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This research aims to find out whether the 1, 2, 4-triazine and its derivatives have

antifungal effects and can protect humans from infection with Candida albicans.

Molecular docking and molecular dynamic simulation are widely used in modern drug

design to target a particular protein with a ligand. We are interested in using molecular

docking and molecular dynamics modeling to investigate the interaction between the

derivatives of 1, 2, 4-triazine with enzyme Lanosterol 14-demethylase (CYP51) of

Candida albicans. The inhibition of Candida albicans CYP51 is the main goal of our

research. The 1, 2, 4-triazine and its derivatives have been docked to the CYP51 enzyme,

which is involved in Candida albicans Multidrug Drug Resistance (MDR). Autodock tools

were used to identify the binding affinities of molecules against the target proteins.

Compared to conventional fluconazole, the molecular docking results indicated that each

drug has a high binding affinity for CYP51 proteins and forms unbound interactions

and hydrogen bonds with their active residues and surrounding allosteric residues. The

docking contacts were made using a 10 ns MD simulation with nine molecules. RMSD,

RMSF, hydrogen bonds, and the Rg all confirm these conclusions. In addition, these

compounds were expected to have a favorable pharmacological profile and low toxicity.

The compounds are being offered as scaffolds for the development of new antifungal

drugs and as candidates for future in vitro testing.

Keywords: 1, 2, 4-triazine, Lanosterol 14-demethylase (CYP51), drug resistance, molecular docking, molecular
dynamic simulation
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INTRODUCTION

Candida species, the most common of which are C. albicans,
cause most of the fungal infections in humans. The presence
of Candida albicans is noteworthy. Candida albicans is
often found as part of the normal microbiota in the
human intestine but can cause life-threatening infections
in immunocompromised people such as HIV patients (1).
Candida species can also cause bloodstream infections, and
with the increase in candida infections in recent years,
multi-drug resistance (MDR) has become a major public
health problem (2, 3). MDR is a property in which cells
become resistant to multiple chemotherapy drugs that
are not chemically related at the same time. Drug efflux
pumps from the ATP-Binding Cassette (ABC) or Major
Facilitator Superfamily (MFS) families play an important
role in establishing and maintaining drug tolerance. Because
of their rapid expulsion, induced overexpression of genes
that produce these transporter proteins is unable to enable
cells to maintain dangerous levels of the drug, rendering it
unusable (3–6).

CYP51 belongs to the cytochrome P450 superfamily of
monooxygenases, which catalyzes the oxidative removal of
the 14-methyl group (C-32) from lanosterol to give 14,
15-desaturated intermediates in ergosterol biosynthesis in
fungi produce kingdoms, CYP51 is an important enzyme in
sterol biosynthesis, which fulfills metabolic functions such as
membrane permeability, membrane fluidity, enzyme activity, cell
shape, and progression of the cell cycle (7–9). This enzyme
occurs in all eukaryotes (including humans) and because azoles
also interact with other cytochrome P450-dependent enzymes
(CYP3A4), specific inhibition of the enzyme is decisive for
a higher therapeutic index (10–13), the hydrophilic H-bond
region, and thus the small hydrophobic gap formed. The affinity
of azole antifungals for CYP51 is determined not only by the
coordinative binding of the nitrogen of the azole ring to the heme
iron within the active side (N-4 of triazole and N-3 of imidazole)
but also by the affinity of the N-l substituent to the apoprotein,
which is part of the remainder of the azole antifungal agent
fits into the hydrophobic groove of CYP51 in the same way as
Lanosterol (14–20).

1, 2, 4-Triazine and its derivatives can be a
common core structural system found in a variety of
physiologically active chemicals, including antifungal
and antibacterial activity, and are also known to move
pharmacologically (21).

This work aimed to use a computer-aided drug discovery
strategy to find 1, 2, 4-triazine and its derivatives that
have the potential to inhibit the protein Candida albicans
Lanosterol 14-demethylase (CYP51). The binding of ligand
to protein is accounted by performing molecular docking,
and the stability of the complex formed by docking of the
protein and ligand is verified by performing the molecular
dynamic simulations. In this present paper, an in silico study
done with 1, 2, 4-triazine and its derivatives as an inhibitor
will help in establishing the strong candidature of 1, 2, 4-
triazine and its derivatives as a potential drug target against
fungal infection.

MATERIALS AND METHODOLOGY

Protein Preparation
The protein database (https://www.rcsb.org/) was used to obtain
the structure of Lanosterol 14-Demethylase (CYP51) (PDB
ID: 4LXJ) (22). PDB is a database containing information
about experimental proteins and nucleic acid structures. Water
molecules were removed with PyMOL (Figure 1). PyMOL is
an open-source software program that can be used to create
molecular graphics (23).

Ligand Preparation
The 1, 2, 4-triazine and its derivatives were selected for
their potential pharmacological and therapeutic benefits
(Supplementary Figure 1) (21). Docking research was
conducted against fluconazole, a controlled drug that may
be a potent CYP51 inhibitor and is commonly given to mycoses.
The structures of the control drug fluconazole were retrieved
from the PubChem database. The PubChem database contains
data on chemical compounds, including their structure, formula,
molecular weight, etc. (https://pubchem.ncbi.nlm.nih.gov/
source/15751) (24). ChemDraw software was used to create all
derived connections in the mol file. The structures were first
called up in SDF format and then translated into PDB format
using PyMOL, an open-source system program for molecular
visualization (23).

Binding Site Prediction
The Computed Atlas for Surface Topography of Proteins was
used to identify the amino acids that are involved in the
formation of active pockets (CASTp). CASTp could be a simple
and helpful web-based tool for the identification of protein
structures and site pockets (25). Determining the location is
crucial for aligning the mesh box before docking.

Molecular Docking
The molecular docking simulations were performed using Auto
Dock (The Scripps Research Institute, La Jolla, CA, USA). It
is widely used as open software for molecular docking and
significantly increases the accuracy of binding mode predictions
compared to Auto Dock 4 (26–29) and site residues of the
proteins were estimated using the web-based CASTp tool. The
size () of the lattice box in CYP51 was 88.63, 86.49, and 60.53,
while the middle (x, y, and z) of the lattice box was 22.01, 14.21,
and 19.82.

Analysis and Visualization of Docking
Results
The docked posture with the best negative score was selected
as the best for the appropriate chemical and protein after the
docking simulation. PyMOLMolecular Graphics System 2.0 (23)
and Discovery Studio 4.5 (30) were used to display and score the
best-docked posture to study unbound interactions.

Molecular Dynamic Simulation
Molecular dynamics calculations were used to determine the
physical motions of atoms and molecules in a protein-ligand-
docked complex. The nine molecules were selected for a 10
ns MD simulation. The docked complexes were constructed
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FIGURE 1 | Protein-ligand presentation of CYP51 with molecules 1, 2 and 3. (A) 3D receptor-ligand presentation, and (B) 2D receptor-ligand interactions.
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using the steepest descent minimization module, the YASARA
energy minimization module (YASARA Biosciences, GmbH),
and the AMBER force field (AssistedModel Building with Energy
Refinement) (31, 32) before proceeding with the MD simulation
Force field, 298K temperature, 1 bar pressure, Coulomb
electrostatics with a cut-off of 7.86, 0.9% NaCl, solvent density
0.997, pH 7.0, 1-fs time steps, periodic boundaries, and all mobile
atoms were used in the MD simulation (33, 34). The binding
energy, the root mean square deviation (RMSD), the root mean
square fluctuation (RMSF), the radius of gyration (Rg), and the
total number of H-bonds were measured with MD determines
simulations in the same way as in previous research (35–37).

MMPBSA Calculations
Molecular mechanics / Poisson-Boltzmann surface (MMPBSA)
(38) is one of the most frequently used methods for calculating
the binding free energy of a protein-ligand combination. The
stable region of the nine molecules with CYP51 complexes
was used to construct a 10 ns MD trajectory for MM-
PBSA calculations. The MMPBSA method of the YASARA
simulator was used to measure the binding energy components
(YASARA Biosciences, GmbH). The g_mmpbsa tool uses the
following equation to calculate the binding energy of the protein-
ligand complex.

1GBinding = GComplex − (GProtein + GLigand)

Where GComplex denotes the binding complex’s total free energy,
and GProtein and GLigand denote the total free energies of the nine
molecules bound to CYP51, respectively.

Prediction of Pharmacological Properties
TheDruLito software was used to predict the drug-like properties
of the compounds. To demonstrate their pharmacological
integrity, orally active drugs should have certain commonly used
drug-like properties the number of rotatable bonds and Lipinski’s
rule violations of 5 (39) were determined during this research. By
a previously described method (40), the absorption (% ABS) was
calculated using the following formula:

%ABS = 109− (0.345×TPSA).

Prediction of Toxicological Properties
Since drug toxicity is an important issue, we used the
admetSAR online toolbox (http://lmmd.ecust.edu.cn:8000/) to
predict toxicological properties of the compounds that were
critical and Predictors are helpful in drug development
(41). Table 4 summarizes the data including Ames toxicity,
carcinogenic properties, acute oral toxicity, acute rat toxicity, and
inhibitory effects on hERGa.

Biological Activity Predictions of the
Compounds
The PASS web server (http://www.pharmaexpert.ru/passonline)
was used to predict the biological activities of the designated
compounds (42, 43). The PASS analysis aids in evaluating the

effects of a substance only based on its molecular formula
by employing multilayer atom neighbor descriptors, implying
that biological behavior is solely determined by its chemical
structure (44).

RESULT AND DISCUSSION

Binding Site Analysis
CASTp was used to identify the active site pockets in lanosterol-
14-demethylase (CYP51). CASTp could be a web-based tool
for determining the aminoalkanoic acid residues in the active
site of a protein. For CYP51, the CASTp results are shown in
Supplementary Figures 1, 3. Only the amino acids within the
site and their positions are given in Supplementary Table 1 for
CYP51 based on the CASTp findings. According to CASTp server
active amino acids are Glu173, Lys176, Tyr177, Arg179, Asp180,
Ser181, Lys182, Asn183, Arg185, Asn187, Glu188, Met197,
Val198, Pro201, Glu202, Ile205, Phe206, Arg218, Leu221, Asp222,
Thr223, Ala226, Tyr227, Tyr229, Ser230, Leu232, Asp233,
Lys234, Ile261, Tyr265, Ile309, Leu312, Met313, Gln316, His317,
Ala320, Ala321, Val510, Leu512, His534, and His535 in CYP51.

Dock Score of 1, 2, 4- Triazine and Its
Derivatives Against CYP51
The crystal structure of CYP51 from Candida albicans (PDB
id-4LXJ) was used for docking. The enhanced precision (XP)
mode of lattice-based ligand docking with energetics was used
to achieve the blind docking of molecules. For the docking,
we used 1, 2, 4-triazine and its derivatives (molecule 1–9)
(Supplementary Figure 2). Here we showed that molecules that
systematically docked to lanosterol-14-demethylase (Table 1)
have the separation energy (CYP51). Figures 1–3 provide a three-
dimensional representation of docked complexes.

We observed that all compounds had the best binding
affinities, as indicated in Table 1, compared to the control
inhibitor fluconazole (−8.1 for CYP51). For CYP51 they showed

TABLE 1 | Docking score (Kcal/mol) of the CYP51 with nine molecules.

Molecules Compounds names ERG11
Dock score
(Kcal/mol)

Control Fluconazole −8.1

1 1,2,4-Triazine −9.5

2 1-(prop-2-en-1-yl)-1H-indole-2,3-dione −8.2

3 5-(prop-2-en-1-yl)-5H-[1,2,4] triazino

[5,6-b]indole-3-thiol

−8.5

4 2-((5,6-diphenyl-1,2,4-triazin-3-yl)thio)-N-(pyridin-

2-yl)-N-tosylacetamide

−11.5

5 2-(2-((5,6-diphenyl-1,2,4-triazin-3-

yl)thio)ethoxy)isoindoline-1,3-dione

−11.0

6 5,6-diphenyl-3-(tritylthio)-1,2,4-triazine −11.9

7 3-((2-(9H-carbazol-9-yl)ethyl)thio)-5-allyl-5H-

[1,2,4]triazino[5,6-b]indole

−10.7

8 2-((5-allyl-5H-[1,2,4]triazino[5,6-b]indol-3-yl)thio)-

N-(pyridin-2-yl)-N-tosylacetamide

−10.5

9 5-allyl-3-(tritylthio)-5H-[1,2,4]triazino [5,6-b] indole −11.5
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FIGURE 2 | Protein-ligand presentation of CYP51 with molecules 4, 5, and 6. (A) 3D receptor-ligand presentation, and (B) 2D receptor-ligand interactions.
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FIGURE 3 | Protein-ligand presentation of CYP51 with molecules 7, 8, and 9. (A) 3D receptor-ligand presentation, and (B) 2D receptor-ligand interactions.
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FIGURE 4 | Calculations of RMSD of CYP51 and nine molecules as a function of 10 ns simulation time.

promising binding affinities with variable binding free energies
in the range from −8.2 to −11.9. Based on the binding affinities,
the molecules could be classified as Molecule 6 > Molecule 4
Molecule 9>Molecule 5>Molecule 7>Molecule 8>Molecule
1 > Molecule 3 > Molecule 2 for CYP51 compared to control.

Protein-Ligand Interactions of 1, 2, 4-
Triazine and Its Derivatives Against CYP51
Protein-ligand interactions are highlighted by hydrophobic
interactions, hydrogen bonds, electrophoresis, and van derWaals
interactions, all of which are essential for predicting ligand
binding affinities with proteins. All compounds exhibited a
variety of unbound and bound interactions with multiple site
residues or at the edge of the site., Molecule 1 showed one
conventional hydrogen interaction with the residue Thr A:507,
six hydrophobic interactions (π -Alkyl and Alkyl interactions,
π- π Stacked/T-Shaped Interactions) with Leu A:95, Pro A:238,
Pro A: 238, Phe A:384, Phe A:241, Met A:509. Molecule 2
showed one conventional hydrogen interaction with the residue
Arg A:98, six hydrophobic interactions (π -Alkyl & Alkyl
interactions, π- π Stacked/T-Shaped Interactions, and Pi-Cation

and Anion interactions) with His A:381, Leu A:95, Tyr A:72
Phe A:384, Phe A:241. Molecule 3 showed four conventional
hydrogen interaction with the residue Thr A:507, Phe A:506,
Ser A:508, Met A:509, six hydrophobic interactions (π -Alkyl
and Alkyl interactions, π- π Stacked/T-Shaped Interactions, and
Pi-Cation and Anion interactions) with Pro A:238, Leu A:95,
Phe A:241, Phe A:384, Tyr A:72, His A:381. Molecule 4 showed
ten hydrophobic interactions (π -Alkyl and Alkyl interactions,
π- π Stacked/T-Shaped Interactions, and Pi-Cation and Anion
interactions) with Leu A:96, Val A:242, Leu A:95, Ala A:69, Val
A:66, Ile A:239, Pro A:238, Phe A:384, Phe A:241, His A:381.
Molecule 5 showed seven hydrophobic interactions (π -Alkyl
and Alkyl interactions, π- π Stacked/T-Shaped Interactions, and
Pi-Cation and Anion interactions) with Pro A:238, Ile A:239,
Val A:242, Leu A:96, Leu A:95, Phe A:384, Phe A:241. Molecule
6 showed ten hydrophobic interactions (π -Alkyl and Alkyl
interactions, π- π Stacked/T-Shaped Interactions, and Pi-Cation
and Anion interactions) with Gly A:314, Leu A:380, Val A:311,
Val A:510,Met A:509, Leu A:147, Ile A:139, Phe A:236, Tyr A:126,
Tyr A:140. Molecule 7 showed one conventional hydrogen bond
with His A:468, and six hydrophobic interactions (π -Alkyl and
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FIGURE 5 | Calculations of the root mean square fluctuation per solute protein acid residue from the average RMSF of the atoms constituting the residue of CYP51

and nine molecules as a function of 10 ns simulation time.

Alkyl interactions, π- π Stacked/T-Shaped Interactions, and Pi-
Cation and Anion interactions) with Leu A:380, Ile A:139, Val
A:311, Tyr A:140, Phe A:134, Tyr A:126. Molecule 8 showed
two carbon-hydrogen bonds with Gly A:314, Val A:311, and
six hydrophobic interactions (π -Alkyl and Alkyl interactions,
π- π Stacked/T-Shaped Interactions, and Pi-Cation and Anion
interactions) with Phe A:134, Ile A:139, Ile A:471, Leu A:158,
Tyr A:140, Tyr A:126. Molecule 9 showed eight hydrophobic
interactions (π -Alkyl and Alkyl interactions, π- π Stacked/T-
Shaped Interactions, and Pi-Cation and Anion interactions) with
Leu A:380, Val A:311, Leu A:147, Lys A:151, His A:468, Leu
A:383, Leu A:380, Tyr A:126.

All molecules showed hydrogen and hydrophobic interactions
with various amino acids via the formation of conventional,
carbon-hydrogen, π- stacked, or π-alkyl bonds interactions
depicted in Figures 1–3 and Supplementary Table 2. It has been
discovered that many amino acids are involved in hydrophobic
interactions, van der Waals interactions, and hydrogen bonds.
In addition, the ligands bind with the CYP51 site or the near
site mainly through hydrophobic interactions. Hydrophobic

interactions have effectively identified certain functional groups
that are responsible for the hydrophobically producing effect of
compounds with high binding affinity for target proteins and that
should have a significant impact on Candida albicans infection.

MD simulations can be used to explain hydrogen bonds and
hydrophobic properties as well as molecular processes of ligand-
protein interactions depending on the flexibility of ligands or
proteins. Today this method is often used in the development
of biomolecules and active substances (45, 46). After molecular
docking, we performed anMD simulation with targeted enzymes
for all nine molecules, since all nine molecules have good dock
scores compared to the standard inhibitor fluconazole.

Molecular Dynamic Simulation
The MD simulation was performed for 10 ns on nine molecules
in conjunction with lanosterol 14-demethylase (CYP51) in solute
and solvent. The aim was to study the dynamic properties of
lanosterol-14-demethylase (CYP51) with the nine compounds to
see if structural changes related to the inhibitionmechanismwere
observed. Conformational changes in simulated solute molecules

Frontiers in Medical Technology | www.frontiersin.org 8 March 2022 | Volume 4 | Article 845322

https://www.frontiersin.org/journals/medical-technology
https://www.frontiersin.org
https://www.frontiersin.org/journals/medical-technology#articles


Verma et al. Identification of Inhibitor Against CYP51

FIGURE 6 | Calculations of Radius of gyration of the solute of CYP51 and nine molecules as a function of 10 ns simulation time.

FIGURE 7 | The residual correlative motion in protein structures was visualized by the dynamic cross-correlation map analysis for CYP51 [Blue and Red lines are

shown between strongly, anti- and correlated pairs, and DCCM is visualized with colors ranging from blue (−1, fully anti-correlated) to yellow (+1, fully correlated)].
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FIGURE 8 | Calculations of No. of H-bonds between solute and solvent of CYP51 and nine molecules as a function of 10 ns simulation time.

cause density fluctuations in 10 ns. If the simulation box is always
the same size, density fluctuations lead to changes in pressure.
As a result, the cell is rescaled during the simulation to maintain
constant cell pressure. Binding energies (Bond), binding angle
energies (Angle), dihedral energies (Dihedral), planarity or false
dihedral energies (planarity), van der Waals energies (VdW),
electrostatic energies (Coulomb) and distribution energies are all
potential energy components of all protein-ligand complexes in
KJ/mol vs. time intervals. In our study, the simulation lengths of
all nine molecules with complex CYP51 are between 128.34 and
128.52 (Supplementary Figure 4).

The total potential energy of CYP51 with the nine molecules
was measured to determine the equilibrium and stability of
the systems. Supplementary Figure 5 shows the total potential
energy of CYP51 with the nine-molecule complex in 10 ns.
Supplementary Figure 6 shows the surface of the dissolved
CYP51 vs. the time interval of all complexes Vander Waals
surface (SurfVdW), molecular surface (SurMol), and surface
accessible to solvents (SurfAcc). Supplementary Figure 7

shows the surface area of the CYP51 calculated using
nine molecules.

Structural Deviations and Compactness
A tiny chemical can produce wide-ranging conformational
changes in a protein once it has been bound. One of the most
important features for analyzing protein structure changes and
dynamic activity is the root mean square deviation (RMSD) (27).
The complex remained stable. The calculated RMSD values of
CYP51 in Å are 2.35, 5.00, 5.00, 5.00, 7.00, 6.00, 4.00, and 4.5
(Figure 4). RMSD data show significant change in the RMSD
values of the CYP51 complex with nine molecules. These results
show that the overall system remained stable during the MD
simulation except for molecules 2–9.

The mean fluctuation of each residue was quantified as the
root mean square fluctuation (RMSF) to study the residual
vibrations in CYP51 before and after the binding of the
nine substances (Figure 5). Random residual fluctuations were
detected in CYP51 from the N-terminal to the C-terminal
regions. These variations were shown in solute and solvent
for each CYP51 backbone residue beyond nine. The residual
fluctuations of CYP51 with nine molecular complexes were
found to be 2.96, 1.93, 8.54, 2.66, 2.31, 1.44, 1.42, 2.45, and
1.26 inches. According to the RMSF map, residual fluctuations
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FIGURE 9 | Protein secondary structure content calculations of CYP51 and nine molecules as a function of 10 ns simulation time.

FIGURE 10 | Calculations of Per-residue protein secondary structure of CYP51 and nine molecules as a function of 10 ns simulation time.
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FIGURE 11 | MM-PBSA analysis of nine molecules with CYP51 during 10 ns MD simulation time.

in the area where nine molecules bind show slight variations.
After the nine molecules have been attached, however, CYP51
shows less increased fluctuations, which is probably due to
conformational changes in the binding pocket of the protein.
The radius of gyration (Rg) is a measure of the compactness
and folding behavior of a protein, linked to its tertiary structure
and the general state of conformation. By estimating the Rg
of both CYP51 and the nine-molecule complex, we were able
to determine their stability. For nine molecules the Rg stayed
between 26.3–27.4, 25.2–27.0, 25.8–26.7, 25.4–27.6, 25.8–26.8,
25, 8–26.9, 25.4–27.4, 25.3–26.6, and 25.8–27.1 during the
simulation period (Figure 6). No structural change was detected
in CYP51 in the presence of the nine compounds, and it reached
a stable Rg equilibrium, which indicates complex stability across
the simulation track.

A complicated cross-correlation matrix represents the
correlative movements of various bag remnants. Figure 7 shows
the correlated residual movement of all simulated protein-ligand
complexes. Heat maps with high color intensity were used to
depict these linked movements between the remains of the bag.
Colors ranging from blue (−1, fully anti-correlated) to yellow
(+1, fully correlated) are used to visualize DCCM, with blue and
red lines separating high, anti, and correlated pairings.

Dynamics of CYP51 Interactions: Hydrogen
Bond Analysis
The stability of the three-dimensional structure of a protein
is determined by intramolecular hydrogen bonds within the
molecule. By studying the stability of the protein-ligand complex,
hydrogen bond analysis can be used to assess molecular
recognition, directionality, and specificity of interactions (27).

We calculated the kinetics of intramolecular hydrogen bond
pairs within 10 ns to determine the stability of CYP51 with
nine molecules docked complex, and the possibility of hydrogen
bonds are 9, 6, 11, 10, 20, 8, 12, 22, and 10 of molecule 1–
9, respectively The solute-solvent hydrogen bonds for all nine
molecules with CYP51 complexes are shown in Figure 8 at 10
ns intervals.

Analysis Secondary Structure Dynamics of
CYP51
Conformational changes are caused by varying degrees of
secondary structural dynamics remaining in a protein structure.
Observing variations in the secondary structure composition of
a polypeptide chain could help researchers better understand its
conformational behavior and its folding process. We looked at
the dynamics of CYP51 secondary structure content before and
after all nine molecules were bound to see how stable it was.
The helix, leaflet, and convolutions comprising the secondary
structure of CYP51 were broken down into individual residues
at each time point and the average number of residues making
up the secondary structure was shown as a function of the total
fraction of alpha helices, beta sheets, turns, coils, 3–10 helices,
and pi helices in all nine molecular complexes ranged from 0.0
to 50% at 10 ns time intervals for all nine molecular complexes
(Figure 9). Figure 10 shows the secondary structure of protein
per residue for protein-ligand complexes from 00 to 550 at
time intervals of 10 ns. After all nine molecules were attached,
no changes in the secondary structure composition of CYP51
were found throughout 10 ns, suggesting that the complexes are
very stable.
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MMPBSA Analysis
The MM / PBSA method was used to calculate the binding
energy of the complex structure using ensembles derived from
the MD simulation. The binding energy values for lanosterol-
14-demethylase (CYP51) with nine molecules are shown in
Figure 11 and Supplementary Table 3.

Pharmacokinetics and Toxicological
Properties Analysis
The ADME / T properties of ligands must be known to determine
their drug similarity. The DruLito software was used to evaluate
the pharmacological properties of 1, 2, 4-triazine and its
derivatives (Supplementary Figure 8). It can detect molecules
using drug similarity rules like Lipinski’s rule, MDDR-like rule,
Ghose filter, BBB similarity, CMC-50-like rule, unweighted
QED, Veber filter, and weighted QED calculate and filter.
Table 2 summarizes the results. Table 3 shows the expected
uptake, distribution, and metabolism of 1, 2, 4-triazine and
its derivatives using the admetSAR server. All compounds
were found to be non-substrate for P-glycoprotein (P-gp)
substrate, yes for Caco-2 permeability, yes for Blood-Brain
Barrier (BBB), and non-substrate for CYP4502C9, CYP4502D6
substrate. Except molecule 2, all compounds are non-substrates
for CYP4503A4. Table 3 shows that all compounds have
significant CYP inhibitory promiscuity. Table 2 summarizes
the results.

SWISS ADME boiled egg diagram (Supplementary Figure 9)
enables the evaluation of HIA as a function of the position
of the ten molecules within the WLOGP-vs.-TPSA reference.
Molecule 1 (control), molecule 8 are predicted to be absorbed
by the gastrointestinal tract (white region) but not penetrate
the brain (egg yolk). Molecules 1–10 are not subject to any
active efflux (redpoint). The admet website was used to predict
the toxicological properties of all compounds (Table 4). The
results indicated that, except for molecule 3, none of the
compounds posed an AMES toxicity problem and that all of
the molecules are non-carcinogenic. On the other hand, all
compounds were found to be weak inhibitors of the human
ether-a-go-go-related gene (HERGa) and have a low risk of acute
toxicity. In accordance with the expected acute oral toxicity, all
compounds are classified in Class III based on their expected
acute oral toxicity (Table 4). It is possible that the combination
of these chemicals can be predicted, and it is a good idea to
stop mycosis.

Antifungal and antibacterial activities against strains of 1, 2,
4-triazine and its derivatives were carried out by Majid et al. (21),
and these compounds showed good antifungal activity compared
to control fluconazole by in vitro activity assays.

Computational engineering can filter the best ligands from a
wide variety of compounds, simplifying the drug development
process. After that, further clinical research with experimental
animals and further in vivo studies are required. All of the
basic information needed to develop novel antifungal treatments
to block Ergosterol biosynthesis will be included in the study.
Diseases caused by eukaryotic organisms such as fungi are more
difficult to treat than infections caused by bacteria. Antifungal TA

B
LE

2
|P

h
a
rm

a
c
o
lo
g
ic
a
lp

ro
p
e
rt
ie
s
o
f
n
in
e
sy
n
th
e
tic

c
o
m
p
o
u
n
d
s
a
c
c
o
rd
in
g
to

D
ru
L
ito

so
ft
w
a
re
.

M
o
le
cu

le
s

M
W

(g
/m

o
l)

lo
g
p

A
lo
g
p

H
B
A

H
B
D

T
P
S
A
(Å

2
)

%
A
B
S

A
M
R

nR
B

N
A
to
m

nA
ci
d
ic

g
ro
up

R
C

nR
ig
id

B
nA

ro
m

ri
ng

nH
B

S
A
le
rt
s

1
.

4
5
9
.9
8

6
.4
1
8

4
.7
3
4

4
0

6
5
.6
2

8
6
.3
6

1
6
4
.5
3

7
3
6

0
6

3
4

6
4

2

2
.

4
5
0
.9
5

2
.6
0
8

2
.3
4
1

9
0

1
4
0
.8
1

6
0
.4
2

1
5
4
.3
8

9
3
7

0
5

3
2

5
9

1

3
.

4
1
3
.9
9

5
.2
3

5
.2
3

5
0

6
8
.8
6

8
5
.2
4

1
4
3
.4
7

6
3
2

0
6

3
1

6
5

1

4
.

4
8
1
.9
8

6
.9
0
5

6
.9
0
5

3
0

6
2
.3
8

2
1
.5
2

1
7
7
.9
8

7
3
8

0
6

3
6

6
3

2

5
.

5
2
9
.9
4

3
.0
9
5

3
.0
9
5

8
0

1
3
7
.5
7

6
1
.5
3

1
6
7
.8
4

9
3
9

0
5

3
4

5
8

1

6
.

4
3
5
.9
8

5
.7
1
7

5
.7
1
7

4
0

6
5
.6
2

8
6
.3
6

1
5
6
.9
2

6
3
4

0
6

3
3

6
4

1

7
2
3
1
.9
8

1
.9
7
2

1
.0
3
4

4
0

6
0
.0
5

8
8
.2
8

7
4
.4
6

2
1
7

0
3

1
7

2
4

1

8
1
7
7
.9
9

0
.5
9

0
.5
8
2

3
0

3
7
.3
8

9
6
.1
0

5
6
.7
1

2
1
4

0
2

1
3

1
3

1

9
2
5
3
.9
8

2
.4
5
9

2
.3
4
1

3
0

5
6
.8
1

8
9
.4
0

8
7
.9
1

2
1
9

0
3

1
9

2
3

1

Frontiers in Medical Technology | www.frontiersin.org 13 March 2022 | Volume 4 | Article 845322

https://www.frontiersin.org/journals/medical-technology
https://www.frontiersin.org
https://www.frontiersin.org/journals/medical-technology#articles


V
e
rm

a
e
t
a
l.

Id
e
n
tific

a
tio

n
o
f
In
h
ib
ito

r
A
g
a
in
st

C
Y
P
5
1

TABLE 3 | Absorption, distribution, and metabolism of the nine molecules according to admetSAR online toolkit.

Parameters Molecules

1 2 3 4 5 6 7 8 9

Absorption Absorption

blood-brain

barrier

BBB+ BBB+ BBB+ BBB+ BBB+ BBB+ BBB+ BBB+ BBB+

Human

intestinal

absorption

HIA+ HIA+ HIA+ HIA+ HIA+ HIA+ HIA+ HIA+ HIA+

Caco-2

permeability

Caco2+ Caco2+ Caco2+ Caco2+ Caco2+ Caco2+ Caco2+ Caco2+ Caco2+

P-glycoprotein

substrate

Non-Substrate Non-Substrate Non-Substrate Non-Substrate Non-Substrate Non-Substrate Non-Substrate Non-Substrate Non-Substrate

P-glycoprotein

inhibitor

Non-Inhibitor Non-Inhibitor Non-Inhibitor Inhibitor Non-Inhibitor Non-Inhibitor Non-Inhibitor Non-Inhibitor Non-Inhibitor

Renal organic

cation

transporter

Non-Inhibitor Non-Inhibitor Non-Inhibitor Inhibitor Non-Inhibitor Non-Inhibitor Non-Inhibitor Non-Inhibitor Non-Inhibitor

Distribution Subcellular

localization

Mitochondria Mitochondria Mitochondria Mitochondria Mitochondria Mitochondria Mitochondria Plasma

membrane

Mitochondria

Metabolism CYP450 2C9

substrate

Non-substrate Non-substrate Non-substrate Non-substrate Non-substrate Non-substrate Non-substrate Non-substrate Non-substrate

CYP450 2D6

substrate

Non-substrate Non-substrate Non-substrate Non-substrate Non-substrate Non-substrate Non-substrate Non-substrate Non-substrate

CYP450 3A4

substrate

Non-substrate Substrate Non-substrate Non-substrate Non-substrate Non-substrate Non-substrate Non-substrate Non-substrate

CYP450 1A2

inhibitor

Inhibitor Inhibitor Inhibitor Inhibitor Non-inhibitor Inhibitor Inhibitor Non-inhibitor Inhibitor

CYP450 2C9

inhibitor

Inhibitor Non-inhibitor Non-inhibitor Non-inhibitor Inhibitor Inhibitor Non-inhibitor Inhibitor Non-inhibitor

CYP450 2D6

inhibitor

Non-inhibitor Non-inhibitor Non-inhibitor Non-inhibitor Non-inhibitor Non-inhibitor Non-inhibitor Non-inhibitor Non-inhibitor

CYP450 2C19

inhibitor

Inhibitor Non-inhibitor Inhibitor Inhibitor Inhibitor Inhibitor Inhibitor Inhibitor Inhibitor

CYP450 3A4

inhibitor

Inhibitor Non-inhibitor Inhibitor Inhibitor Non-inhibitor Non-inhibitor Non-inhibitor Inhibitor Inhibitor

CYP inhibitory

promiscuity

High CYP

inhibitory

promiscuity

High CYP

inhibitory

promiscuity

High CYP

inhibitory

promiscuity

High CYP

inhibitory

promiscuity

High CYP

inhibitory
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High CYP

inhibitory
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High CYP

inhibitory
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High CYP
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High CYP
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drugs that can discover unique targets that are not shared with
human hosts are few and far between. Due to the lack of
chitin structure in human cells, the fungal cell wall remains an
untapped therapeutic target for selective antimycotics (47, 48).
Most treatments are aimed at treating fungal infections and target
the Ergosterol production route or its end product Ergosterol,
a membrane sterol found only in fungi. It is the primary sterol
and is therefore needed for fungal cell development and proper
membrane function. It contributes to the correct activity of
membrane-bound enzymes and also acts as a bioregulator of
membrane fluidity, asymmetry, and integrity (49). As a result,
efficient antifungal drugs and the discovery of a potential target
to treat them will become possible. Diseases are urgently needed.
One of the most important proteins in mycoses is lanosterol-14-
demethylase (CYP51). As a result of this discovery, this protein
has been identified as a potential therapeutic target.

Biological Activity Predictions of
Compounds
The PASS webserver was used to confirm the biological activity
prediction, resulting in the selected compounds having the same
biological activities. This study demonstrated that the molecules
series 1–9 have antifungal therapeutic properties, validating
prior findings except molecules 4–9. Several clinical trials
assessing the use of anti-inflammatory drugs in combination with
chemotherapeutic drugs for cancer prevention and treatment
have been conducted, with antifungal therapies showing
promising efficacy and toxicity findings. Preclinical and clinical
research to assess the antifungal properties and mode of action
of new medicines are underway. With Pa ranging from 0.296 to
0.240, the molecules demonstrated strong antifungal inhibitory
potential predictions when Pa > Pi. Supplementary Table 4

shows the projected activity of the antifungal medications with
the highest Pa values.

CONCLUSION

This study has utilized comprehensive in-silico techniques
for determining the anti-fungal activity of derivatives of 1,
2, 4-triazine with CYP51. Compared to the conventional
inhibitor fluconazole, all derivatives of 1, 2, 4-triazine showed
stronger binding affinities to the target protein. We discovered
that all compounds can act as inhibitors against a specific
protein of Candida albicans, based on molecular docking and
chemical bonding, hydrophobic interactions, and van der Waals
interactions nine molecules with the protein Lanosterol 14-
demethylase (CYP51). The RMSD and RMSF values obtained by
molecular dynamic simulation have proved that the selection of
docked complexes seems to be correct. The amino acid residues
associated with the binding pose of the ligand with the protein
change over the simulation time showing the point mutation
in the protein. It also conveys the availability of polar and
non-polar interactions. Their drug-like properties have been
demonstrated through physicochemical, pharmacokinetic, and
toxicological characteristics, which have proven them to be safe
sources of drugs. Overall, we conclude that 1, 2, 4-triazine and
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its derivatives, either alone or in combination with the different
compounds, can target CYP51 or may be beneficial for future
antifungal drug development.
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