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Background: Many machine learning heuristics integrate well with Electronic Medical

Record (EMR) systems yet often fail to surpass traditional statistical models for

biomedical applications.

Objective: We sought to compare predictive performances of 12 machine learning and

traditional statistical techniques to predict the occurrence of Hospital Acquired Pressure

Injuries (HAPI).

Methods: EMR information was collected from 57,227 hospitalizations acquired

from Dartmouth Hitchcock Medical Center (April 2011 to December 2016). Twelve

classification algorithms, chosen based upon classic regression and recent machine

learning techniques, were trained to predict HAPI incidence and performance was

assessed using the Area Under the Receiver Operating Characteristic Curve (AUC).

Results: Logistic regression achieved a performance (AUC= 0.91± 0.034) comparable

to the other machine learning approaches. We report discordance between machine

learning derived predictors compared to the traditional statistical model. We visually

assessed important patient-specific factors through Shapley Additive Explanations.

Conclusions: Machine learning models will continue to inform clinical decision-making

processes but should be compared to traditional modeling approaches to ensure

proper utilization. Disagreements between important predictors found by traditional

and machine learning modeling approaches can potentially confuse clinicians and

need to be reconciled. These developments represent important steps forward in

developing real-time predictive models that can be integrated into EMR systems to

reduce unnecessary harm.

Keywords: machine learning, artificial intelligence, electronicmedical records, hospital acquired pressure injuries,
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INTRODUCTION

Hospital Acquired Pressure Injuries (HAPI) are preventable
medical errors with costly implications for patients, health
care institutions and consumers (1). These injuries arise from
a sustained period of compression between a bony surface
and an external surface, often due to immobility and shear
(2). The development and occurrence of these events are
difficult to detect and localize during early stages due to little
superficial presentation and thus provide further motivation for
the development of methods that are able to detect and preempt
occurrence of HAPIs (3).

Reported rates of HAPIs vary considerably across the
United States, which is largely attributed to inappropriate
coding and underreporting. Despite the inability to precisely
pinpoint the burden of this condition, a prior study from
2012 has indicated that HAPIs have cost the US healthcare
system an estimated 6–15 billion dollars per year (4). Most of
these costs have been shifted to hospitals, but patients bear
additional liability when factoring for deductibles, co-payments
and coinsurance and the additional length of stay needed to treat
this condition (5).

Thus, these individual and societal burdens may be reduced
by better understanding patient-specific factors associated with
HAPI and by using information regularly collected in electronic
medical records to develop predictive risk models for prevention
of HAPIs. The ability of prediction models to fit a set of
data can be evaluated and compared by taking note of the
concordance index, otherwise known as the C-statistic or
alternatively the area under the receiver operating characteristic
curve (AUROC/AUC). The receiver operating characteristic
curve explores changes in the model’s sensitivity and specificity
as the predictive threshold for assignment to the positive class (or
outcome, i.e., a HAPI event) is changed (6). In this application,
the AUC of the fitted model estimates the probability that a
randomly selected hospital encounter that resulted in a HAPI
event has a greater predictive probability than a randomly
selected hospital encounter without a HAPI event. The larger
the C-statistic, the better a model is at discriminating an adverse
event (e.g., a HAPI event) from the lack thereof (e.g., non
HAPI events).

A well-known clinical predictor of HAPIs is the Braden Scale,
a measure that incorporates information from six sub-scales
(sensory perception, moisture, activity, mobility, nutrition, and
friction/shear) to arrive at a risk score between 6 and 23, where
scores below 9 indicate severe risk (7). Prior studies that utilized
this scoring system yielded C-statistics of 0.67 and 0.77 (8, 9).
Nevertheless, the reported low specificity of the measure begs
the inclusion of other important predictors. This has led to the

expansion and critical evaluation of the covariates sought to

predict HAPI incidence (8).
Machine learning, the specification of a model after a heuristic

search for the ideal set of non-linear interactions between

predictors, may be a useful tool that can enhance clinical
encounters for the prediction and reduction of patient risk (10).
Recently, some of these HAPI predictors have been incorporated
into logistic regression and machine learning approaches. A

recent study applied six diverse machine learning algorithms
to a cohort of 7,717 Intensive Care Unit (ICU) patients and
reported a C-statistic of 0.83 (11), while another study reported
a C-statistic of 0.84 for a general hospital population of 8,286
observations using logistic regression with under-sampling of
the control patients during model fitting (12). Other studies
include: (1) application of Bayesian Network approaches to the
aforementioned cohort of 7,717 ICU patients, achieving a similar
C-statistic of 0.83 as before, while improving sensitivity and
adding model interpretation through modeling of related risk
factors (e.g., medications, diagnoses, and Braden scale factors)
(13), (2) a random forest model which leveraged predictors
curated from clinical input and previous literature to predict
stage 1 HAPI and above with a C-statistic of 0.79 (14), (3)
another logistic regression which leveraged ICU-specific features
to obtain a recall of 0.74 (15), and (4) other modeling approaches
built off of ElectronicMedical Records (EMR) and claims data, an
online AI platform and another logistic regression model (after
comparison between six machine learning methods), obtaining
a C-statistic of 0.84 and recall of 0.67, respectively (16, 17). In
the Supplementary Material, we have included a table which
summarizes these studies for the purpose of comparison to the
current study’s findings (Supplementary Table 1).

Many of these studies attempt to utilize sophisticated machine
learning models without critically evaluating whether it is a
more appropriate model than traditional statistical techniques
that are more readily adoptable by clinicians. Some studies
do not include a traditional statistical model baseline (14),
while others appear to neglect the implications of the failure
to outperform these traditional techniques (11). In some cases,
inappropriate predictors (e.g., those that occur or that are
measured in the future) have been included in machine learning
models by implementers focused on predictive accuracy to
such a degree that they bypass questioning whether their
model makes clinical sense. In addition to this, none of
these models offer/provide intuitive explanations for predicted
risk scores for individual patients (i.e., important risk factors
for a given patient but not necessarily important across
the entire population), instead reporting global associations;
individual-level information could better inform the clinician’s
treatment of a specific patient, thereby reducing these costly
medical errors.

We wanted to apply machine learning techniques to one
example of patient outcomes, pressure injury prevention, to
demonstrate the utilities of such approaches and illustrate the
importance of individual-level model explanations. Here, we
improve on previous analytical benchmarks through the rigorous
evaluation of a diverse set of machine learning and traditional
statistical methods. We arrive at a prediction model that can
be understood clearly at the individual level and explains the
heterogeneity in the patient population to serve as grounds
for the development of future personalized real-time predictive
models. Finally, based on our results, we critically assess the
role of machine learning for the development of retrospective
HAPI prediction models. Nonetheless, these methods may
augment standard modeling approaches when evaluating real-
time prospective data captured through the EMR.
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TABLE 1 | Overview of methods for HAPI prediction and interpretation.

Task Description

Data collection 57,227 hospitalizations, 241 positive HAPI cases

identified from ICD codes, nursing documentation,

wound care consults

Data preprocessing • Selection of EMR variables based on prior literature,

expert opinion, criteria from previous study

• Imputation with MICE

Dataset partitioning • 80% training (n = 45,781), further subdivided into five

cross validation folds

• 20% held-out testing (n = 11,446)

Modeling approaches 12 machine learning models (including logistic

regression)

Model training and

validation

• 5-fold cross validation grid search for selection of

hyperparameters

• Non-parametric bootstrapping for average cross

validation AUC comparison between selected models

Model testing Non-parametric bootstrapping of test set AUC for final

model comparison; ROC visualization

Model interpretation on

individual level

• Application of SHAP to identify patient specific salient

predictors

• Comparison to LIME on few select cases

Global model

interpretation

• Aggregate SHAP values across test set patients

• Non-parametric bootstrapping of individual Shapley

values to compare global importances between

models; comparison utilizes spearman correlation and

rank biased overlap

METHODS

Methods Overview
A brief overview of the dataset and methods used to train,
validate, test and interpret the compared machine learning
models for the task of HAPI prediction can be found in Table 1.
A visual description (flow chart) of these methods can be found
in Figure 1.

Data Collection, Variable Selection, and
Preprocessing
The data utilized for our predictive models were acquired from
a prior retrospective study conducted at Dartmouth Hitchcock
Medical Center from April 2011 to December 2016 (8) after
approval from their Institutional Review Board. Data was
collected from EMR for patients who were 18 years or older; each
observation represented an individual’s hospital stay of 3 or more
days and at least 3 recorded Braden scale measurements.

Previous works on HAPI prediction models have only
utilized International Classification of Diseases codes (ICD)—the
primary means to document medical information such as disease
diagnoses, comorbidities, injuries, and inpatient procedures
during patient encounters (ICD-9 and ICD-10 represent the
9th and 10th medical classification systems with mappable
terminology)—to identify pressure injuries. However, HAPIs are
primarily recorded in nursing records, which may not reflect
billing codes, and prior research has demonstrated moderately
high false positives (pressure injury ICD code but no nursing
documentation) and false negatives (nursing documentation but

no pressure injury ICD code) (18). Additionally, injuries are
often not correctly classified as present on admission (ICD codes
do not designate whether the injury was hospital acquired) and
this can lead to an inflated number of injuries due to lack of
discrimination in coding (18). In light of suboptimal reliability
of utilizing ICD coding alone, and our own prior experience,
we reduced the number of false positive cases through the
following stringent search criteria: presence of ICD-9 (707 range
for chronic ulcer of the skin caused by pressure) or ICD-10
(L89 range which is defined as pressure injury) codes, supporting
nursing documentation (e.g., injury report in nursing charts) and
whether the patient had received consultation by a wound care
team (1, 8). Additionally, we removed cases that were present
on admission. An identified HAPI case must be at least a stage
one and demonstrate all of the aforementioned search criteria. A
wound care nurse assisted in the diagnosis via an event reporting
system. HAPI identification was in accordance with the National
Pressure Injury Advisory Panel Criteria. This constituted a
dataset of 57,227 hospitalizations, containing only 241 positive
HAPI cases, which epitomizes the highly imbalanced datasets
commonly encountered in the diagnosis of rare infections.

We have also included a percentage breakdown of HAPI
stage from events reported between 2015 and 2018 and whether
the HAPI was medical device related (Supplementary Tables 2,
3), though the latter dataset was collected for a year after our
study’s data collection period, from 2017 to 2018, and may not
be representative of our subpopulation. These breakdowns were
based on available data; a complete breakdown of patient-specific
characteristics that overlap with our cohort can be found in a
recent work (1, 8).

EMR variables were selected for our study based on prior
literature, expert opinion and based off of selection criteria from
a previous study (8) (Supplementary Tables 4, 5). All individual
predictors demonstrated statistically significant associations with
HAPIs (Supplementary Table 5), save for ambulatory status and
race. We recapitulated the previously reported modeling results
(8) to validate our variable selection; however, we removed the
length of stay (LOS) variable because it is not valid for use in a
task of predicting an outcome from an interim point of a patient’s
stay as it is not known until the patient is discharged.We imputed
two variables with missing data (Supplementary Figure 1); time
in operating room (OR) was imputed with zeros under the
assumption that a non-record was never present in the OR, and
body mass index was imputed using Multiple Imputation by
Chained Equations (MICE) (19). The data was split into 80%
training (n = 45,781) to update the model parameters and 20%
testing (n = 11,446) for analysis of the ability of the model to
generalize to an unseen population. A detailed explanation of the
selected variables is included in Supplementary Table 4.

Description of Modeling Approaches
We performed rigorous evaluations of 12 different predictive
modeling approaches: five popular approaches commonly used
for HAPI prediction—(1) Naïve Bayes, (2) Decision Trees, (3)
Random Forest, (4) XGBoost, and (5) Logistic Regression, and
seven additional approaches to complement these assessments
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FIGURE 1 | Method overview flow diagram: (A) Selection of patient cohort; (B) identification of HAPI cases through ICD codes, wound care consults and nursing

documentation; data preprocessing with help from; (C) training dataset, which comprises 80% of the cohort, whereas 20% of the patients are reserved for final

testing; (D) 12 machine learning models are trained and finetuned (i.e., hyperparameter scan) using; (E) 5-fold cross validation on partitioned training dataset, with

average AUC statistics across the folds bootstrapped by patient; (F) AUC statistics calculated on held-out test set; (G) model interpretation with LIME and SHAP.

as a representative set of machine learning approaches—
(6) Linear Discriminant Analysis, (7) Quadratic Discriminant
Analysis, (8) Neural Networks (Multilayer Perceptron), (9)
Support Vector Machine, (10) K-Nearest Neighbors, and two
Bayesian methods to attempt to account for rare events:
(11) Bayesian Logistic Regression, and (12) Bayesian Additive
Regression Trees (BART) (Supplementary Table 6) (20–29). We
estimated the ideal set of model tuning heuristics for all
machine learning modeling approaches using an exhaustive
grid search on the training set with 5-fold cross-validation.
Then, we trained the final predictive model on the training set
(including training/validation folds) for all 12 approaches for
evaluation on a held-out test set. The primary metric to assess
model performance across a wide range of sensitivity thresholds
was the area under the receiver operating characteristic
(AUC) curve. We have included a discussion of each of
these analytical techniques in Sections “Further Description of
Analytical Approaches,” “Additional Comparison Approaches”
for brief descriptions on all 12 modeling approaches, and
Supplementary Table 6 of Supplementary Material (20–24, 30,
31). Statistical comparisons (i.e., AUC differences) between
approaches were made across the five cross validation folds
(averaged cross validation AUC; CV-AUC) after selection of
optimal tuning hyperparameters, and separately on the held-
out test set (test AUC). Significance was assessed using non-
parametric bootstrapping. Patients within cross validation folds
and the held-out test set were resampled with replacement 1,000

times, making sure for each bootstrap iteration that the same
set of patients were assessed by all modeling approaches to
enable the calculation of AUC differences per iteration. From
the non-parametric bootstrapping, we calculated 95% confidence
intervals for all comparisons. The difference between algorithmic
performance was significant if 0 (no AUC difference) lied outside
this interval.

As aforementioned, there are only 241 HAPI-positive
samples in a dataset of 57,227 samples. We implemented
class balancing techniques to account for rare events, as
detailed in Section “Circumventing Class Imbalance Issues” of
Supplementary Material (12, 32, 33). When partitioning the
dataset into the cross-validation folds and test datasets, we
ensured the proportion of HAPI cases to controls were preserved
in each fold/dataset. We provide additional information on
steps taken to limit bias and the potential for overfitting (i.e.,
memorizing the training data; does not generalize to unseen
data) in Section “Details on Approaches to Limit Overfitting
and Hyperparameter Scans” and Supplementary Table 7 of
Supplementary Material, including a detailed overview of
selected hyperparameters.

Developing Individual Level Explanations
Concerns about the transparency of machine learning techniques
have been raised by researchers and professionals working in
highly regulated environments such as in the practice of law
and medicine (34). While high predictive accuracy is important,
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understanding how an algorithm makes a recommendation is
fundamental to establish trust and foster acceptance. Many
“black box” machine learning models have difficulties in isolating
associations between the predictors and outcome. The ability
to explain predictions in real world applications is paramount
to the actual use and applications for HAPI predictions. While
a number of explainability techniques seek to find important
predictors across all patients as a way to demonstrate how the
model is learning, very few methodologies have been developed
to explain which variables had values that placed a given
patient at high risk. Additionally, some predictor importance
techniques, such as the mean decrease in impurity utilized by
random forest methodologies (Section “Further Description of
Analytical Approaches” in Supplementary Material), present
biased interpretations.

Here, we utilized Shapley Additive Explanations (SHAP) (35)
to directly indicate the contribution of each predictor to the
predicted probability of being associated with a HAPI event.
SHAP estimates a linear model for each held-out observation
under scrutiny, where the importance of each predictor is given
by the unique model coefficients. However, these personalized
models, when summing their coefficients across the cohort,
are able to find the overall importance of each predictor. We
compared global importances between Random Forest, XGBoost
and Logistic Regression with spearman’s correlation coefficient
(overall association in importances) and rank biased overlap
(RBO; agreement measure which places greater importance on
top predictors), with 1,000 sample non-parametric bootstrapping
of SHAP values (same set of patients for each bootstrap iteration)
prior to the calculation of global importances to estimate
95% confidence intervals and communicate the significance of
the findings (36). While the SHAP importance from a linear
modeling approach should exhibit properties of the linear model,
SHAP scores for machine learning models indicate variables that
are important and specific to each patient. Plots that summarize
the behavior of the model predictors over the entire dataset
could offer an insightful tool for aiding the clinician to quickly
interpret patient symptoms and intervene to prevent HAPI from
occurring.We did not include a detailed analysis of other popular
model interpretation approaches (e.g., Local Interpretable Model
Explanations, LIME, counterfactual explanations like Anchor
and Diverse Counterfactual Explanations, and DiCE) (37–40).
We did include a visual comparison between display outputs
of SHAP and LIME for a few randomly selected cases. The
reason for not opting for these other approaches was in
part because SHAP offers both local (i.e., patient-specific)
and global (i.e., across patients) interpretations of predictor
importances, has demonstrated mathematical guarantees over
methods like LIME, and is currently one of the most accepted
interpretation techniques (though not without limitations, see
Section “Discussion”).

Code Availability
The results were derived using a custom data pipeline that
utilized Jupyter Notebook version 5.7.8 with a Python 3.7.3
Kernel which utilized the scikit-learn, xgboost, shap, lime, and
pymc (for Bayesian approaches) Python libraries (41). The model

FIGURE 2 | Comparison of classification performance of five analytical models

(representative subset of 12 approaches selected) via ROC curves calculated

on the held-out test set; a similar plot for the remaining prediction models can

be found in Supplementary Figure 2.

graphics were generated using the SHAP library. We tested
for possible interaction effects using the InteractionTransformer
package (42). While we are unable to release the data utilized in
this study due to patient privacy concerns, we have provided the
code used to compare thesemodeling approaches in the following
GitHub repository: https://github.com/jlevy44/DH_Pressure_
Injury_Prediction. We have also included supplementary code
which enumerates additional comparisons in this repository
through the inclusion of two Jupyter notebooks.

RESULTS

Classifier Performance
We fit the 12 modeling approaches to our HAPI dataset and
derived C-statistics on the cross-validation folds and held-out test
set (Figure 2). The cross-validation C-statistics did not change
significantly between validation folds, indicating unbiased
partitioning of data for this study (Supplementary Tables 8,
9). Out of all of the models, k-nearest neighbors and decision
trees performed the worst with C-statistics of 0.75 and 0.76,
respectively, followed by Naïve Bayes with an AUC of 0.87.
Results indicate that the logistic regression model (AUC = 0.91)
performs comparably to most of the other modeling approaches
(e.g., performance comparable to Random Forest, XGBoost
AUC = 0.89; the remaining performance statistics for other
modeling approaches can be found in Supplementary Tables 10,
11; Supplementary Figure 2). These results provide supporting
evidence that the logistic regression model identifies the model
specification closest to the underlying true model as other
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FIGURE 3 | Global predictor importance (SHAP summary plots) of patient specific factors for: (A) Logistic Regression, (B) Random Forest, (C) XGBoost; The plots for

each model (A–C) consist of a point per patient hospitalization across all predictors. The points are colored by the features value and lateral displacement from the

centerline indicates the importance of that feature for that particular individual. Values that increase the probability of being classified as a HAPI are displayed to the

right of the centerline of each plot; red dots indicate a high feature value, while blue dots indicate a low feature value. For instance, increased HAPI incidence was

associated with decreases in the Braden subscale score for low friction, average mobility, average friction and low nutrition in the logistic regression plot (A).

machine learningmodels failed to surpass the performance of this
model, in this particular clinical setting.

SHAP Comparisons
We applied the SHAP methodology to find the overall important
global variables that were important for the prediction of
the logistic regression, XGBoost and Random Forest models.
While we found a significantly strong positive correlation
between the importance of the predictors across all three
models (Supplementary Tables 12–14), we noted important
disagreements between predictors identified by each model with
regards to their level of importance. For instance, low nutrition,
average activity and moisture were found to be highly important
by the Logistic Regression model, but not by the Random Forest
or XGBoost models. Alternatively, smoking was upweighted by
the Random Forest and XGBoost models, but not by Logistic
Regression. All models found low friction, average mobility and
whether the patient’s diet was taken by mouth (NPO status) to
be important.

While ranking of important predictors can be found in the
SHAP summary plots (Figure 3), one useful feature of SHAP,
irrespective of modeling approach, is to portray the important
predictors that influence the prediction of a given patient. To
more closely interrogate the predictive model for individual
patients, we assessed a few select force plots (Figure 4) that depict
each model’s prediction and the predictors’ importance across
select individuals. The logistic regression, random forest and
XGBoost models all appear to make similar predictions and find
similar features to be important for the two observations chosen
for display. We have included a figure that showcases the use
of this to capture important predictors across 300 patients out

of the entire study population (Figure 5). This figure is a static
representation of a web-based application that the physician or
end-user can interact with to reveal the important predictors for
each patient. We additionally compared the display outputs to
that of other interpretation techniques that are patient specific
(LIME) (Supplementary Figure 3). While for some randomly
selected cases, selected predictors appeared to agree visually in
both magnitude and direction (Supplementary Figures 3A–D),
we noted instances where predictor importances differed
(Supplementary Figures 3E,F).

Averaging the absolute value of the SHAP scores for each
predictor across the cohort derives an overall importance
ranking of the predictors. We found that averaging the SHAP
importance values for the logistic regression model yields
an approximation of the standardized regression coefficients
(Pearson-r = 0.914, P < 0.001, average absolute difference =

0.08) (Supplementary Tables 15, 16; Supplementary Figure 4).
This convergence reinforces the notion of correspondence
between the totaled SHAP coefficients across all of the individuals
and the effect estimates of the Logistic Regression model, where
the logistic regression effect estimates serve as gold standard
values in the case when the logistic regression model represents
the true associations.

DISCUSSION

Machine learning will likely continue to be incorporated into the
clinic and inform clinical decision making. Its popularity can be
attributed to the promises of better handling large, unstructured,
and heterogeneous datasets. We sought to understand how to
best utilize these machine learning approaches through extension
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FIGURE 4 | Predictions and decomposition of predictor importance (force plots) for two individuals (top vs. bottom of each panel) using: (A) Logistic Regression, (B)

Random Forest, and (C) XGBoost. The predictors are associated with both increased and decreased HAPI. Certain values (e.g., increasing values) may be associated

with one or the other. Blue colors indicate predictors that are associated with decreased HAPI incidence, while red colors indicate predictors associated with

increased HAPI incidence; magnitude of each arrow indicates the level of importance of the predictor for that prediction.

of its application to pressure injury prevention. As such, our
study sought to compare the predictive performance of machine
learning and traditional statistical modeling techniques for
HAPIs. We built a predictive risk model for hospital acquired
pressure injuries based on a retrospective cohort of over 57,000
hospitalizations over a 5-year study period. Our results indicate
that performance of the Logistic Regression technique was
comparable to the 11 other machine learning approaches when
applied to retrospective data without temporal changes in patient

status. This ideal model specification (0.91 C-statistic) exceeded
the performance recorded in prior publications (0.84 C-statistic)
and presents opportunities for early detection of symptoms while
minimizing the burden on the clinical staff.

The fact that Logistic Regression was able to achieve such
remarkable performance indicates that the use of machine
learning for HAPI prediction, in the specific clinical setting
featured in this study, is not optimal given the utilized variables
and available retrospective data. This conclusion is not surprising
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FIGURE 5 | Individual-patient explanations (force-plots) are rotated to a vertical position and stacked horizontally to form interactive plots detailing explanations of

HAPI predictions across a large patient population while still allowing interrogation of each patient. We note here that this feature is a web-based interactive plot; the

physician or end-user can hover over individuals with their computer mouse, from which the application will display/highlight the important predictors for those

individuals. SHAP derived force plots depicting individual predictions and explanations for the first 300 hospitalizations in the study population, ordered from highest

HAPI predicted probability (red) to lowest (blue) for: (A) Logistic Regression, (B) Random Forest, and (C) XGBoost (on log-odds scale).

because predictors that vary linearly and continuously with the
outcome are better approximated by a line, not the step-function
form that tree-based classification algorithms (42), optimized in
machine learning, support. In this context, the selection of the
features by expert opinion and testing univariable associations

with HAPI outcomes may have biased the selection of our
variables to those that vary linearly with HAPI risk.

Previous studies have reported the training and utilization
of machine learning models without consulting traditional
statistical approaches (14). We find the allure of and immediate
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acceptance of automatedmachine learning approaches, especially
when done without any assessment of the appropriateness of the
approach, a cause for concern due to the implications of how it
arrives at its decision. From our study, we reported discordance
between some of the predictors found important by the Logistic
Regression and machine learning-based modeling approaches.
Discordance between model findings reflect differences in model
assumptions on the underlying data generating mechanism. In
addition, the capability of each model is dependent on how well
its assumptions capture the natural mechanisms involved. In this
study, the Logistic Regressionmodel does not model interactions,
whereas the less parametric machine learning methods (e.g.,
Random Forest) implicitly model interactions (e.g., presence
of a conditional effect) and non-linear associations, which can
impact the importance of the main effect (42). Additionally,
changes in feature importance between predictors in the presence
of collinearity has been well studied. Nonetheless, dealing with
these disagreements is part of the challenge of comparing
different methodologies.

These differences may potentially confuse the clinician as
to which model-learned factors to focus on. For instance, the
clinician may focus on records of low friction, average mobility,
andNPO status if utilizing either themachine learning or Logistic
Regression modeling approaches. However, they may choose to
disregard indicators of low nutrition, activity and high moisture
while prioritizing smoking status if opting to utilize the machine
learning models over Logistic Regression more often (43, 44).
Shifting the physician’s attention to these machine learning
derived predictors may have unintended consequences for the
patient. Therefore, it is imperative to resolve any additional
uncertainty introduced by these machine learning techniques
before seeking to adopt them. Adoption of the machine learning
models should be done in concert with the practicing clinician
and the prevailing literature. While we presented the results from
many models in this work, ultimately it is the domain expert’s
decision to select from the best performing models an approach
whose selected variables best match their clinical perspective. In
clinical practice, these models can best be utilized as a “safety
check” to catch any missed signs and symptoms after the primary
assessment by the clinician (45, 46).

In concert with cautionary advice on machine learning
implementations, Logistic Regression approaches are more
intuitive, easier to understand and currently more readily
adoptable in the biomedical community. The results corroborate
with existing literature suggesting that machine learning models
are frequently unable to outperform Logistic Regression models
in a structured clinical setting (in which relatively few but
accurately measured variables are available) (i.e., all that glitters
is not gold), although a few other studies have disputed this claim
(47–49). In general, a modeling approach should be selected
which matches the data generating mechanism and agrees with
clinical intuition. The machine learning models in this study
disregarded important predictors, such as nutrition and activity,
both of which were corroborated by evidence from prior studies
and through consulting with our medical expert. Since these
machine learning models also were unable to outperform the
traditional statistical modeling, it would be a safer option to

continue to use the Logistic Regression approach in this specific
research setting. Nevertheless, in light of recent studies indicating
relationships between excluded biomarkers such as albumin and
C-reactive protein levels (CRP) (50) in the pressure injury setting,
having time-stamped data with access to complete biomarker
data may warrant us to revisit our modeling approach to
incorporate the agility of machine learning techniques to specify
and explore interactions.

In addition, many clinical stakeholders are excited to
adopt machine learning technologies. It is worth noting
that many academics consider Logistic Regression a machine
learning methodology. Regardless of how Logistic Regression is
perceived—either as a traditional statistical model or machine
learning technique—more important is the performance of the
model. Based on the study findings, stakeholders may be willing
to incorporate these algorithms into clinical practice to improve
healthcare and patient outcomes (e.g., prolonged hospitalization,
healthcare expenditures, and patient co-payments).

While SHAP coefficients for the Logistic Regression model
converge on the global Logistic Regression model coefficients,
they provide a quick and intuitive means for obtaining the
patient’s risk and how certain predictors contribute to that risk.
We further highlight a key difference between SHAP model
coefficients and the Logistic Regression coefficients: Logistic
Regression beta coefficients are a global descriptor of training
set predictors, while SHAP models are fit on held-out test
data and can converge to these coefficients. SHAP is useful for
generating explanations for a machine learning model to capture
heterogeneity in the population by fitting separate models for
each individual. While SHAP may be less useful for generating
interpretations for the linear model, the software offered to
produce these patient-level explanations can be easily deployed
into an EMR system for clinical use.

Limitations
There are a few limitations to our study. The study data was
collected from a single institution and our patient demographic
(97% white) does not correspond to that across the United States
(51). Also, we are unaware of the effect that Dartmouth
Hitchcock specificHAPI intervention programsmay serve to bias
HAPI results (1). While the reported incidence is less than that
reported by the National Database of Nursing Quality Indicators
(NDNQI; quality surveillance data) and previous cross-sectional
surveys (52–54), this may be reflective of specific reductions
in HAPI incidence over time potentially related to the HAPI
intervention program (1) and more stringent self-validation
measures for HAPI identification (8). These inclusion criteria
could have led to more accurate identification of the outcome
and thus prove beneficial or at least not substantially impact
the valid comparison of machine learning techniques. Thus, our
results may not generalize to other institutions. It is beyond
the scope of this work to explore HAPI predictions outside
the hospital setting; although a significant number of pressure
injuries occur in long term care facilities, we should be careful
to extend conclusions to those patients.

In addition, we were unable to capture all possible clinical
covariates or fully utilize real-time repeated measures for this
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study. The mean length of stay (LOS) for a patient in our
study population who does not experience a HAPI is 8.2 days
(SD = 9.7) and for those who do experience a HAPI is 30.6
days (SD = 28.6). A short length of stay for a HAPI patient
may make it difficult to collect enough repeated measurements
(at least 3) to make real-time predictions. Since early-stage
pressure injuries are often overlooked, a reduced observation
timemay limit our ability tomake substantial inferences based on
sparse information. A real-time predictive model should account
for the impact that the length of stay can have on pressure
injury incidence while avoiding associated issues with inference,
such as record completeness and endogeneity. Nevertheless, the
addition of repeated lab measurements, unstructured clinical
note data, and modalities such as biomedical imaging and sensor
data from wearable technology (55–57), would be advantageous
toward developing more sophisticated and actionable real-
time predictive models using all information known up until
that point. EMR information can be noisy and incomplete in
many cases. Adopting noise generating techniques can further
regularize these machine learning models to improve robustness
to unseen data.

The use of Shapley feature attributions presents a great
opportunity to develop a set of explanatory tools to more quickly
assess machine learning predictions for any patient outcome.
In this study, we used them as a means of comparison to
understand which predictors were found to be important for
each machine learning model in predicting pressure injuries.
The preliminary inspection of these SHAP scores (misalignment
between machine learning predictor importance and Logistic
Regression coefficients) alerted us to the possibility that the
machine learning approaches could potentially mislead the
clinician in their treatment of symptoms associated with the
occurrence of pressure injuries. Qualitative comparisons between
SHAP and other interpretation approaches such as LIME also
demonstrated differences in some cases. SHAP is preferred over
LIME because: (1) SHAP has been well formulated for tree-based
interpretations, (2) improvements in mathematical guarantees
over LIME have been well documented, (3) SHAP provides
global feature importances, and (4) reports salient interactions.
However, this does not necessarily indicate SHAP as the “go
to” feature importance technique; discussion of display outputs
from other feature importance approaches (e.g., counterfactual
explanations; DiCE, Anchor) in collaboration with the clinical
domain expert is important when making a final selection (58–
62). While the ultimate utility in using SHAP lies in the ability
to fit explanatory models for each individual in the case that
machine learning approaches dominate, SHAP, in any model
application, can generate instance-wise importance values for
useful, patient-specific readouts for the clinician.

However, explaining the output of models using SHAP
carries several limitations, namely that SHAP has a limited
causal interpretation (see Section “ExtendedDiscussion on SHAP
Limitations” in Supplementary Material) (63). Several studies
have also demonstrated that SHAP can be difficult to interpret in
the real-world setting (i.e., to accomplish the goal of compelling a
clinician to make a beneficial change based on the model output),
in part because: (1) they may underappreciate the stakeholder’s

“autonomy, dignity and personhood” (i.e., the ability to make a
decision or select amongst a set of necessary alternatives), (2)
may not appropriately educate stakeholders on how to form a
critical, nuanced interpretation of findings, and (3) does not
facilitate debate on whether such findings are justified (64–66).
Explanations should also consider the viewpoints of all potential
project stakeholders, even those not included in algorithmic
design and validation. Accordingly, some argue that uncritical
acceptance of SHAP model interpretations may disregard crucial
input from stakeholders who may lie outside of the direct
team of researchers and user testers (e.g., minority patient
populations outside of the researchers’ target demographics who
may interpret from a different perspective or be significantly
impacted by findings). Designing EMR interfaces which consider
a pluralism of explanations (e.g., assigning greater uncertainty
to correlated features or incorporating Bayesian methods) in a
less familiar form (e.g., different icons to accentuate less relevant
variables and disrupt automatic thinking) may invite critical
interpretation of the model findings while remaining sensitive
to individuals who may be disempowered in the algorithmic
design and interpretation phase (67–70). We point the reader
to a few cited studies for those seeking a deeper understanding
(63–65, 71–73).

These discussion points should be placed in the context of
algorithmic bias and ethical concerns, which can place undue risk
on both the clinician stakeholder and underrepresented patient
subgroups. For instance, several previous medical AI studies have
identified patient demographic features such as self-reported race
as potential model confounders (74). In other cases, they may
underdiagnose historically underserved races at a higher rate
(one popular example is skin lesion image classifiers which screen
for Melanoma) (75–79). These confounders and effect modifiers
are often unaccounted for when developing and validating
machine learning approaches, hampering generalizability. In this
study, it is possible that HAPI incidence may be higher for some
of these patient subgroups as pointed out by previous literature,
but as HAPI incidence is rare and for those that have HAPI,
only a small fraction is non-white (Supplementary Table 5),
risk scores for other races/ethnicities may be uninformative
and non-specific. Such challenges are often exacerbated in rural
healthcare settings, which could point to broader multicenter
collaborations which could improve the applicability of study
findings to underrepresented groups.

CONCLUSIONS

In this study, we demonstrated that a Logistic Regression
modeling approach performed comparably to 11 other machine
learning methods for HAPI prediction while improving on
existing HAPI prediction benchmarks. In addition, we highlight
the potential to integrate patient-level explanations into existing
EMR systems. We believe that future applications of machine
learning algorithms, in conjunction with traditional statistical
models, that utilize repeated measurements, laboratory markers
and unstructured clinical notes will provide a promising
opportunity to build real-time prediction mechanisms that can
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be readily embedded into an EMR system to alert clinical staff to
high-risk patients.
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