et al. 10.3389/fmedt.2022.1007822
of using AI in PO is to accomplish tasks that would normally be

performed by human experts in a certain field. However, AI and

the rising computing power might sometimes perform these

tasks more efficiently, especially in cases in which big data is

involved and information processing becomes overwhelming

for a human. The power of AI will not only be able to

manage and process these data but also to find novel and

interesting associations between multiple variables. In this

section, we will discuss the role of AI in the oncology clinical

practice, touching on different topics involved in the diagnosis

and treatment of malignant conditions.
Molecular profiling

Neoplastic conditions are highly heterogeneous.

Advancements in molecular and cellular biology have shown

that tumors from the same tissues are not necessarily identical.

Molecular profiling uses techniques related to NGS, like whole

genome sequencing and RNA sequencing (which can even be

done at a single-cell level), immunohistochemistry, and

epigenomic studies, to determine different presentations of a

specific tumor. Molecular profiling better characterizes subsets

of patients with specific genetic, transcriptomic, metabolic, and

epigenomic patterns (10, 15) (Figure 1).

Initially, molecular profiling was performed at a small scale,

and analysis of outcomes related to certain disease molecular

patterns was extracted from clinical studies usually with a

small sample of patients. One example that might illustrate

this idea is the case of breast cancer (BC), in which initial

molecular profiling was restricted to the expression of certain

proteomic markers involved in BC pathogenesis like estrogen

receptors, progesterone receptors, and the upregulation of

HER2/ERBB2 (16, 17). This initial approach classified BC

according to the presence of one or more of these traits. Each

subtype was analyzed for outcome prognoses like overall

survival, risk of recurrence, and treatment efficacy.

Nowadays, BC subtypes have been furtherly characterized,

with more subtypes present in each category, creating

subgroups of patients that might benefit from interventions

and subsets of patients with different outcomes risks. The

Cancer Genome Atlas (TCGA) has played a critical role in

these developments. The TCGA is an international effort of

scientists and clinicians gathering immense amounts of data

from cancer patients, including clinical, histologic,

environmental, and omics data. Since its inception, the TCGA

has produced approximately 2.5 petabytes of data. All this

data is publicly available for researchers in the general public,

to use and analyze to find new patterns of disease that might

precisely impact cancer outcomes (18).

Multiple groups of researchers have used AI, especially ML

algorithms, and data mining approaches (19) to elucidate

valuable meanings from all these data, with different
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applications in cancer research and clinical practice (19). Van

IJzendoorn et al. used machine learning algorithms to analyze

transcriptomic profiles from soft tissue sarcoma samples and

run deep neural networks to successfully find novel

prognoses, diagnostic markers, and possible treatment targets

(20). Abraham et al. used a very interesting approach. They

analyzed 77,044 genomic and transcriptomic profiles and used

them to evaluate samples from patients with cancer of

unknown primary origin, accurately identifying 71.7% of

cases. Its precision was even higher than that of pathologists,

who needed to change the diagnosis in 41.3% of cases (21).

Like these groups, there are multiple other approaches

available that are helping refine precision medicine (22).
Germline variant discovery

The discovery of germline variants is a revolutionary

pipeline in bioinformatics (23). The main feature of germline

variant discovery is based on comparing a species normal

genomic sequence with sequences obtained from a patient

using NGS techniques. Therefore, mutations and genetic

alterations can be found in certain genes and non-coding

regulatory regions by comparing a cancer genome with a

template of healthy DNA. This process of comparing and

identifying differences is known as variant calling (14). The

workflow for variant calling is a somewhat bothersome

process in which a lot of bias and propensity to error might

be found, not to mention high time consumption. Some steps

include improving the data quality by removing duplicates,

insertions, deletions, sequence re-aligning, and base

recalibration. AI can help perform all these pipelines with

increased accuracy and higher efficacy. Kothen-Hill et al.

successfully performed variant calling from liquid biopsies,

detecting early-stage lung cancer (24). These methods have

been continually improved. Wood et al. developed a ML

model that successfully calls cancer-related variants with a

sensitivity of 97% and a predictive value of 92% using

exosome data from the TCGA (25). Beyond variant calling, AI

is also being used to predict the impact of new mutations in

the expression, function, and structure of their translated

transcripts. This is done by using algorithms that perform

homology modeling. Some models can even predict if a new

mutation is prone to initiate a neoplastic cascade by analyzing

the position in the coding region in which the mutation is

located (26).
Imaging genomics (Radiomics/
Radiogenomics)

The association between a patient’s tumor imaging and

genomic data product of NGS is known as radiomics or
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radiogenomics (27). Pattern recognition abilities from AI

algorithms are currently in use for the analysis of different

images like histologic or radiographic pictures. AI can identify

structures, shapes, lines, points, colors, and boundaries to

differentiate healthy tissue from tumor images. Currently,

various AI models can outperform medical imaging experts in

the diagnosis of cancer and in making prognostic predictions

(28) (Figure 2).

Furthermore, information derived from the analysis of

many number of images can be associated with certain traits

obtained during molecular profiling. Thus, molecular

classification and sometimes prognosis can be predicted from

the analysis of diagnostic imaging (28). In 2022, Yin et al.

published their data on the use of a convolutional network to

assess the presence of brain metastases vs the analysis

performed by senior and junior radiologists. The model was

able to predict the presence of metastasis with higher accuracy

than the radiologists. These kinds of studies have also been

performed also in different tumors like mantle cell lymphoma,

to predict prognosis and treatment response rates (29). Today

the field of radiogenomics is in development, but it promises

to become a very powerful tool for oncology clinicians and

surgical specialists.
Digital pathology

Initially considered the process of digitalizing images from

slides for further analysis, digital pathology has transformed

into a discipline in which computational methods and AI are

at the vanguard. Like radiogenomics, digital pathology

provides the framework for using ML models in the diagnosis

of multiple conditions. Cancer is one of the most studied

pathologies in this field. With the increased incidence of

malignant diseases in our populations, refinement in

diagnostic pathology methods and classifications is needed.

Sometimes it can take a pathologist a considerable amount of

time to give a proper diagnosis with adequate risk

stratification, presence of determined biomarkers, molecular

profiling, and proper tissue processing. This amount of time

dedicated to analyzing samples plus the increased number of

samples needed to be analyzed creates a delay in diagnosis or

even induces pathologists to perform these processes as fast as

possible, which increases the risk for error, a common human

trait. AI in digital pathology has been used to perform

analysis related to TNM staging (30). Analysis of

immunohistochemistry, which is common in oncology

diagnosis have also been studied using AI models for

expression of PD-L1 (a trending biomarker to determine

candidates for immune checkpoint inhibition) and

determining hormonal receptor status in BC (22).

In general, digital pathology, radiogenomics, and molecular

profiling create a myriad of tools that when analyzed by a well-
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applied to PO. The era of information is certainly expected to

improve our understanding of cancer, who should be treated,

and how it should be treated.
Artificial intelligence and cancer
treatment

Cancer is a complex etiology, as its molecular characteristics

and interactions are too. In the last decades, biomarkers have

become a cornerstone for cancer treatment for their many

implications: risk assessment, screening, differential diagnosis,

classification and cancer typification, response to treatment

monitoring, and prognosis in general (14, 31). These

biomarkers can be identified by several techniques focused on

the detection of genomic alterations. Next-generation

sequencing (NGS) performed by invasive and non-invasive

methods, like liquid biopsy, can identify genetic alterations

that might suggest the selection of one therapy, the escalation

of another, or the de-escalation of another one (32).

However, genetic material is not only the source for

biomarker discovery. Proteomics and analysis of specific

amino acid sequences can also offer a new approach for

biomarkers. Proteins represent the result of genetic material

engineering inside the cell. Machine-based proteomics uses

mass-spectrometry and deep learning to build a data network

based on peptides to identify common synthetized proteins

related to a specific oncologic disease (19, 33). It is interesting

that other characteristics such as imaging findings or

radiologic patterns can serve as biomarkers today. They could

be used to construct prediction models with the potential to

generate data about prognosis or prediction for patients.

Specific textures, forms, borders, or intensity under

imageology techniques could be analyzed by AI and

associated with a unique diagnosis (34).

On the other hand, biomarkers can also be targets for a

therapeutic approach. Commonly, for oncology drug

development, as for other drugs, the process begins with

target identification, followed by lead optimization, pre-

clinical development, clinical development (Phase 1, 2, and 3

studies), and regulatory approval (35). This process usually

takes months, or even years, and complications can occur in

every phase. AI has the potential for the prediction of

function, differences, and weaknesses of molecules derived

from the transcriptomics database to identify a new

therapeutic target (36). ML biology analysis can shorten the

process of target identification modulating complex

information related to the heterogeneity of molecules and

biochemical interactions. Genomics and proteomics can be

used for drug discovery. Identifying receptors, microRNAs,

transcription factors, inhibitors, co-effectors, and other

molecules have been analyzed for target therapy (37, 38).
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Bias, legal, and ethical issues in cancer-
related artificial intelligence

In the case of cancer care, the application of AI includes

cancer detection, characterization of the patient’s prognosis,

and optimizing care or clinical operations by increasing the

health system’s capacity and relocating resources. However, it

is important to consider the legal and ethical problems that

society faces due to the use of AI. These include respect for

privacy, the need for surveillance mechanisms, the prevention

of secondary errors because of gaps in knowledge/

information, and the prevention of errors in procedures (9).
Legal risk
The European Parliament Resolution was created,

supervised, and published by the department for

“constitutional issues and rights for citizens” in response to the

request from the European Parliament committee on legal

issues. This report focuses on the critical need to create a

resolution to safeguard the interests of human beings by

legislating the use of robots and AI in daily medical practice

and clinical studies (9).

Currently, it is still a topic of debate whether AI fits all legal

categories or new categories must be developed to make clinical

practice more transparent, equitable, fair, and respectful (9, 39).

The use of informed consent for data use, security, inclusion,

transparency, fairness in the algorithms and confidentiality are

essential factors to be considered from the legal perspective.

Since algorithms are not ethically neutral, their results must

reflect human ethical standards, either good or bad. For

example, in cancer screening programs, a learning algorithm

can prioritize minimizing false negatives rather than

minimizing false positives or acting differently depending on

the characteristics of the affected tissue or different

sociodemographic groups (39). AI can create “a black hole,”

defining the most important: interpretability. If the algorithm

explains itself, humans can know what it is doing and what

variables it encodes. So, in theory, all AI systems will

inevitably reflect numbers (patient outcomes), and these

values will be challenging to discern (undetected systematic

errors) in large populations (40, 41).

The introduction of AI in the health system is exponential,

without clear regulators and established monitoring processes

or patterns, meaning that we do not know what legal

responsibility AI has during unsuccessful events. This

“regulatory vacuum” in the application of AI creates the need

to build a new regulatory framework to protect vulnerable

patients, perform realistic identification and maintain (42).
Bias
Evidence suggests that AI models generate biases. However,

one should never forget that underlying information rather than
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the algorithm is responsible for these biases. The AI models

reflect information that contains human decisions or

information that reflects second-order effects of social

pressure or historical inequities. Depending on how the

information is used and how it is collected, it can also

contribute to biases (training information or algorithm

designs) since it is possible that information-generating

systems could create repetition feedback loops, leading to

errors in the results and outcomes (43).

It is well known that health systems and evidence-based

medicine are biased towards disadvantaged groups since those

groups are under-represented in the databases. The predictive

outcomes from training models must be carefully selected to

ensure that they are not associated with socioeconomic biases,

resulting from inequities in the health system. Automation

biases can also occur when humans accept the machines’

decisions even if the result is wrong. Clinical expertise and

correlating physical examination and the patient’s medical

records are essential to prevent those biases. If the healthcare

professional skips those steps, it will result in more biases that

will lead to less cost-effectiveness and overdiagnosis in those

cases (42).

AI systems require a significant quantity of high-quality

information for training, validation, authorship, consent to

use, and protection of critical information. Therefore, some

technology companies are now offering software for data

collection or history recording systems that were created to be

used exclusively for patient/clinic medical records. However,

concerns about confidentiality are still a critical point, and

questions about the ownership (software companies vs.

patients) of the data collected in those systems are still on the

table (44).

In addition, another major issue is the transferability of

algorithms to all existing platforms. Algorithms are created

and tested in specific environments; therefore, they will not

automatically work in another environment. For this reason,

efficient and effective transfer training is mandatory to avoid

the above-mentioned weakness.

Medical ethics and responsibility
The primary concern of clinicians, particularly those who

diagnose patients, is the exclusion of their participation in the

clinical process. That’s why merging human medical

knowledge and AI is imperative, leading to more efficient and

effective medical care.

Additionally, with the introduction of AI, it is possible that

we could face a disruption of the traditional conception of

medical responsibility over patients. It is important to keep in

mind that patients should always have a personal relationship

with their treating physician, even if AI is being used as a

supporting tool during the clinical process. Additionally,

healthcare professionals should always take responsibility for

treatment decisions, considering the patient’s medical record,
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physical examination, and medical expertise; AI should only be

considered as a supporting tool and should never replace

healthcare professional knowledge (39, 42, 44, 39–44) So, if

physicians only rely upon AI, the ability to diagnose, think,

analyze and develop necessary clinical skills for daily medical

practice could be hindered (39–44).

Currently, there are no recommendations or regulations for

legal or ethical issues regarding the use of AI. Therefore, the

integration of AI into daily clinical practice and research is

still a challenge.
TABLE 1 Limitations for AI in cancer care in LMICs.

Type of
limitation

Description Strategies to overcome
the limitation

Data
Standardization

Difficulties with data
collection

Healthcare professionals
training and economic
resources for technology.

Data heterogeneity Strategies such as mCODE,
PROM, HistoQC, Deep Focus,
or GAN-based image
generators are being developed.

Interpretability Difficulties with
outcomes interpretation

Some models to ease the
interpretation of the results are
being developed

Validation and
Utility

Difficulties with AI
validation on real clinical
scenarios

More studies are being
conducted
Artificial intelligence in oncology:
perspective for developing countries

Currently, cancer is considered the second cause of death in

Latin America and the Caribbean and approximately 600.000

people die from cancer annually in the United States (US).

Additionally, each year 1.8 million people are diagnosed with

cancer in the United States and more than 1.3 million people

in Latin America and the Caribbean (45, 8). To provide

optimal cancer care a specialized multidisciplinary team in

continuous update and multiple special facilities are required.

In addition to that cancer care is costly, it is reported that in

the US the expenses for cancer treatment in 2020 reached 173

billion dollars (6).

It is known that cancer control in Latin America and the

Caribbean is insufficient and inefficient, considering the

previously mentioned characteristics. It is known that there

are major limitations to access to trained healthcare

professionals, new therapies, and adequate facilities for cancer

care, because of inadequately distributed budget al.locations,

and geographical and cultural barriers (8) (Figure 3).

Therefore, some studies about AI that have been conducted

in developing countries aim to improve the performance of

health facilities, resource allocation from a systems

perspective, reduction of traffic-related injuries, and other

health system issues with cost-effective interventions (46, 47).

To date, some of the most promising results regarding AI are

represented in disease diagnosis, specifically digital pathology,

radiographic imaging, and clinical photographs (48). Most

studies regarding AI in oncology conducted in developing

countries were about disease detection in cervical cancer and

pre-cervical by microscopy or cervigrams; an accuracy of

greater than 90% has been reported (46). Preliminary results

in this area are promising and AI could be considered a very

good option in countries with a lack of health providers, AI

could help to supplement clinical knowledge (49).

Despite the encouraging results, some aspects needed to

reach successful results with AI in oncology are limited. For

example, personnel training to be qualified to register, collect,

and interpret data is difficult in Latin America and the

Caribbean because of the geographical limitations and the
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fragmented data capture due to the several healthcare

organizations or insurance providers (47, 50, 51).

Furthermore, the lack of open access structured datasets that

integrate phenomics, genomic, and environmental health

determinants is another imitation of AI implementation (31,

19). To reach this goal new types of data sharing protocols

and standards on inter-operability and data labeling are

needed; at the moment this is only happening in the UK and

Europe (19). In addition, the successful AI methods used in

current studies, don’t consider general health system costs or

psychological or social consequences (46).

AI promotes equity in patient access to high-quality health

care and stimulates investments in machine learning and data

science, leading to scientific and economic development.

However, to reach optimal cancer care with help of AI in

developing countries further studies are needed that consider

local needs, health system constraints, and disease burden of

the location rather than the availability of data and funding.
Challenges and limitations

Although AI and PO are showing promising results for the

future of oncology, this path is full of interesting challenges and

some limitations intrinsic to the complexity of these

technologies and others related to the implementation of these

in Low and Middle-income countries (LMIC) (Table 1).
Data standardization
Data from healthcare institutions often are not

homogenized; on the contrary, tend to be disorganized, and

sometimes data are absent. Data quality is critical since

current AI models require the standardization of terminology

and data collection for better performance. AI algorithms

were created to be used primarily with a particular system; if

the algorithm is used with other systems it would probably

show low performance. This represents a striking barrier
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FIGURE 1

General application of artificial intelligence to genomics. Next-generation sequencing (NGS) data comes from genomics, transcriptomics,
epigenomics, or single-cell omics. These approaches led to an accumulation of large-scale datasets to solve challenges of cancer research,
molecular characterization, tumor heterogeneity, and drug target discovery. As the large scale of omics data accumulated, various machine
learning techniques, including graph algorithms and deep neural networks, are applied for dimensionality reduction, clustering, or classification.

Sussman et al. 10.3389/fmedt.2022.1007822
because these data storage systems are not generally available in

all healthcare facilities (52).

Radiomics and digital pathology are two fields where

standardization is vital and more complex. Images are widely

dispersed in different hospitals or healthcare centers,
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sometimes the images depend upon the operator, and

sometimes the image known as the gold standard of a certain

disease isn’t even performed, like in the case of tumor

segmentation. This heterogeneity complicates the comparison

between images and represents a barrier for AI.
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FIGURE 2

Artificial intelligence and radiomics.
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In the case of digital pathology, high-quality data are

essential for the correct functioning of AI algorithms. For

instance, in AI-mediated segmentation of a specific structure

in a whole slide image (WSI), the completion of this task

highly depends on the veridical reference annotations (data)

by expert pathologists, therefore the need for well-structured
Frontiers in Medical Technology 08
and homogeneous organized data. Nevertheless, it is known

that the current absence of this standardization concerning

staining reagents, protocols, and section thicknesses (of

radiologic images) is reported (52–30). To address these issues

there have been some initiatives such as the minimum

Common Oncology Data Elements (mCODE), which tries to
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FIGURE 3

Integrating AI to cancer genomics in Latin America and Low Middle-Income Countries (LMICs). AI technologies are forecast to add US$15 trillion to
the global economy by 2030. According to the findings of our Index and as might be expected, the governments of countries in the Global North are
better placed to take advantage of these gains than those in the Global South. There is a risk, therefore, that countries in the Global South could be
left behind by the so-called fourth industrial revolution. Not only will they not reap the potential benefits of AI, but there is also the danger that
unequal implementation widens global inequalities. In 2017, Oxford Insights created the world’s first AI Readiness Index.
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identify and standardize essential cancer data in electronic

health records (EHR). Another method of standardization

currently being used is the Patient-reported outcome measures

(PROMs), which consists of early data collection directly from

the patient. In the case of radiomics and digital pathology,

some automated tools such as HistoQC, Deep Focus, and

GAN-based image generators are being developed to help this
Frontiers in Medical Technology 09
cause. Implementing some of these solutions although

effective carries an additional burden on healthcare

professionals putting them at additional risk of burnout (6, 53).

Interpretability
One of the main criticisms of AI and deep learning (DL) has

been the interpretability of the output, gaining the name of
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“black box” due to the difficulty in the interpretation. These

technologies require servers and trained staff in

bioinformatics. This has caused a steeper clinical adoption

curve of this technology by oncologists (54, 55). Due to this

fact, some models such as post hoc methods or supervised ML

have been studied to facilitate the interpretation of the output

once DL made its prediction. One example of the utilization

of these was exemplified in a study of brain tumors by tumor

biopsy specimens, where to one participant with a high-grade

tumor a heat-map was performed indicating areas of early

microvascular proliferation (an indicator of progression);

facilitating interpretability (30). Another example was the

combination of DL and hand-crafted models to increase

interpretability in the study by Wang et al. where DL was

used first for nuclear segmentation and posteriorly hand-

crafted was performed for investigating nuclear shape and

texture in digital histologic images of early-stage non-small

cell lung cancer (56). Although these strategies for enhancing

interpretability are helpful and probably more applicable in

real clinical scenarios, these technologies have been criticized

because DL should not require additional models to facilitate

its interpretation (57).

Validation and utility
The advances in AI and PO are notorious and the literature

on DL algorithms performance is extensive, however, the

validation of these technologies in real clinical scenarios

remains troublesome. To achieve this end, these models must

be internally and externally validated, and prospective studies

or prospective-retrospective analyses should be used (40). A

fair number of studies are internally validated comparing the

AI model to the expected results (thrown by the gold

standard) relying on parameters such as sensitivity, specificity,

and Area Under the Curve (AUC). These previous give a

landscape of AI performance, regardless, few amounts of

studies utilize external validation, therefore, forcing a cautious

interpretation of performance due to no protection to specific

characteristics of one cohort that could overfit AI

performance. Beyond validation, the clinical utility requires

additional studies to investigate specific clinical endpoints,

such as overall survival, progression-free survival, toxicity

reduction, and improved quality of life, among other objective

response rate measures. Although the gold standard of these

additional studies is a randomized control trial, the intrinsic

complexity of carrying out these studies has opened the door

for the applicability of prospective-retrospective analysis to

solve this issue (52, 54).

LATAM challenges and limitations
In addition to the previously discussed, LMIC have other

unique situations concerning limitations and challenges.

Precision medicine has not been a field with extensive

research, with less information available in areas with high
Frontiers in Medical Technology 10
population and ethnic diversity. Deficiencies in certain areas

make this task even more challenging, such as inadequate

infrastructure, insufficient resources, suboptimal regulations,

and scientists not at the forefront of these technologies (58).

With respect to PO in Latin America, although it has gained

interest, as demonstrated by LMIC being the area with the

most significant average annual growth from 2005 to 2012 in

clinical trial participation (33%). The design of this type of

studies that requires molecular-based selection criteria,

bioinformaticians and specialized personnel, biotechnology

companies, and government regulatory measures. All of that

requirements added to socioeconomic disparities intrinsic to

Latin America and accentuated by differences in the public

and private healthcare sectors, making the implementation of

AI a complicated task in Latin America, sometimes requiring

multicenter and multinational research with the aim of more

available data (40, 59, 60).
Conclusion

It is known that the use of AI as a support tool in cancer care

has shown auspicious results. Currently, some studies and

strategies are being conducted in Latin America and the rest of

the world to incorporate AI into daily clinical practice in

cancer care. However, more clinical trials and more

sociodemographic and economic studies are needed to

consider the use of AI in the standard clinical practice in Latin

America, a challenging scenario for technology innovation.
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