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Spinal cord injury (SCI) is a serious condition caused by damage to the spinal cord

through trauma or disease, often with permanent debilitating effects. Globally, the

prevalence of SCI is estimated between 40 to 80 cases per million people per year.

Patients with SCI can experience devastating health and socioeconomic consequences

from paralysis, which is a loss of motor, sensory and autonomic nerve function below the

level of the injury that often accompanies SCI. SCI carries a high mortality and increased

risk of premature death due to secondary complications. The health, social and economic

consequences of SCI are significant, and therefore elucidation of the complex molecular

processes that occur in SCI and development of novel effective treatments is critical.

Despite advances in medicine for the SCI patient such as surgery and anaesthesiology,

imaging, rehabilitation and drug discovery, there have been no definitive findings toward

complete functional neurologic recovery. However, the advent of neural stem cell therapy

and the engineering of functionalized biomaterials to facilitate cell transplantation and

promote regeneration of damaged spinal cord tissue presents a potential avenue to

advance SCI research. This review will explore this emerging field and identify new lines

of research.

Keywords: spinal cord injury, cell therapy, tissue engineering & regenerative medicine, electroactive, electrical

stimulation

INTRODUCTION

Spinal cord injury (SCI) often results in significant neurological dysfunction and long-term
disability. Globally, the prevalence of SCI is estimated between 40 to 80 cases per million population
per year (1), with approximately 1000 new cases per year in the United Kingdom (UK) (2). SCI
is often associated with negative health and socioeconomic effects for patients, affecting young
males at comparatively higher proportions than females in age-matched controls (3). Secondary
complications that are widely encountered clinically include respiratory dysfunction, loss of
genitourinary and gastrointestinal function, thromboembolic disease, pressure sores, neuropathic
pain, spasticity and obesity (4). Furthermore, the lack of physical activity from paralysis contributes
to the development of coronary artery disease, hyperlipidaemia, insulin resistance and psychosocial
issues of disability in chronic SCI patients (5). Themanagement of SCI carries substantial economic
impacts with high lifetime costs averaging £1.12 million per SCI case in the UK (6). It is quite
evident that the health, social and economic consequences of SCI are significant, and therefore
elucidation of the complex molecular processes that occur in SCI and development of novel
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FIGURE 1 | Number of publications by decade on spinal cord injury. Triangles

represent hits generated searching the Web of Science repository performed

on 16 December 2021 for literature describing spinal cord injury using the

following keywords: (spinal cord injury) AND (spinal cord injury and imaging)

OR (spinal cord injury and rehabilitation) OR (spinal cord injury and intervention)

OR (spinal cord injury and surgery) OR (spinal cord injury and drug delivery)

AND (spinal cord repair) AND (spinal cord injury and bioengineering) NOT

(tumour) NOT (cancer). The search retrieved 42,923 articles. Circles represent

hits generated searching the Cochrane Library for literature describing clinical

trial articles on interventions for spinal cord injury by decade. The search

retrieved 3,281 articles.

effective treatments is critical. To date, there has been a wealth of
research into treatments for SCI albeit without successful clinical
translation (Figure 1). Herein we explore the combination of
stem cell therapy and electroactive biomaterials as a potential
solution to this problem.

CURRENT CLINICAL MANAGEMENT
STRATEGIES ARE NOT TRULY
REGENERATIVE

As no cure exists, the routine clinical management of SCI aims to
prevent further injury and disability through following strategies
widely recommended by clinical guidelines across multiple
healthcare systems (7–9). On admission to the emergency room,
evidence-based guidance recommends a clinical assessment and,
often, stabilization of the spine through traction realignment
surgery to prevent further injury to the spinal cord (1, 8).
Radiographic evaluation and other imaging techniques such as
magnetic resonance imaging, are routinely performed to map
the lesion’s location to define the level and severity of injury on
the spinal cord and column, thereby setting surgical outcomes
(10). Further surgical recommendations for SCI post realignment
aim to remove fractured bone and disk fragments, foreign
objects or the repair of slipped disks. Often, decompression of
pressure from cerebrospinal fluid that presses on the spinal cord
(decompression laminoplasty) is performed within at least 24 h
post-trauma to preserve surviving neurons from blood brain
barrier breach processes and reduce the risk of secondary injury
(11). Several studies suggest that early surgical management in
the acute phase is intrinsically connected to an earlier initiation

of rehabilitation protocols and an improvement in neurological
outcomes (12, 13). In the scope of recommended guidelines
for SCI management, timely surgical intervention essentially
serves as a neuroprotective strategy and not a predictor of full
functional recovery. An alternative school of thought points to
recumbence as a management option for SCI as opposed to
surgical decompression. There is evidence that Active Physiologic
Conservative Management (ACPM) yields neurological recovery
by reducing neurological deterioration, purported to be at
risk of being exacerbated by surgical management (14–16).
ACPM is reported to bear advantages over costly surgery in
that neuropathic pain may be minimized in patients while
allowing for maximal range of motion outcomes, dependent on
the injury (17). However, a Cochrane review concluded that
there was insufficient evidence to determine whether surgical
management bears advantages over conservative management of
spinal burst fractures (18). Clearly these management options
would likely require well designed clinical trials to determine
the equality or superiority of each management option in
relation to neurological outcomes in SCI. Crucially though, no
current therapeutic route is truly regenerative and cannot restore
circuitries that have been lost after SCI.

THE COMPLEXITY OF SCI IS A MAJOR
CHALLENGE TO SUCCESSFUL REPAIR

As outlined above there is a market need to develop new
therapies which can restore neural pathways after SCI. However,
this constitutes a major challenge given the complexity of the
tissue and the processes that occur with associated injury. The
spinal cord is part of the central nervous system (CNS) and
is the major conduit and reflex center between the peripheral
nervous system and the brain. Anatomically, a transverse section
of the spinal cord can be divided into two sections: the white
and gray matter. The white matter surrounds the gray matter
and contains axons that form nerve tracts ascending to and
descending from the brain. The graymatter in the center contains
nerve cell bodies of both projection neurons and interneurons
which form a complex circuitry to regulate neural information
at the level of the spinal cord. Crucial to the function of the
nervous system are the surrounding glial cells which consist of
the astrocytes, oligodendrocytes, ependymal cells and microglia
derived from blood. In the white matter, axons are ensheathed
by myelin, produced by the oligodendrocytes. Astrocytes have
many hypothesized functions including clearance and recycling
of neurotransmitters at synapses; maintaining homeostasis;
providing metabolic support to neural cells and responding and
regulating the nervous system response to injury. Microglia are
sometimes considered the immune cells of the brain and also
mediate response to injury, whilst phagocytosing debris and
releasing cues to surrounding cell types. Finally, the spinal cord
parenchyma is separated from the blood-stream via a mixture of
astrocytes, endothelial cells and pericytes which form the blood
brain barrier (BBB). The first challenge to repairing the spinal
cord then is to restore this complex cytoarchitecture essential
for function.
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The pathophysiology of SCI is also complex, characterized
by the loss or degradation of motor, sensory and autonomic
functions. A series of biological events have been identified that
begin soon after the initial trauma (described as the primary
injury process) and last for several hours, days and even up
to years (contributing to what is described as the secondary
injury process). From the onset of the initial trauma, blood-
brain-barrier breach and tissue damage, an interdependent series
of cellular and systemic events occur in the nervous, vascular
and immune systems as they respond to injury, the exact details
of which is still a major line of active research (19, 20). The
timeline of events from the onset of injury is illustrated in
Table 1. It is understood that an inflammatory cascade occurs
as reactive astrocytes, macrophages, activated microglia and
lymphocytes infiltrate the injury. These immune cells have
been postulated to have the main function of clearing necrotic
nerve fibers and myelin debris within the extracellular space
of the spinal cord lesion (21). However these immune cells
release pro-inflammatory cytokines, chemokines, free radicals
and nitric oxide that further exacerbate secondary neuronal and
glial death and subsequent necrosis during the inflammatory
cascade (22).Whilst inflammation undoubtedly has an important
role in stabilizing injury, there may be therapeutic opportunities
for the modulation of inflammatory procedures to favor the
environment for regeneration. Of the cumulative biochemical
changes that occur in the secondary injury processes, the glial
scar, a dynamic structure, forms over the time course from injury
and largely plays a role in the inhibition of regeneration. It is
evident that the glial scar contains multiple cellular components
and a complex extracellular matrix (ECM) that induces a
response to SCI which paradoxically inhibits regeneration whilst
remodeling the spinal cord tissue to contain the injury (Figure 2).
Activated astrocytes and microglia have been shown to secrete
several types of proteoglycans such as chondroitin sulfate
proteoglycans (CSPG), NG2 proteoglycan and phosphacan that
are associated with scar tissue (24). Proteoglycans are ECM
molecules which play roles in axonal plasticity, regeneration
and remyelination. However, these ECM molecules form a
chemical and physical barrier with reactive astrocytes around
the lesion core, thereby impeding the formation of neural
circuitry across the lesion (23, 25, 26). Furthermore, the distal
endings of severed axons form dystrophic growth cones as they
are exposed to myelin-associated inhibitors (MAI) released by
necrotic oligodendrocytes, thus contributing to the scar and
cavity formation (27). Some axonal sprouting, synapse formation
and remyelination has been shown to occur in spared tissue
through to the chronic phase of SCI, mediated by neural plasticity
(28). However, the glial scar persists, hindering any endogenous
regeneration of neural tissue at the injury site (29, 30).

Given themultiple inhibitorymechanisms present and limited
intrinsic regeneration, an efficacious therapy for the successful
repair of SCI would need to address all, if not most of the barriers
to endogenous regeneration. The majority of experimental
therapies aim to address one or two mechanisms of secondary
injury processes with little success. It is therefore imperative to
follow a combinatorial approach over the time course of SCI to
facilitate neural tissue repair of the injured spinal cord.

TABLE 1 | A timeline of the sequence of pathophysiological processes that occur

from the onset of primary injury to secondary injury.

Phase Physiological processes

Acute (Up to 72 hours) - Cord oedema, intracellular swelling

- Hemorrhage

- Regional cord perfusion shifts

- Inflammatory response: free radical production,

lipid peroxidation and cytokine release

- Membrane instability: shifts in electrolytes and

accumulation of neurotransmitters

- Demyelination

- Cell necrosis and apoptosis

Sub-acute (days to

weeks)

- Proximal and distal extension of oedema,

necrosis and apoptosis

- Continued inflammatory response

- Vascular angiopathy

- Peak levels of astrocyte and macrophage

activity

- Initial scar formation

- Neuroplasticity

- Spasticity

Chronic (months to

years)

- Formation of fluid – filled cavity

- Wallerian degeneration

- Glial scar formation

- Demyelination

- Schwann cell proliferation

- Syringomyelia

- Tethered cord

- Neurite sprouting, altered neurocircuits and

chronic pain syndromes

Reprinted from Mataliotakis and Tsirikos (19) with permission from Elsevier.

STEM CELL THERAPY AS THE BASIS FOR
COMBINATORIAL THERAPY

As previously discussed, SCI is complex, and this is reflected
to date where almost all therapies that have shown promise
at the preclinical stage have failed to translate into clinically
effective treatments. Clearly, a combination of therapies would
ideally be required to overcome the inhibitory environment in
SCI through modulating the immune response, replacing lost
cells and promoting nerve fiber growth to restore neuronal
connectivity. In light of the above, stem cells are of particular
interest as an avenue to treat SCI. Stem cells are defined as
immature cells that have the capacity to self-renew and to develop
into specialized cells, that is, they can become any cell type
present within an organism. A wealth of research has gone into
the identification and characterization of stem cells, leading to
a profound interest in their potential for the treatment of SCI,
traumatic brain injury and neurodegenerative diseases (31, 32).
Preclinical studies indicate that the transplantation of stem cells
may contribute to spinal cord repair by: replacing lost nerve
cells; generating new nerve and glial cells that can act as a
bridge across the injury site to stimulate the regeneration of
damaged axons; protecting the cells at the injury site from
further cell death by releasing protective growth factors (33)
and preventing the spread of the injury by modulating the
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FIGURE 2 | The pathophysiological processes of SCI. The healthy spinal cord is composed of quiescent astrocytes and microglia. Upon injury a series of complex

events occur over time, including the infiltration of lymphocytes that initiate inflammatory processes at the lesion site. The release of proteoglycans by activated

astrocytes and microglia results in the formation of a chemical and physical barrier with reactive astrocytes around the lesion core. Dystrophic growth cones form and

limited axonal sprouting and remyelination occurs through to the chronic phase of injury. Reproduced from Alizadeh et al. (23) with permission from Frontiers.

inflammatory response mediated after SCI (34). This section will
outline some stem cell candidates for SCI therapy and argue
neural stem cells (NSCs) may be particularly attractive as a
transplant population.

Stem Cell Candidates for SCI Cell Therapy
A small number of ependymal cells, the endogenous stem
cells of the CNS, have been characterized in the spinal canal.
On review, it is believed that these endogenous multipotent
cells are unlikely to contribute to any regeneration after SCI
(35). The general consensus suggests that an upregulation
of neurotrophic factors such as ciliary neurotrophic factor
(CNTF) after injury largely promotes astrocytic differentiation
of these multipotent cells. Johe et al. (36) report up to 98%
of these cells differentiate into astrocytes in vitro through
glial fibrillary acid protein (GFAP) expression analysis. Further
reports have since corroborated this finding (37), which was
initially discovered through pioneering research by Hughes

et al. (38). In contrast, factors that promote neurogenesis and
oligodendrogenesis such as brain derived neurotrophic factor
(BDNF) which is largely secreted by neurons, are observed at
low levels due to neuronal cell death (39, 40). The main idea
from this research indicates that injury promotes the significant
differentiation of ependymal cells to astrocytic cell fates which
appear not to contribute to regeneration in the injured spinal
cord, and, conversely contribute to the development of allodynia
in SCI. The regeneration of neurons and oligodendrocytes, the
other two major cell types within the CNS, is certainly crucial to
reconstitute damaged tissue. Therefore, exogenous cell therapy
bears the potential to replace lost neuronal and glial cells and
also provide neurotrophic factors which are crucial to neural
tissue repair. Recent advances in stem cell technology have
translated into unlimited sources of neural progenitors and glial
cells for cell based therapy. Olfactory ensheathing cells (OECs),
NSCs, mesenchymal stem cells (MSCs), embryonic stem cells
(ESCs) and induced pluripotent stem cells (iPSCs) have been
widely assessed as cell sources for SCI cell therapy. OECs,
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albeit not stem cells, have been studied in neural tissue repair
applications and shown to promote the growth of olfactory
receptor neurons, and regenerate axons in pre-clinical SCI
models (41). Nakhjavan-Shahrak et al. (42) conducted a meta-
analysis to determine the efficacy of OEC transplantation across
several preclinical studies and clinical trials, yielding some
limitations. It appears that a significant limitation of this cell
therapy appears to be the lack of effect on allodynia and
possibility of aggravating hyperalgesia, despite significant motor
function improvements reported consistently across preclinical
studies (43–47). Whilst trial data largely concludes the feasibility
and clinical safety of OEC therapy in SCI patients, reproducible
and robust functional recovery has not been reported (48–
50). Alternatively, MSCs indicate moderate therapeutic efficacy
for the treatment of various neurological diseases and can be
acquired from multiple autologous and allogeneic sources (51).
MSCs can self-renew, differentiate into several lineages and
have been shown to participate in immunomodulation that
may reduce secondary injury and enhance remyelination and
axonal regeneration in SCI (52–55). However, it is evident that
further developments are required to determine the optimal
source of MSCs for SCI and to determine the extent in
which MSCs can replace neurons. “Neuron-like” cells have been
generated from MSCs and characterized with variable purity
and heterogeneity post-differentiation across several reports in
the literature (55). Interestingly, a comparative study of bone-
marrow derived MSCs (BM-MSCs), neural progenitors derived
from a spinal fetal cell line (SPC-01) and iPSCs suggested the
latter as the efficacious cell candidate for SCI cell therapy in
rat SCI models (56). Such findings correlate with previously
reported limitations of MSCs, attributed to improved graft
survival, reduction of glial scarring, tissue sparring and increased
axonal sprouting in iPSCs as reported by the authors. The
current clinical trial data consistently indicates the safety of
MSCs, however trials have failed to progress to Phase III due
to findings of modest clinical efficacy, despite promising clinical
developments underway (57–61). Indeed, there are reports
of a combinatorial approach where the co-transplantation of
multiple cell candidates, including MSCs, OECs and NSCs,
has been tested in a bid to develop an efficacious cell therapy
with synergistic cell properties for SCI repair (62–64). The
outcomes are variable, although on review appear promising
as a growing number of studies are following this approach
in cell therapy applications for neurological diseases (65).
However, a cell candidate that can enhance the key aspects of
regeneration including cell survival, engraftment and migration
into the lesion and provide neuroprotection may be the most
viable strategy.

NSCs Are a Key Transplant Population for
Repairing SCI
NSCs are multipotent cells that can self-renew and generate
all the specialized neural cells within the spinal cord, that is,
neurons, astrocytes and oligodendrocytes. NSCs are capable of
surviving, migrating and differentiating into the aforementioned
major cell types of the CNS to promote regeneration (66–68).

The trilineage differentiation potential of NSCs is a remarkable
feature following demyelination and cell death induced by SCI.
For example, facilitation of remyelination by transplantation
of exogenous NSCs, the myelinating cells of the CNS, has
been reported across many studies (27, 69, 70). Furthermore,
NSCs have been shown to secrete a large number of soluble
factors including neurotrophins such as BDNF, CNTF, glial
cell derived neurotrophic factor (GDNF) and nerve growth
factor (NGF) across several studies (71). Schubert et al. (39)
have since characterized the proteins secreted by NSCs. BDNF
in particular, is associated with the survival and proliferation
of damaged neurons to promote an environment permissive
to growth. Astrocytes have also been shown to secrete some
neurotrophic factors for axonal remodeling and plasticity, as
well as homeostatic support functions relevant for spinal cord
repair (72, 73). Such neural precursor cells may be derived
from pluripotent stem cells, primary CNS tissue and potentially
from human somatic cells once a robust and ethical protocol
for transdifferentiation is developed as illustrated in Figure 3

(75–80). Pluripotent stem cells carry some ethical concerns and
have been shown to carry karyotypic abnormalities and a risk of
tumorigenicity (81, 82). Induced Pluripotent Stem Cells (iPSCs)
in particular have lower ethical implications and immunogenic
concerns as they can be derived from patient-matched sources
and collected using non-invasive methods. It must be noted
that the potential for genetic defects, tumorigenicity and
immunogenicity of transplanted cells have largely hindered the
successful clinical translation of iPSC-derived cell therapies for
SCI (83). An accumulation of evidence for the safety of iPSC
cell therapy is actively progressing for applications in the CNS.
For example, efficient techniques to differentiate and modify cells
prior to transplantation are being investigated in a bid to reduce
the risk of teratoma formation in preclinical models (84, 85).
Such developments have continued to emerge where Khazaei
et al. (86) demonstrated the possibility of enhancing neuronal
differentiation and even improving motor function in rodents
through counteracting Notch signaling by expressing GDNF in
transplanted NPCs, thus indicating potential to enhance the
safety and efficacy of iPSC derived NSC therapy for SCI. Further
hurdles exist, such as lineage control in neuronal differentiation,
which is out of scope of this review.

Preclinical research largely reports significant functional
improvements when NSCs are transplanted into SCI models.
Based on their potential advantages, NSCs have been tested in
phase I/IIa clinical trials for SCI cell therapy, which have been
identified in the literature and listed below:

• Shin et al. (87), n= 19
• Ghobrial et al. (88), n= 5
• Curtis et al. (89), n= 4
• Levi et al. (90), n= 31

The low number of studies and small sample sizes across the
studies invariably limits the quality of evidence for safety and
efficacy outcomes for NSC therapy on review. Whilst a limited
number of phase I/IIa clinical trials currently exist, Tiwari
et al. (91) conclude the safety of NSC transplantation for SCI
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FIGURE 3 | Sources of NSCs. NSCs can be derived from primary CNS tissues such as fetal and adult brain, pluripotent embryonic stem cells and induced pluripotent

stem cells and transdifferentiated from human somatic cells. NSCs can be further immortalized to facilitate long-term culture for cell therapy applications. Reproduced

from Tang et al. (74) with permission from Springer Nature.

in humans in a systematic review. The conclusions from the
systematic review largely indicate the safety and tolerability
of NSC transplantation, albeit the lack of a quantitative
assessment of adverse events and serious adverse events across
the studies. Furthermore, clinical efficacy reports appear to show
modest improvements in functional recovery. Such promising
findings are highlighted by Shin’s group whom reported positive
motor and sensory outcomes from their phase I/IIa clinical
trial when fetal cerebral NSCs were transplanted into 19
traumatic cervical SCI patients (87). There was no evidence
of tumor formation, exacerbation of neurological deterioration
or neuropathic pain and spasticity, thus warranting further
investigation of NSCs as SCI cell therapy candidates. Another
promising insight indicates that neural stem/progenitor (NSPC)
grafts can successfully integrate into spinal cord lesions and
generate extensive neuronal relays across the lesion and host
axon regeneration into the lesion (92–94). Ceto et al. (95)
have since expanded these findings by assessing the synaptic
architecture of grafted NSCS. An important finding is the
formation of functional synaptic connections to corroborate the
functional improvements observed in NSC grafts through animal
SCI studies.

Alongside their regenerative benefits, NSCs can also be
isolated and rapidly expanded as neurospheres in culture through
well-established protocols (96), to generate the numbers required

for transplantation. They can also be manipulated in vitro to
potentially improve cell transplantation, for example, through
genetic engineering (97, 98). However, challenges still exist,
some of which are generally consistent with other cell therapy
candidates for SCI repair.

CHALLENGES FOR NSC
TRANSPLANTATION IN SCI

While exogenous NSC transplantation offers promise in
reconstituting the architecture of the damaged spinal cord and
promoting regeneration as discussed in the previous section,
challenges for clinical translation have been encountered. Two
key challenges are (i) the low survival and lack of retention
of viable cell transplant populations at the injury site and (ii)
the inability to control differentiation fates post transplantation
as NSCs largely differentiate into astrocytes under pathological
conditions. For example, Webber et al. (99) transplanted rat
fetal NPCs into the dorsal column lesion site of adult rats and
examined the survival of transplanted cells at 24h, 1 week, 2
weeks and 6 weeks after injury. Only minor sensory function
improvement was observed and no motor function recovery
was observed. The group suggested this to be the result of
a high differentiation rate (40%) of grafted stem cells into
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glial cells as only 8% displayed neuronal morphology post-
transplantation. Other reports indicate that recruited NSCs
largely differentiate into astrocytes and, to a lesser degree,
oligodendrocytes, but without evidence of neurogenesis after
injury (100). However, Piltti et al. (101) observed predominantly
oligodendrocytic differentiation when NSCs were transplanted
into host parenchyma, and higher astrocytic differentiation in
lesion-site transplantation in contusion injury rats suggesting
the gross influence of the injury microenvironment on cell fates
in vivo. Earlier studies concluded that NSC transplantation is
associated with increased allodynia in animal behavioral studies,
purported to be linked to the high astrocytic differentiation
and maladaptive plasticity (102, 103). Thus a rationale to
affect some control on cell fates in cell transplant populations
could be important to improve functional outcome. Further
challenges observed are the poor migration of the grafted cells
and directionally guided axonal growth through the inhibitory
microenvironment of the lesion and scar tissue (104). In light
of the challenges of cell transplantation and the outcomes of
NSC therapy in recent trials, tissue engineering presents as a
promising avenue to address the limitations of cell differentiation
fates, survival and integration of transplant populations to effect
functional recovery.

Biomaterial Encapsulation of NSCs Could
Improve Regeneration
Implantable biomaterials present as a viable solution to the
limitations of cell therapy in SCI as they hold potential for
combinatorial therapy. Biomaterials can function as carrier
vehicles for encapsulated stem cells in order to enhance survival
and engraftment at the site of transplantation as reported
in injury models in the CNS. Previously, biomaterials have
been functionalized as drug delivery vehicles and bioactive
molecule carriers, for example, to facilitate NSC survival and
promote significant aligned axonal growth through BDNF and
growth factor cocktail incorporation in SCI models (105–
107). Furthermore, biomaterials have been stiffness-matched
to CNS tissue which appears to favor cell attachment and
reduce inflammatory and immune responses, conducive to cell
survival and regeneration in the inhibitory microenvironment
of the injured spinal cord (108–111). There is a large body
of research concerning the use of implantable materials to
aid transplantation of cells into sites of neurological injury.
This has been well-covered elsewhere (112–114). Significant
functional recovery outcomes have been observed consistently
at the preclinical stage when NSCs have been delivered via
a supporting scaffold matrix over the last decade (115–
117), and yet to be clinically translated. Meanwhile, clinical
developments are underway regarding the safety and feasibility
of implantable biomaterials for CNS repair. Xiao and colleagues
report the feasibility and safety of transplanting NeuroRegen,
an implantable collagen scaffold in complete chronic SCI
patients, albeit the small sample size in the study (118).
However further developments are required before progress
can be made toward an efficacious implantable cell therapy
for SCI. Design strategies for biomaterials have certainly

advanced in the last decade: biomaterials can be tailored to
enhance neural regeneration by modifying physical properties
in the biofabrication process through 3D bioprinting and
electrospinning technologies. Developments in electrospinning
technology bear potential to enhance the anisotropic extension
of neurites and neuronal differentiation when cultured as a
substrate for NSCs, critical properties for CNS tissue regeneration
(119). Alongside myriad advantages of biomaterial mediated
cell transplantation, an emergent area of biomaterial design
for neural tissue repair integrates electric conductivity and
electric stimulation (ES) which have been shown to influence
neurogenesis, proliferation, migration, cell-cell interactions and
the modulation of synapse formation (120–124). We believe
there may be specific advantages to improving the regenerative
potential of NSCs by encapsulation in electroactive biomaterials
for implantation, which is where we will focus the next parts of
the review.

Rationale for Incorporating Electrical
Stimulation Into Cell Transplantation
Strategies and Challenges
Over the years, researchers have identified how endogenous
electric fields play a critical role in the developing CNS
and pathophysiological states since Luigi Galvani’s landmark
bioelectricity experiment (125). The presence of endogenous
electric fields in the developing CNS has been well characterized.
Ionic currents have been detected in the developing nervous
systems of vertebrates (126). Furthermore, the disruption of
the electric fields induced by ionic currents has been linked
to developmental abnormalities in early pioneering studies
(127). Endogenous electrical fields have been recorded during
development and following injury, affecting the orientation of
astrocytes and neurons, proliferation and neurite outgrowth of
neurons and glia which has been demonstrated in vitro and
in a rat sciatic nerve injury model (123, 128, 129). Similarly,
early peripheral nerve studies report the benefits of delivering
ES to transection injury models in adult rats. For example,
ES significantly enhanced dorsal root ganglion (DRG) sensory
neurons to regenerate axons after femoral trunk transection and
surgical repair. This correlated with an increase in expression
of growth-associated protein 43 (GAP-43) mRNA in the
regenerating neurons (130). Further evidence in the literature
suggests that ES upregulates neurotrophic factor release, which is
essential to regeneration (Figure 4). Wenjin et al. (131) reported
an increase in BDNF expression in spinal cord neurons after
brief electrical stimulation for 1 h at 20Hz after sciatic nerve
transection compared to control and untreated sciatic nerve
transection groups. These findings corroborated earlier work by
Al-Majed et al. (132) in rat femoral neurons. In order to fully
realize the potential of ES for SCI, a better understanding of
the mechanisms through which ES enhances neural plasticity is
warranted. Whilst peripheral nerve injury studies have largely
informed the literature on SCI induced neuropathic pain, Vivó
et al. (133) report enhanced axonal regeneration and functional
sensory outcomes when ES was administered immediately after
nerve injury in a sciatic nerve injury model. Such observations
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FIGURE 4 | Postulated mechanism of ES on NSCs. The illustration denotes key signaling events that are thought to occur via ES. ES is believed to induce the

reorganization of cytoskeletal filaments and lipid raft structures become polarized to initiate ERK signaling pathways and the upregulation of BDNF. These events are

linked to the proliferation of NSCs and early neuronal differentiation. Reprinted from Zhu et al. (123) with permission from Elsevier.

are promising and indicate the potential role that ES may play
in facilitating the regeneration of nervous tissue in SCI, however
there are limitations of the concept in this developing area of cell
therapy, pertinent to CNS repair.

The first challenge would be in the design of a strategy that is
minimally invasive and clinically safe to provide ES. The delivery
of localized ES in the injured spinal cord via implanted electrodes
has been reported preclinically with promising findings for
functional recovery outcomes that have led to the growing
interest in ES for SCI (130, 131, 134–137). However, there are
reports that implanted stiff materials can cause local scarring
from the mechanical trauma and immune reactions in the CNS
(138). Previously, Potter et al. (139) demonstrated a localized
inflammatory response after microelectrode implantation in
the CNS using immunohistochemical markers. Furthermore,
the group demonstrated an accumulation of reactive oxygen
species surrounding implanted microelectrodes which were
thought to impact the viability of neural tissue adjacent to
the implanted electrodes (138). The build-up of scar tissue
at the neural tissue interface has been shown to reduce the
efficiency of the recording and stimulating capacity of implanted
electrodes, introducing a challenge that has led to further
progression of neural interface research and growing interest in

nanomaterial science (140). Alternatively, external stimulation
is a minimally invasive method of delivering ES to transplanted
cells albeit with low spatial resolution and some off-target effects
such as tissue scarring around electrodes in in vivo models
(58, 141). A systematic review of the efficacy of external or
transcutaneous stimulation indicates the need for testing in large
clinical trials so far (142). In summary, ES has been shown to
improve cell regenerative responses (of both transplanted cells
and cells at the injury site) but faces challenges in efficiently
detecting and supplying charge to and from neural tissue with
minimal signal attenuation, immune responses and undesirable
chemical reactions.

Hybrid Electroactive Biomaterials:
Combining Conductive Biomaterials With
Stem Cell Therapy to Maximize Cell
Transplantation Outcomes
To address the challenges outlined above, the functionalization
of electroactive biomaterials presents as a promising strategy to
deliver cells and modulate their behavior post-transplantation.
The concept of an electroactive implantable cell transplant
device has been well studied with promising reports
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TABLE 2 | A general classification of commonly studied electroactive biomaterials

and fabrication methods applied in regenerative medicine applications.

Class of

electroactive

material

Fabrication technology References

Conductive polymers

PPY, PANI, PLGA,

PEGDA, PEDOT

• Electrospinning

• 3D printing

• Freeze drying

• In situ polymerization

• Vapor-phase polymerization

• Solvent casting

Liu et al. (145)

Wang et al. (146)

Pelto et al. (147)

Distler et al. (148)

Shah et al. (149)

Carbon-based

materials

Carbon fibers,

carbon nanotubes

(CNTs), graphene and

graphene oxide

• Electrospinning

• Pressure-Activated

Microsyringe (PAM)

• High pressure

carbon monoxide

conversion synthesis

Chen et al. (150)

Magaz et al. (151)

Kim et al. (152)

Li et al. (153)

Guo et al. (154)

Metal- based

materials

Gold, Platinum, Zinc

• Electrospinning

• Capillary force lithography

• Electron beam evaporation

Baranes et al. (155)

Wickham et al. (156)

Aydemir Sezer et al. (157)

(129, 143, 144). A vast library of electroactive biomaterials
have been classified through rapidly developing fabrication
technologies in regenerative medicine research, summarized
in Table 2. Some well-studied electroactive biomaterials have
been engineered from materials such as conductive polymers,
carbon nanotubes (CNTs) and graphene for CNS repair,
highlighted in this review (Table 3). Polymeric biomaterials
have so far proven to provide mechanical support and
potential to interact electrically with neurons in neural
tissue engineering applications. Naturally occurring polymers,
such as the ECM matrix protein collagen, can be fabricated
with synthetic conductive polymers to form three-dimensional
(3D) composite polymeric scaffolds with controlled chemical
and physical properties (165). Several non-cytotoxic synthetic
conductive polymers, including polypyrrole (PPY), Poly(ethylene
glycol) diacrylate (PEGDA) and poly(lactic-co-glycolic acid)
(PLGA), are currently being studied for the development of
electroactive scaffolds for nerve injury applications (Table 3).
An important aspect to inscribe is that electrical conductivity
and electrical stimulation are defined as separate parameters.
Coupled with ES, cells grown on electroactive scaffolds
are consistently observed to possess significantly enhanced
regenerative features which may improve cell therapy outcomes
in SCI.

Molecular Mechanisms for Improved
Regenerative Responses of Cells on
Electroactive Surfaces
It is well understood that neuronal cells are electroactive, and
given the discovery of endogenous EFs in the developing CNS,
the promotion of bioelectrical signal transmission would seem
crucial for the functional restoration of damaged tissue after
SCI. Electroactive scaffolds bear the advantage of enhancing
the complex electrical transmission function of neuronal
networks during cell-to-substrate and cell-to-cell interactions.

Material scientists have made insights into how cells probe their
surroundings within biomaterials by investigating conductivity
as a biophysical cue, which seems to be a promising strategy to
promote a well maintained homeostatic microenvironment that
is tailored to enhance regeneration. In a bid to understand the
mechanisms of electroactivity on nerve healing, electroactive
materials are understood to regulate cellular responses to
enhance regeneration. The cellular responses reported
include cell adhesion, neuronal differentiation, migration
and proliferation. Furthermore, electroactive materials have
been shown to affect the microenvironment by modulating
immune responses and oxidative stress, seemingly relevant for
altering the inhibitory microenvironment of the injured CNS
(Figure 5). Indeed, such anti-inflammatory responses and the
regulation of oxidative stress have been reported across several
studies (166–168). In consideration of the latter, the molecular
mechanisms that have largely been proposed to affect nerve
healing appear to do so primarily through enhanced survival,
proliferation and neuronal differentiation, described in several
reports in the literature.

Recently, Eftekhari et al. (169) demonstrated the capability of
a novel conductive chitosan/polyaniline hydrogel in modulating
neuronal differentiation through the upregulation of the MAP2
gene in rat adipose-derived stem cells at the material-tissue
interface. Notably, conductivity and cell-imprinted topography
were investigated simultaneously as biophysical cues to enhance
the potential for neural regeneration. Many groups have
corroborated the latter findings on investigating electroactive
materials for NSC therapy. Stewart et al. (121) successfully
induced human NSC differentiation on PPY with an electrode
device. The group reported that ES of PPY induced human
NSCs to predominantly β-III Tubulin (Tuj1) expressing neurons,
with lower induction of glial fibrillary acidic protein (GFAP)
expressing glial cells compared to controls. A morphological
analysis revealed longer neurites and significant branches on
stimulated cells compared to controls. Furthermore, the cultures
were observed to possess clusters of neurons with longer neurites
compared to unstimulated cultures. The study highlights the
developments made toward directing the differentiation fates
of NSCs to neuronal lineage via an implantable electroactive
scaffold when considering a pioneer study by Schmidt et al.
(170). The group reported the culture of PC-12 neuron-like cells
on oxidized PPY films which were subjected to an electrical
stimulus. The group reported a significant increase in neurite
lengths compared with controls that were not subjected to
electrical stimulation. Similarly, Moroder et al. (171) analyzed
morphological changes in PC-12 cells and reported significant
increases in the percentage of neurite bearing cells, neurites
per cell and neurite lengths of PC-12 cells in the presence
of ES compared with no ES on conductive polymer scaffolds.
Notably, these studies employed cell lines, and recent preclinical
developments appear to heavily report on cell lines for SCI
repair applications (169, 172, 173). Whilst cell lines have their
advantages in mitigating ethical implications arising from ESCs
or fetal-derived NSCs, the move to physiologically relevant NSCs
in CNS injury preclinical models would seem to be concomitant
with clinical translation for SCI.
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TABLE 3 | A summary of some major findings in the investigation of electroactive scaffolds for neural tissue engineering.

Study name Biomaterial Shape Model and study

system

Results

Stewart et al. (121)

Zhou et al. (158)

PPY Polyphenol-tannic

acid- PPY

3D films

3D hydrogel

In vitro - hNSCs in vitro

and in vivo- NSCs

Enhanced neuronal and glial

differentiation following ES.

Increased neurite growth and

branching

Enhanced neuronal differentiation

on substrates with higher

conductivity. Endogenous

neurogenesis and significant

locomotor function recovery

Lorite et al. (159)

Lee et al. (160)

Pan et al. (161)

Qi et al. (162)

Liu et al. (163)

López-Dolado

et al. (164)

CNT

MWCNT- PEGDA

GO- PLGA

GO- PLGA

Silk fibroin/

graphene composite

Reduced GO

3D micropillars

3D scaffold

3D electrospun

nanofibres

3D electrospun

nanofibres

3D scaffold

3D scaffold

In vitro - NSCs in

vitro- NSCs in vitro and in

vivo- NSCs in vitro- NSCs

in vitro - rat spinal

cord neurons in vivo

-Spinal cord hemi-section

at C6 in rats

CNTs guide neurite growth and

support the long-term survival of

human NSCs

Enhanced NSC proliferation and

early neuronal differentiation. ES

enhanced neuronal maturity

Enhanced NSC proliferation

and neuronal differentiation In

vitro. Effective immobilization of

IGF-1 and significantly improved

functional locomotor recovery,

reduced cavity formation and

increased neuron numbers in vivo

Enhanced neuronal survival,

differentiation and effective

immobilization of IGF-1

Aligned silk fibroin/graphene

scaffolds are not cytotoxic to rat

spinal cord neurons and enhanced

neurite outgrowth

Enhanced collagen scaffold

infiltration and immunomodulation.

Angiogenesis and axon growth

inside scaffold

MWCNT, multi-walled carbon nanotube; PEDGA, Poly(ethylene glycol) diacrylate.

FIGURE 5 | A schematic of the general mechanisms by which electroactive biomaterials and electrical stimulation enhance nerve healing.

In addition to the impact on differentiation, ES appears to
be cue for enhancing proliferation. Zhu et al. (174) reported a
35% increase in proliferation of NSCs cultured on electrospun

carbon nanofibrous scaffolds, proposed to occur via proliferating
cell nuclear antigen and extracellular signal-regulated kinases
1 and 2 mechanisms (175). Furthermore, the group concluded
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FIGURE 6 | The phenotype of NSCs cultured on electrospun carbon nanofibers under electrical stimulation was compared to unstimulated controls for 7 days in

culture. (A,B) The neuronal marker MAP2 was significantly expressed in the stimulated condition compared to the control. (C) Neurite length anaylsis indicated longer

neurite outgrowth in stimulated conditions. Data was reported as mean ± standard deviation, n = 3, **P < 0.01. Reprinted from Zhu et al. (174) with permission from

Elsevier.

that ES increased the neuronal differentiation of hNSCs, with
complex morphologies reported (Figure 6). More recently, Song
et al. (176) demonstrated changes in protein expression including
heparin binding EGF-like growth factor (hb-EGF), GDNF,
BDNF and neurotrophin 3 (NTF3) and enolase 2 (ENO2)
on human NPCs as a result of the change of dimensionality
from 2D to 3D PPY scaffolds. The group linked these gene
expression changes to enhanced cell survival. These studies have
provided a basis to incorporate conductivity and ES into tissue
engineering applications to enhance neural regeneration from
the functional observations of improved cellular proliferation
and neuronal differentiation.

CNTs, graphene and fullerenes, are nanomaterials with
interesting optoelectronic and mechanical properties which have
been incorporated in electroactive biomaterials. Reports in the
literature indicate the potential of electroactive biomaterials
may enhance survival, facilitate cell-cell adhesion, proliferation,
differentiation and immune homeostasis, that are pertinent
to neural regeneration (168, 177) (Table 3). The novelty
of combining carbon-based electroactive material surface

topography with a polymer and ES has been demonstrated
with promising results for enhancing neural regeneration in
vitro. Key findings by Shin et al. (178) indicate significant
neuronal differentiation of human fetal neural stem cells
(hfNSCs) and human induced pluripotent stem cell-derived
neural progenitor cells (hiPSC-NPCs). Furthermore, improved
electrophysiological functionality within catechol-functionalized
hyaluronic acid (HA–CA) hydrogels containing CNTs and/or
PPy was reported in this study. A recent in vitro study reported
the feasibility of electrically stimulating NSCs on graphene
oxide (GO)-incorporated poly(lactic-co-glycolic acid) (PLGA)
electrospun nanofibers (179). The authors reported the enhanced
proliferation, neuronal differentiation and neurite outgrowth
of NSCs, similar to findings by Zhu et al. (174) thus indicating
the potential of applying graphene oxide composites, albeit in a
concentration-dependent manner due to reports of cytotoxicity,
as electroactive scaffold implants to promote neurogenesis
(180). The authors further demonstrated the feasibility of
immobilizing insulin-like growth factor 1 (IGF-1) on GO with
significant improvement in NSC survival outcomes, indicating

Frontiers in Medical Technology | www.frontiersin.org 11 February 2022 | Volume 4 | Article 693438

https://www.frontiersin.org/journals/medical-technology
https://www.frontiersin.org
https://www.frontiersin.org/journals/medical-technology#articles


Mutepfa et al. Tissue Scaffolds for Spinal Cord Injury

further potential for incorporating nanoparticle drug delivery
within these composite electroactive scaffolds (162). Combining
electroactivity, ES and nanomaterial science to neural tissue
engineering adds a level of complexity to scaffold biomaterial
design for neural regeneration applications. The combined
effects of these concepts show promise for an implantable
electroactive scaffold as an effective combinatorial approach in
SCI cell therapy research.

There are considerable challenges to overcome before clinical
application of an electroactive cell implant can become a reality,
such as control over mechanical properties to affect cell-cell
interactions, responses and integration with the host tissue. In
order to optimize their application in the CNS, the porosity
and microarchitecture of hydrogels requires significant control.
This has partly been achieved through traditional polymer
processing techniques as hydrogel scaffolds of uniform porosity
have successfully been developed, and even progressed to clinical
trials for neural tissue repair as reported by Theodore et al. (181).
This group demonstrated the safety and feasibility of the first
human implantation of a porous bioresorbable polymer scaffold
into the acutely contused spinal cord. Clinical efficacy has not
yet been achieved, and despite promising results in preclinical
models, hydrogel scaffolds require further development as
the mechanical properties have proven difficult to control.
Researchers like Prager et al. (182) have brought innovation
to this area by reporting a protocol to determine a “target
stiffness” for hydrogels, matched to the stiffness of the CNS,
indicating development of the strategy for neural tissue repair.
The application of electroactive hydrogel scaffolds and ES for
SCI cell therapy, too, requires further development from the
preclinical evidence gathered so far.

FUTURE DIRECTIONS

This review highlights the effects of electroactivity and ES on
NSCs in 3D matrices, largely composed of in vitro preclinical
reports. There is clear potential for these scaffolds to be used
to modulate NSC behavior post-transplantation and enhance
their regenerative capability. However, there are gaps in our
current understanding. Much of the current data is focused on
neurogenesis and neuronal maturation. Whilst important, the
glial components of the CNS are also essential to its function
and pathological response to injury. Therefore, systematic studies
into the effect of electroactive scaffolds on glial cell production
from NSCs are needed. Further, understanding the effect of
electroactive materials and ES on microglia will be key to
engineering the immune response to the implant, a major factor
in successful implant integration and repair capacity.

The control ofmechanical properties of electroactive scaffolds,
such as stiffness, appears to be a challenge. The development
of novel electroactive hydrogel scaffold composites incorporated
with microfabrication techniques and nanomaterials may partly
address this limitation (168). Whilst there is a growing body
of in vitro evidence for the cytocompatibility of implants such
as graphene-based composite scaffolds, standardized studies in
animals with the objective of assessing their nanotoxicology

seem necessary to determine the clinical translation of such
developments. Some recent preclinical advances demonstrate
the long term performance of electroactive scaffolds for neural
tissue regeneration applications in vivo (183, 184). Thus the
main hurdles to overcome appear to be in the domain of
the biocompatibility and safety of electroactive scaffolds in
vivo, which requires further assessment across different tissues.
This would form an essential milestone for progression to
clinical translation for a SCI cell therapy. Together with the
latter analysis of the insights into electroactive scaffolds, the
approvals process and regulatory requirements for medicines
and medical devices must be considered to realistically endeavor
the clinical translation of electroactive biomaterials for SCI cell
therapy. The process is lengthy and often difficult, taking up
to 15 years to market a new medicine/medical device. There
are many points at which an implantable biomaterial/medical
device may be rejected on the grounds of safety, effectiveness
and cost over the course of preclinical studies, clinical trial
phases, and nation-specific regulatory systems. Therefore, it is
essential to carefully probe insights into the long term interaction
of implantable electroactive scaffolds with neural tissue at the
current preclinical stage.

Degradable electroactive hydrogelsalso have promise for
eventual clinical translation. Xu et al. (185) in particular present
this rationale in an in vivo study testing an injectable electroactive
hydrogel composed of biodegradable germanium phosphide
(GeP) nanosheets and hyaluronic acid (HA). New technologies
could therefore mean translation of implantable electroactive
biomaterials for NSC therapy is more realistic. Overall, the
combination of electroactive implants and NSC transplantation
is a complex therapeutic option. However, given the complexity
of SCI injury and the social need for a new therapy we believe this
strategy is worth investigating further.
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