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The management of chronic wounds in the elderly such as pressure injury (also
known as bedsore or pressure ulcer) is increasingly important in an ageing
population. Accurate classification of the stage of pressure injury is important
for wound care planning. Nonetheless, the expertise required for staging is
often not available in a residential care home setting. Artificial-intelligence
(AI)-based computer vision techniques have opened up opportunities to
harness the inbuilt camera in modern smartphones to support pressure
injury staging by nursing home carers. In this paper, we summarise the
recent development of smartphone or tablet-based applications for wound
assessment. Furthermore, we present a new smartphone application (app) to
perform real-time detection and staging classification of pressure injury
wounds using a deep learning-based object detection system, YOLOv4.
Based on our validation set of 144 photos, our app obtained an overall
prediction accuracy of 63.2%. The per-class prediction specificity is generally
high (85.1%–100%), but have variable sensitivity: 73.3% (stage 1 vs. others),
37% (stage 2 vs. others), 76.7 (stage 3 vs. others), 70% (stage 4 vs. others),
and 55.6% (unstageable vs. others). Using another independent test set, 8
out of 10 images were predicted correctly by the YOLOv4 model. When
deployed in a real-life setting with two different ambient brightness levels
with three different Android phone models, the prediction accuracy of the 10
test images ranges from 80 to 90%, which highlight the importance of
evaluation of mobile health (mHealth) application in a simulated real-life
setting. This study details the development and evaluation process and
demonstrates the feasibility of applying such a real-time staging app in
wound care management.
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Introduction

Caring for pressure injury (PI) in the community, especially

for elderlies with limited mobility, has been emerging as a

healthcare burden in recent years due to the ageing

population (1–3). These injuries are caused by unrelieved

pressure occurring over dependent bony prominences, such as

the sacrum, the ankle or the heel, as well as shear forces and

friction (4). Importantly, PI is preventable and treatable with

early diagnosis and proper wound management.

Considering PI conditions and healing progress, National

Pressure Injury Advisory Panel (NPIAP) have a defined

staging system — stage 1, stage 2, stage 3, stage 4, unstageable,

deep tissue pressure injury, and mucosal membrane pressure

injury — to guide wound care specialists, clinicians and nurses

for treatment options (5). The commonly identified tissue

types in PI include epithelialisation, granulation, slough,

necrosis, and dry eschar. Accurate and efficient assessment of

PI helps healthcare professionals offer appropriate

interventions and subsequent progress monitoring.

The prevalence of PI is estimated to be 10%–25.9% (6). Frail

elderly, bedridden elderly and elderly with incontinence are

particularly vulnerable. Initial PI assessment is normally

performed by specialist wound care physicians or nurses in

hospitals or clinics, followed by daily or weekly follow-up

management by community nurses or other providers. Given

its financial implication, patients with PI are usually managed

by lay home carers, leading to increased risk of wound

infection, delayed healing and hospital admissions (7).

Proper PI staging is critical for treatment plan formulation

and progress monitoring. We propose a smartphone-based

artificial intelligence (AI) application (app) can provide

convenient and effective PI assessment support. We reviewed

the state-of-the-art in this field and report our group’s effort

in the development and evaluation of a real-time PI

assessment app.

A number of smartphone or tablet apps for wound

assessment, using computer vision algorithms based on

mathematical models or AI, have been developed (Table 1).

Apps can have one-to-many features built-in, including

wound size and depth measurement, localisation and

segmentation, tissue classification, manual entry of wound

characteristics for documentation and monitoring, and more.

Apps are typically made for assessing chronic wounds, such

as PI or diabetic foot ulcers.

Some apps require a portable device or component in

addition to the smartphone or tablet itself. Garcia-Zapirain

et al. (8) implemented a toroidal decomposition-based

segmentation algorithm for PI into a tablet app that optimises

the treatment plan. The same team later implemented a

convolutional neural network (CNN)-based method in a

tablet app to automatically segment PI wounds and measure

wound size and depth (9). It is important to note that the
Frontiers in Medical Technology 02
app requires a Structure Sensor mounted on an iPad to

perform the analysis. The imitoWound app (10) was

developed for wound documentation and calculation of

physical properties of a wound, including wound length,

width, surface area, and circumference; these measurements

require the use of their custom paper-based calibration

markers. Fraiwan et al. (11) proposed an app that makes use

of a portable thermal camera (FLIR ONE) for early detection

of diabetic foot ulcers based on the Mean Temperature

Difference (MTD). This smartphone app only works when

attached to the external thermal imaging camera. The

accuracy of the method was not benchmarked.

Apps can be conveniently and widely used if they are

designed to run on a smartphone or tablet alone. Yap et al.

(12) developed an app for assessing diabetic foot ulcers called

FootSnap, which the initial version captured standardised

images of the plantar surface of diabetic feet and worked on

iPad only. Later versions of the app (13) were trained with a

CNN to localise wounds in diabetic foot ulcer images,

deployed on Android platform, and proposed using a cloud-

based framework to store the images taken from the app (14).

Kositzke and Dujovny (15) used a wound analyser software

called MOWA to perform tissue classification in Android or

iOS platforms and smartphone or tablet devices. However, the

classification method and accuracy are both unknown, and

the wound segmentation must be done manually. Friesen

et al. (16) developed an Android smartphone or tablet app

titled SmartWoundCare, which was used for electronic

documentation of chronic wound management, especially for

pressure ulcers. Instead of AI, the app focuses on functions

such as telemedicine, wound record management, and

tutorials for non-specialists. The group also proposed methods

for detecting wound size and colour (17), but as far as

publicly available, these are not currently in the

SmartWoundCare app. Orciuoli et al. prototyped a

smartphone app for size measurement and staging

classification based on deep learning. Their staging classifier

was trained on a limited set of images (62 total), and the

evaluation was only done on the training set (18).

More ambitious apps have many of the mentioned features,

whether or not an external device is required. KroniKare (19)

provides an AI-based assessment of the wound. A custom-

made scanning device, in addition to the smartphone, is

required to take a 3D image of the wound. It measures the

wound size, identifies tissue types, provides an integrated

dashboard for documentation, and detects wound

complication such as undermining or infection. Yet, peer

review evaluation of its performance is lacking.

CARES4WOUNDS (20) also provides AI-based wound

assessment in tissue classification, automated wound size and

depth measurement, prediction of infection likelihood, and an

output of a wound score. The app accepts manual entry of

wound characteristics related to documentation and
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TABLE 1 Summary of the developed wound assessment smartphone or tablet apps.

Name Academic
publication

Main features Potential
limitations

Platform Device Availability

Garcia-Zapirain
et al.

Garcia-Zapirain
et al., 2018 (8)

Pressure injury (PI) image decomposition
and segmentation

Segmentation accuracy
and processing time can
be improved

Android Tablet Not found online or
in any app store

Zahia et al. Zahia et al., 2020
(9)

Automatic PI image segmentation and size
and depth measurement based on CNN

Requires Structure Sensor
attached to iPad

iOS Tablet Not found online or
in any app store

FootSnap Yap et al., 2018
(12)
Goyal et al.,
2019 (13)
Cassidy et al.,
2022 (14)

Capture standardised images of plantar
surface of diabetic feet (2018); localisation
of wound in diabetic foot ulcer images
(2019); cloud-based framework for
storage (2022)

Lacking any of the other
key features (e.g.,
segmentation / tissue /
staging)

Android or
iOS

Smartphone
or Tablet

Not found online or
in any app store

MOWA Kositzke et al.,
2018 (15)

Tissue classification of wound Method and accuracy
unknown; segmentation
done manually

Android or
iOS

Smartphone
or Tablet

Paid

Fraiwan et al. Fraiwan et al.,
2018 (11)

Early detection of diabetic foot ulcers using
thermal imaging

Accuracy unknown;
external thermal camera
required

Android Smartphone Not found online or
in any app store

SmartWoundCare Friesen et al.,
2013 (16)

Electronic documentation of chronic
wounds

No mathematical or
machine learning-based
features

Android Smartphone
or Tablet

App is freely available

imitoWound n/a Wound documentation and measurement Measurement requires
paper-based calibration
marker

Android or
iOS

Smartphone
or Tablet

App is freely available,
but sensor for
measurement is not

KroniKare n/a Capture 3D image of wound; dashboard for
wound documentation; wound
complication detection; measure wound
size; AI-based classification of seven tissue
types

Method and accuracy
unknown; external
device attached to
smartphone required

Android or
iOS

Smartphone Availability upon
request

CARES4WOUNDS Chan et al., 2022
(21)

Wound size and depth measurement; AI-
based tissue classification; prediction of
infection likelihood; output of a wound
score; wound documentation and
monitoring; wound dressing
recommendation based on treatment
objectives

Method and accuracy
unknown beyond
wound size
measurement

iOS Smartphone Availability upon
request

Orciuoli et al. Orciuoli et al.,
2020 (18)

Wound size measurement and AI-based
staging classification

A limited set of training
images (62 total) and
evaluation only reported
for the training set

Android Smartphone Not found online or
in any app store

Lau et al. 10.3389/fmedt.2022.905074
monitoring and recommends wound dressing treatment plans

from user-decided treatment objectives using a decision tree.

The app works only on later versions of the iPhone (11+)

with an integrated depth scanner. A clinical study found the

wound size measurement of CARES4WOUNDS very accurate

for diabetic foot ulcers (21). Other features of the app about

classification or various prediction or score-based outputs

have not yet been reported in the literature.

Out of the smartphone or tablet-based wound assessment

apps we reviewed here, only Orciuoli et al. directly perform PI

staging classification. Other apps mostly focus on size

measurement or tissue segmentation, probably due to these

features being more intuitively identifiable from the wound

image. Staging a PI requires a trained professional, and
Frontiers in Medical Technology 03
staging results are not completely free from bias. To build

on the existing study, we sought to create our own PI

staging classification smartphone app using a larger set of

images, further increased by data augmentation, and to

more objectively evaluate the classifier using validation and

testing sets (both were not included in the training). The

challenges of building and evaluating a smartphone PI

staging classifier include the requirement of an expert

wound specialist to generate the ground truth, the different

lighting, angle, wound relative size, and overall quality of

the images, and further differences of these factors after a

wound image is captured by a smartphone camera. In this

article, we describe the process of developing an Android

smartphone app that can automatically detect and classify
frontiersin.org
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PI. We also present a systematic evaluation of the

performance of this app.
Methods

The main objective of this study is to develop and evaluate a

practical, real-time PI assessment smartphone app. As a pilot

study, we developed an AI-based app that was trained with

publicly available PI images. The data set was based on a

publicly available GitHub repository (22), consisting of images

from the Medetec Wound Database (23) and other public

sources. After manual inspection to remove images that do

not contain PI, the data set has 190 images from pressure

ulcer images, including stage 1 (38 photos), stage 2 (35

photos), stage 3 (38 photos), stage 4 (42 photos) and

unstageable (38 photos). We manually identified the wound

using boundary boxes and annotated each wound based on

the definition of the staging system by NPIAP (5). The

annotation was reviewed and confirmed by an experienced

(>10 years) wound nurse, co-author Tin-Yan Sit. She is a

registered nurse in Hong Kong, and an enterostomal therapist

who is a member of the WCET (World Council of

Enterostomal Therapists). Members of WCET are nurses who

provide specialised nursing care for people with ostomy,

wound and continence needs; she is also a member of Hong

Kong Enterostomal Therapist Association.

Data augmentation was performed by Roboflow (24). Each

image in the data set was subjected to three separate

transformations—flipping, cropping, and brightening—to

create two more images. We then randomly split the data into

training and validation sets such that no image in the training

set shares the same source as any image in the validation set.

To further enhance the size of the training set, we performed

another round of data augmentation on the training set with

three separate transformations: rotation, shear, and exposure.

In total, the training set contains 1,278 images, and the

validation set contains 144 images.

We used a high-performance open source object detection

and classification system, YOLOv4 (25), as the core AI

component in our app. You Only Look Once (YOLO) is an

object detection system for real-time processing (26) and uses

a neural network to predict the target object’s position and

class score in a single iteration. Carrión et al. (27) used 256

images of the wound-inflicted lab mice in the YOLO model

for object detection. Han et al. (28) proposed a real-time

detection and classification software for Wagner grading of

diabetic foot wounds. In addition, they found that YOLO

achieved a better speed and precision trade-off than other

wound localisation models like Single Shot MultiBox Detector

(SSD) and Faster R-CNN. These studies show that YOLO is a

suitable model for detecting or locating a wound.
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Here, we designed a real-time wound detection and

classification program based on YOLO’s deep-learning

training capability and implemented it in a smartphone app

(29). We trained YOLO version 4 (v4) (25) on open-source PI

images and performed the detection and classification.

Following the implementation step in YOLOv4, we first

configured cuDNN, a deep learning Graphical Processing Unit

(GPU) acceleration library based on CUDA. Then, we

installed an open-source neural network framework called

Darknet, which was written in C and CUDA technology.

Computations of YOLOv4 are performed on GPU. All the

annotated wound images in the training set were exported in

the YOLO Darknet format. We trained the YOLOv4 detector

by using the default training parameter setting. After training

the model, we saved the weights file every 1,000 iterations, for

a total of 10,000 iterations, the best weights, and the last weights.

The trained YOLOv4 model was then converted to a

TensorFlow Lite (TFLite) model for deployment in an

Android device (30). We further built a graphical user

interface to make this app user-friendly (Figure 1).

The accuracy of our model is calculated by:

TP
TP þ FN þ FP þ FN

¼ TP
total

The Matthews Correlation coefficient (MCC) for individual

classes (A vs. not A) is calculated by:

MCCA¼ TPA�TNA�FPA�FNAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPAþFPAð Þ TPAþFNAð Þ TNAþFPAð Þ TNAþFNAð Þp

where A can be stage 1,2,3,4 or unstageable (U).

Bootstrap mean:

Suppose we have an original data set of x ¼ ðx1; . . . ; xnÞ
with ascending order, we calculated the mean and SD of this

original data set.

To create a bootstrap sample, we randomly select the data

from the original data set n times and obtain a data set of

x0 ¼ ðx01; . . . ; x0nÞ. This process is repeated 1,000 times. For

each bootstrap sample, we calculated the mean. Finally, we

obtained the SD of the mean of these 1,000 bootstrap samples.

The 95% confidence interval is calculated as:

2�x � x�1�a ; 2�x � x�a
� �

with �x is the mean of the original data set and x� is the bootstrap
means.

In 95% confidence interval,

a ¼ 1� 95%ð Þ
2
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FIGURE 1

Development of a smartphone app for wound assessment. (A) Collection and annotation of images of pressure injury wounds. (B) Application of our
smartphone app to detect and classify PI. (C) A screenshot showing how a printed wound image is automatically detected and classified using the
app.
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We estimate the prediction accuracy of our model based on

ten-fold cross-validation (10 fold CV) on the training data set;

in addition, we evaluate our model based on a held-out

validation set and an independent test set.
Results

To validate the PI staging classification, we applied our

trained YOLOv4 model to the 144 validation PI images. The

confusion matrix is shown in Figure 2A. The overall

prediction accuracy is 63.2%. We calculated the per-class

prediction sensitivity and specificity by comparing the results

of each stage against the other stages in the confusion matrix.

The per-class prediction sensitivity is variable, at 73.3% (stage

1 vs. others), 37% (stage 2 vs. others), 76.7 (stage 3 vs.

others), 70% (stage 4 vs. others), and 55.6% (unstageable vs.

others). The per-class prediction specificity is uniformly high,

at 94.7% (stage 1 vs. others), 95.7% (stage 2 vs. others), 85.1

(stage 3 vs. others), 93% (stage 4 vs. others), and 100%

(unstageable vs. others). We also calculated the per-class

prediction Matthews correlation coefficient (MCC) of the

model on the same validation set, and the mean MCC across

different classes is 60.5%, which is consistent with the

accuracy estimate (Figure 3A).

To further test the predictive performance of the model, we

collected an additional 10 test images using our local patients.

Eight out of 10 images had correct classification (accuracy =

80%). The per-class sensitivity is within 33.3%–100%, and the
Frontiers in Medical Technology 05
specificity is within 87.5%–100% (Figure 2B), and the MCC

is within 50.9%–100% (Figure 3B).

For estimating the reliability of the metrics of our model, we

computed 10-fold cross-validation on the training set images,

and for each fold, we computed the prediction accuracy and

per-class MCC, as well as the mean and 95% confidence

interval across the 10 folds for each metric (Table 2). Our

mean 10-fold CV accuracy is 73.3% and MCC are 61.56%,

46.72%, 81.11%, 86.51%, 86.67% in the 1vO, 2vO, 3vO, 4vO,

and UvO comparisons, respectively. The MCC estimated from

the validation set is slightly lower than the estimates from the

10-fold CV experiment (Table 2). This may be caused by an

underestimate of the confidence intervals due to large

variance in the MCC estimates of the 10 folds. Nonetheless,

the overall accuracy and the trend of the per-class MCC

estimates between the 10-fold CV and validation set are quite

consistent.

To construct an empirical baseline for comparison, we re-

trained the model using the training set images with shuffled

class labels (label shuffling done on the level of the original

images) and calculated the evaluation metrics on the

validation set ten times (Table 3). We recorded a mean

shuffling test accuracy of 19.32% and multi-class MCC of

−7.06–21.01, which are much poorer than our standard and

10-fold CV results. This result indicates that our trained

YOLO model performed much better than a random baseline

model, and has indeed learned.

To test the practical utility of the smartphone app, as

opposed to just the performance of the ML model, we printed
frontiersin.org
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FIGURE 3

Matthews correlation coefficient (MCC) of (A) validation set of 144 photos, and (B) testing set of 10 photos. 1vO: Stage 1 vs. Others; 2vO: Stage 2 vs.
Others; 3vO: Stage 3 vs. Others; 4vO: Stage 4 vs. Others; UvO: Unstageable vs. Others.

FIGURE 2

Evaluation of the classification results of the PI stages. Stage 1 (1), stage 2 (2), stage 3 (3), stage 4 (4), and unstageable (U) of the trained YOLOv4 model
by computing the confusion matrix and corresponding Sensitivity (TP/TP + FN) and Specificity (TN/TN+ FP) of (A) validation set of 144 photos, and (B)
testing set of 10 photos. 1vO: Stage 1 vs. Others; 2vO: Stage 2 vs. Others; 3vO: Stage 3 vs. Others; 4vO: Stage 4 vs. Others; UvO: Unstageable vs.
Others.

Lau et al. 10.3389/fmedt.2022.905074
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TABLE 2 Accuracy and Matthews correlation coefficient (MCC) of the training set of 1,278 pressure ulcer images by 10-fold cross-validation.

Fold Accuracy (%) MCC (%)

1vO 2vO 3vO 4vO UvO

1 51.6 45.6 70 83.7 24.7 45.7

2 69.0 56.9 23.6 83.2 91.3 95.3

3 76.2 51.0 37.4 83.1 100 100

4 81.0 61.4 86.8 90.5 92.9 95.3

5 81.0 85.2 46.4 87.7 97.6 90.6

6 69.0 76.4 20.7 36.9 86.9 93.4

7 74.6 64.2 33.1 80.5 93.4 85.6

8 71.4 51.4 58.4 91.3 88.0 72.5

9 75.5 52.8 27.1 93.5 98.1 93.0

10 83.7 70.7 63.7 80.7 92.2 95.3

Average 73.3 61.56 46.72 81.11 86.51 86.67

SD (bootstrap) 2.734 3.682 6.744 4.845 6.754 4.895

95% confidence interval [68.39,79.41] [53.71,68.58] [33.53,59.56] [74.02,91.84] [77.55,100] [78.96,97.60]

TABLE 3 Accuracy and Matthews correlation coefficient (MCC) of validation set of random label shuffling of training set of 1,278 pressure ulcer
images, repeated ten times.

Permutation Accuracy (%) MCC (%)

1vO 2vO 3vO 4vO UvO

1 17.4 −6.2 −1.1 1.7 17.4 21.8

2 23.6 −18.1 11.7 11.0 35.3 37.3

3 29.9 −18.8 27.0 35.3 30.5 20.0

4 16.0 −8.7 31.7 −8.7 17.8 22.5

5 18.1 5.5 9.6 −19.4 9.2 19.2

6 17.4 −10.7 −2.6 2.4 40.9 22.5

7 11.8 −18.8 22.8 −10.2 4.6 −17.9

8 20.8 9.3 7.7 4.9 35.3 −4.0

9 16.7 −16.2 14.0 23.1 11.0 14.3

10 21.5 12.1 −7.4 17.6 8.1 25.5

Average 19.32 −7.06 11.34 5.77 21.01 16.12

SD (bootstrap) 1.470 3.636 3.719 4.987 3.874 4.619

95% confidence interval [16.26,21.94] [−14.18,0.05] [4.06,18.71] [−4.65,14.64] [13.17,28.52] [8.37,25.51]

Lau et al. 10.3389/fmedt.2022.905074
the 10 test PI images on blank white papers and adhered the

cut-out of the wound image on the skin of a forearm. The

idea is that this design provides a more realistic evaluation

strategy for practical performance of the app. This design

allows us to test the impact of the ambient environment, such

as brightness, as well as the stability across different phones

which have distinct cameras. In this test, we placed the

smartphone app at a distance to enable the wound to be

clearly seen inside the screen. We tested three Android

smartphone models (Figures 4A–C) across two brightness

levels of indoor illumination levels (Table 4). In particular, we

noted that the classification accuracy varies between 80% to

90% depending on phone model and ambient brightness

(Figure 4). The estimated sensitivity and specificity are also
Frontiers in Medical Technology 07
shown in Figure 4 and Table 4. These findings indicated that

the app was reasonably robust in realistic situations.
Discussion

This study reports the development and evaluation of the

first AI-enabled smartphone app for real-time pressure injury

staging assessment. Other app developers have considered size

and depth measurement, wound segmentation, tissue

classification, treatment recommendation, and the applicable

wound type (PI, diabetic foot ulcer, or others). We also plan

to explore some of these features in the future. Still, our

current proposed AI-based app, which is built upon open-
frontiersin.org
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FIGURE 4

Evaluation of accuracy of the implemented model in an Android smartphone app. The detection and classification of the printed wound images in the
10 photos in the test set using the smartphone app with three different Android phones at normal (125 lux) brightness level: (A) MIX2S, (B) Samsung
Note 10+, and (C) Samsung S20. 1vO: Stage 1 vs. Others; 2vO: Stage 2 vs. Others; 3vO: Stage 3 vs. Others; 4vO: Stage 4 vs. Others; UvO: Unstageable
vs. Others.

TABLE 4 Per-class specficity and sensitivity of the implemented model
in three different android phones at two different ambient brightness
levels on the test set images.

Sensitivity (%) Specificity (%)

Phone model
(ambient
brightness
level)

1vO 2vO 3vO 4vO UvO 1vO 2vO 3vO 4vO UvO

MIX2S (normal) – – 33.3 100 100 – 90 100 100 87.5

MIX2S (dim) – – 33.3 100 100 – 90 100 100 87.5

Samsung Note
10+ (normal)

– – 66.7 100 100 – – 100 100 87.5

Samsung Note
10+ (dim)

– – 33.3 100 100 – 90 100 100 87.5

Samsung S20
(normal)

– – 33.3 100 100 – 90 100 100 87.5

Samsung S20
(dim)

– – 33.3 100 100 – 90 100 100 87.5

Normal is brightnes at 125 lux and dim is brightness at 58 lux.
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source PI images verified by wound care nurses, provides a

reasonable PI staging support tool for lay carers. With early

diagnosis and proper management of PI, wound infection and

hospital admission are prevented.
Frontiers in Medical Technology 08
We identified several issues that can be improved. First, the

realistic conditions testing of the app was only done on printed

images, while testing on real patient wounds will be needed to

ensure robustness of the results. Further technical

development, such as utilising the flash light in a smartphone,

may further improve the sensitivity and specificity of real-time

image capture. Second, high standard performance including

accuracy, sensitivity and specificity, and incorporation of

features such as speed, operating efficiency, and convenience

in retrieving patient medical records, as well as comparing

and contrasting PI parameters for healing monitoring, are

necessary for more professional use. Third, our app is used on

Android platform only, and should therefore aim to be

compatible with both Android and iOS devices. Fourth, with

the real-time function, the app can be further optimised to

inter-operate with existing tele-medicine platforms for

supporting remote medical consultations.

In the community application, AI wound assessment in

smartphones has the potential to perform early wound

diagnosis, optimise wound management plans, reduce

healthcare costs, and improve patients’ quality of life in

residential homes by the carers. Our newly developed app

can perform real-time PI assessment without the need to

use additional hardware (e.g., thermal camera and

structure sensor) and internet access, making it easily
frontiersin.org
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deployable in the community. Nevertheless, the practicality

of wound assessment assisted by an AI app can depend on

the level of acceptance of such technology from health

workers.

As a feasibility study, we mostly made use of publicly

available data for training and validation of the machine

learning system. We collected a small set of additional test

photos for independent validation. Still, the number of

images is still relatively small. In the future, we will further

collect high quality PI images for training and evaluation.

In addition, we should conduct an evaluation study on real

patients and a usability of nurses and wound specialists.

In medical and nursing education or specialist training,

these apps have potential to serve as an educational tool for

learners to practice. As the apps can detect both photos or

real wound, it enhances teachers’ resources for teaching

wound assessment and management. Also, technology-based

pedagogy may enhance students’ learning motivation and

arouse their interest to practice, which will maximize their

learning performance.

We demonstrated that the detection of a pressure ulcer by

the object detection model YOLO. The app stages pressure

ulcers with our limited training and test sets. The results

have indicated that we can have a correct classification of the

staging level by YOLO if we have enough training set of the

pressure ulcer images. We also implemented our trained

YOLO into an Android app. The app can detect the wound

successfully in real-time by the phone camera. The size,

dimensionality, and distance from the phone camera are the

factors that affected the classification results. Overall, in this

work, we developed a real-time smartphone or tablet app to

detect and classify the staging of pressure injuries. It

provides the foundation of pressure injuries assessment with

an object detection app. Furthermore, our proposed

technology for wound assessment may help to prevent and

recover pressure injuries without leading to wound infection

and hospital admission.
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