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Nanoparticles (NP) are being increasingly explored as vehicles for targeted

drug delivery because they can overcome free therapeutic limitations by

drug encapsulation, thereby increasing solubility and transport across cell

membranes. However, a translational gap exists from animal to human studies

resulting in only several NP having FDA approval. Because of this, researchers

have begun to turn toward physiologically based pharmacokinetic (PBPK)

models to guide in vivo NP experimentation. However, typical PBPK models

use an empirically derived framework that cannot be universally applied to

varying NP constructs and experimental settings. The purpose of this study

was to develop a physics-based multiscale PBPK compartmental model for

determining continuous NP biodistribution. We successfully developed two

versions of a physics-based compartmental model, models A and B, and

validated themodels with experimental data. Themore physiologically relevant

model (model B) had an output that more closely resembled experimental

data as determined by normalized root mean squared deviation (NRMSD)

analysis. A branched model was developed to enable the model to account

for varying NP sizes. With the help of the branched model, we were able

to show that branching in vasculature causes enhanced uptake of NP in

the organ tissue. The models were solved using two of the most popular

computational platforms, MATLAB and Julia. Our experimentationwith the two

suggests the highly optimized ODE solver package Di�erentialEquations.jl in

Julia outperforms MATLAB when solving a sti� system of ordinary di�erential

equations (ODEs). We experimented with solving our PBPK model with a

neural network using Julia’s Flux.jl package. We were able to demonstrate

that a neural network can learn to solve a system of ODEs when the system

can be made non-sti� via quasi-steady-state approximation (QSSA). Our

model incorporates modules that account for varying NP surface chemistries,

multiscale vascular hydrodynamic e�ects, and e�ects of the immune system

to create a more comprehensive and modular model for predicting NP

biodistribution in a variety of NP constructs.
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1. Introduction

Clinical medicine has entered an era where nanotechnology

is becoming more and more prevalent, with the use of drug-

carrying nanoparticles (NP) increasing in recent years. NP can

overcome free therapeutic limitations by drug encapsulation,

thereby enhancing solubility by promoting transport across

cellular membranes (1). Because of this, NPs are increasingly

being explored as vehicles for targeted drug delivery to healthy

and cancerous tissues, for diagnostic imaging purposes, and to

enhance T-cell-based immunotherapies (2, 3). While extensive

studies are being performed to determine the efficacy of certain

NP based therapeutics in in vitro and in vivo animal models,

there exists a translational gap from animal to human studies

resulting in only a select few NP being approved for FDA

use (4).

One major underlying cause of this translational gap

is the difference in the physiology of animal models

compared to humans, which have the potential to affect

NP behavior and functionality (5). However, the cause of the

translational gap that is the motivation for this study is the

heterogeneity of NP constructs and experimental models.

There are nearly endless NP constructs (e.g., rigid, flexible,

spherical, non-spherical, polymeric, DNA-based, etc.), sizes

(a few nm to a few microns), and experimental models for

translational studies, making NP a complex mix of biology

and engineering. The wide array of applications, targets,

and physical characteristics of NP significantly impedes

the ability of NP to be researched effectively as possible

bench-to-bedside therapeutics.

To this end, researchers have begun to turn toward models

for adhesion and transport to guide in vivo experimentation

and better understand NP targeting behavior and performance

in the human body, resulting in more effective and efficient

usage for a variety of previously described applications (6–9).

However, incorporation of these models in a pharmacokinetic

framework has been elusive. Traditional pharmacokinetic (PK)

models describe the concentration of drugs in the blood

plasma over time using emperical functions (10, 11), while

physiology based pharmacokinetics (PBPK) models consist

of compartments that represent abstraction of kinetics and

transport in and across actual tissues and organ spaces.

Existing PBPK models for small molecules or biologics (12–

14) use an empirically derived framework for parameterization,

resulting in a model that cannot be universally applied with

varying NP constructs and experimental settings (15, 16).

Additionally, multiphysics aspects, including physiological and

hydrodynamic factors governing NP biodistribution and tissue

targeting, involve mechanisms operating at multiple lengths

and timescales (17). Therefore, a multiscale computationally

driven model with physiologically relevant inputs can be

utilized to understand the organ-specific biodistribution of

NP. The multiscale model must incorporate NP hydrodynamic

properties in the vasculature, NP-Endothelial Cell (EC)

adhesion properties, and NP subcellular interactions that

govern targeted uptake to fully describe the movement

and accumulation of NP within the body (6). In order

to create a comprehensive multiscale model, NP behavior

must be understood at the system, hydrodynamic, and cell

adhesion scales.

A previously published multiscale PBPK model has

determined binding constants of intracellular adhesionmolecule

1 (ICAM1) coated NPs to endothelial cell (EC) surface receptors

in mice and humans by utilizing the biophysical properties

of the antibody to receptor interactions, and the cell surface

(15). Additionally, this model determines the percent injected

dose per gram of tissue (%IDG) that distributes to the tissue

in given organs at steady-state; non-specific uptake is not

accounted for in this model (NP uptake via passive diffusion

in the intercellular cleft). The binding constants determined

through the previous model (15) model will help to drive

the binding characteristics of NP in the multiscale model

described in this study. Additionally, the rate at which NP

bound to the EC layer are endocytosed into a specific organ

tissue must be considered. The concentration of NP retained

within the tissue or biodistribution is ultimately most important

since this allows for understanding how effectively NP can

target tissue.

The purpose of this study is to 1) advance existing steady-

state multiscale PBPK models (15) to incorporate NP uptake

via nonspecific transport, 2) develop novel multiscale PBPK

compartmental models to predict temporal effects, and 3)

introduce a compartmental branched vascular model that can

predict the effect of hydrodynamic interactions that depend on

NP size, flow, and vasculature network properties, 4) perform

validation with experimental murine biodistribution data, 5)

propose efficient solvers for coupled stiff systems that embody

the above properties, as well as make the solvers compatible with

contemporary machine-learning-based modules (such as neural

networks) which can capture and incorporate multiphysics

models in the PBPK workflow.

2. Methods

2.1. Overview

Many Monte Carlo-based models have been proposed

in previous works and have been integral in understanding

multivalent receptor-NP interactions at a molecular level.

Agrawal and Radhakrishnan (18) quantitatively characterized

NP-endothelial cell interactions by determining the

multivalence of NP binding as well as antigen clustering,

ultimately providing future models with details about the

energetics of the NP binding process. Ramakrishnan et al.
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(15) used these binding properties to understand the role that

expression levels of NP receptors play when targeting live cells,

validating with experimental data. While these adhesion-centric

models are necessary for understanding NP characteristics at

the molecular level, they do not always include the interaction

of NP with the vascular network and translate into the

pharmacodynamic scales. By considering hydrodynamic

parameters of the vascular system, and cell-binding/uptake

parameters into a variety of organ tissues [as determined in

previous studies such as Ramakrishnan et al. (15)], a model

that is governed by multiple time scales can be created,

providing a more physiologically relevant determination of NP

biodistribution with temporal resolution. This paper describes

three variations of a multiscale pharmacokinetic model: 1)

a steady-state model that facilitates the translation of the

multivalent free energy of adhesion into a biodistribution; 2)

two different compartmental models (models A and B) that are

physiologically based and can predict temporal biodistribution;

and 3) a compartmental model that incorporates the vascular

branching network and can include multiphysics effects such as

hydrodynamic interactions, NP size-dependent effects of flow

and adhesion, with temporal resolution (6, 19). We describe

the steady-state or continuous temporal biodistribution of

ICAM-1 targeted NP for a murine model in each case. The

multiscale nature of the model described here can allow for

customization with various NP sizes, shapes, and uptake

parameters, resulting in a customizable predictive platform for

different NP chemistries, organisms, and pathophysiologies.

2.2. Steady-state model

A steady-state, multiscale, PBPK model was developed by

Ramakrishnan (15) to determine the percent injected dose of

NP per gram of tissue (%IDG) in five organ compartments:

lung, heart, kidney, liver, and spleen. However, this model

only considers NP uptake via antibody-receptor mediated

multivalent interactions, failing to account for receptor-

mediated internalization and non-specific transport through

pores between the intercellular cleft of adjacent endothelial

cells, especially in clearance organs. Here, the existing steady-

state PBPK model was modified to incorporate this non-

specific uptake, to have the modified model better predict

in vivo biodistribution data at short times (< 30 min,

when NP does not internalize substantially) than the original

model as determined by the R (square root of the coefficient

of determination R2) values. Several versions of the model

(incorporating different multiphysics) are considered based on

specific adhesion of NP to epithelial cell membrane surfaces,

including flat membrane and membrane mimicking live cells.

In addition, the presence of resident macrophages and activated

macrophages are considered.

The original model (15) is described using Equation (1),

%idg =

{

κpKECCout +
ϕECKECLEC,b

DEC
Cout

}

×
Lcap

LEC,b

+
ϕECKMLEC,b

DM
Cout ×

Lcap

LM,b
, (1)

where κp is the non-specific binding of NP,KEC is the association

constant for binding of NP to endothelial cell surface receptors,

KM is the association constant for NP binding to a macrophage

cell, DEC and DM represent the diameter of endothelial cells

and macrophage cells, respectively, ϕM and ϕEC represent

the concentration of endothelial cells and macrophage cells in

the target tissue, respectively, LEC,b and LM,b represents the

distance from an EC ormacrophage surface receptor that the NP

can successfully bind, respectively, Cout represents the injected

concentration of NP, and Lcap represents the size of the cell-free

layer in the capillary in which the NP is perfused. Incorporating

the non-specific transport of NP into the tissue, the modified

model equation can be described using Equation (2):

%idg =

{

κp +
ϕECKECLEC,b

DEC
Cout

}

×
Lcap

LEC,b

+
ϕECKMLEC,b

DM
Cout ×

Lcap

LM,b
. (2)

The model above is expected to approximate the biodistribution

at short timescales, defined as the regime in which the

observation time is less than the timescale for internalization.

The model is easy to compute as it does not involve solving

dynamics equations owing to its steady-state nature. Later,

we show that the temporal model predicts the same behavior

as the steady-state model at these short timescales, thereby

validating the steady-state approximation utilized here for short

time scales.

2.3. Temporal model

2.3.1. Compartmental model development

The goal of the compartmental model is to develop a basic

framework for determining targeted NP biodistribution in a

murine model that can act as a predictive model when provided

with experimentally and empirically derived parameters. This

model consists of five to seven organ compartments (lung,

heart, kidney, liver, spleen and in model A; lung, heart, kidney,

liver, spleen, gut, and ’other in model B) each of which

is interconnected via the arterial and venous compartments.

The ‘other’ compartment consists of all organs that are not

explicitly included in the model. We have developed two ways

in which the organ compartments can be connected by the

arteries and veins, shown in Figure 1. Figure 1A, is the model

A configuration (an oversimplified version of the circulatory

system with 5 organ compartments), while Figure 1B shows the
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FIGURE 1

Compartmental model configurations. (A) model A configuration. (B) model B configuration.

model B configuration model, which is more physiologically

relevant (lung circulation has been separated out to keep track

of oxygenation and oxygen distribution, and gut and spleen

compartments are coupled to the liver compartment, and

gut/other compartments were incorporated as well).

Each organ compartment in either model configuration

consists of three additional compartments: vascular, endothelial

cell, and tissue compartments shown in Figure 2. As NPs enter

an organ compartment through the vascular compartment,

they can either bind to the ICAM-1 endothelial cell surface

receptors (Kon), enter the organ tissue compartment via

non-specific uptake (KNS), or be degraded (Kdeg). Then,

once bound to the endothelial cell layer, the NP can either

unbind from the EC compartment returning to the vascular

compartment (Koff ), be taken into the organ tissue via

transcytosis (Kup), or degraded (Kdeg). Once NPs are in the

tissue compartment, they can be degraded (Kdeg). It is also

important to note that NP can be degraded (Kdeg) within the

arterial and venous compartments as well. The difference in

time scales represented in the arteries/veins and the cellular scale

compartments contribute to the temporal multiscale nature of

the model.

2.3.2. Model A equations

The model A configuration can be described using a system

of 17 linear ordinary differential equations (ODEs). Model A is

described using Equations (3–7), where i = lung, heart, kidneys,

liver, spleen. The venous compartment is described by:

Vvein
dCvein

dt
= Cvein

∑

Qi − QveinCvein − Kvein
deg CveinVvein.

(3)

Equation (3) describes the change in concentration of NP in the

venous compartment over time, where Qi and Qvein represent

the flow of blood through organ compartments and the veins,

respectively, Vvein denotes the volume of blood in the vein,

Cvein is the concentration of NP in the veins, and Kvein
deg

is the

degradation rate of NP in the veins. The arterial compartment is

described by:

Vart
dCart

dt
= QartCart − Cart

∑

Qi − Kart
degCartVart . (4)

Equation (4) describes the change in concentration of NP in the

arterial compartment over time, where Qart represents the flow

of blood through the arteries, Vart denotes the volume of blood

in the arteries, Cart is the concentration of NP in the arteries,

and Kart
deg

is the degradation rate of NP in the arteries. For each

tissue type i, the vascular compartment is described by:

Vbl

dCi
bl

dt
= QartCart − QveinCvein − Ki

onV
i
blC

i
bl + Ki

off C
i
ECV

i
EC

− Ki
NSC

i
blV

i
bl. (5)

Equation (5) describes the change in concentration of NP

in the vascular compartment within each organ compartment

of the model over time, where V i
bl

and V i
EC represent the
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volume of blood in the vascular and the endothelial cell

compartments (which is defined by the product of the length

of the endothelial cell receptors and the surface area of the

vascular compartment) of the organ, respectively, Ci
bl
and CiEC

denotes the concentration of NP in the vascular and endothelial

cell compartments of the organ, respectively, Ki
on denotes the

rate of binding of NP to the endothelial cell surface receptors,

Ki
off

denotes the rate of NP unbinding from the endothelial cell

surface receptors, and Ki
NS denotes the rate of nonspecific NP

uptake into the organ tissue. The endothelial compartment in

each tissue is described by:

VEC
dCiEC
dt
= Ki

onC
i
blV

i
bl − Ki

upC
i
ECV

i
EC

− Ki
off C

i
ECV

i
EC − Ki

degC
i
ECV

i
EC . (6)

Equation (6) describes the change in concentration of NP

bound to the endothelial cell surface receptors over time, where

Ki
up denotes the rate of uptake of NP into the organ tissue via

transcytosis. Each tissue compartment is described by:

VT
dCiT
dt
= Ki

NSC
i
blV

i
bl + Ki

upC
i
ECV

i
EC − Ki

degC
i
TV

i
T . (7)

Equation (7) describes the change in concentration of NP

in the organ tissue over time where CiT and V i
T denote the

concentration of NP in the tissue compartment of the organ and

the volume of the tissue compartment, respectively.

2.3.3. Model B equations

The model B configuration (Figure 1B) can be described

using a system of 23 linear ODEs, however, due to the addition

of two organs and the alternative configuration of the model,

several equations differ, while the overall structure is the same.

Equations (8–13) Describe the modified model configuration:

Vvein
dCvein

dt
= QkidneyC

kidney
bl

+ QhepC
liver
bl

+ QotherC
other
bl − QveinCvein − VVeinK

vein
deg .

(8)

Equation (8) describes the change in concentration of NP in

the veins over time, where Qkidney and Qother denote the flow

rate of blood through the kidneys and “other” compartment,

respectively, Qhep denotes the combined flow rate of blood

through the liver, spleen, and gut compartments (Qhep =

Qliver +Qspleen +Qgut). Cbl denotes the concentration of NP in

the vascular compartment of each respective organ (lung, heart,

kidneys, liver, spleen, gut, other)

Vart
dCart

dt
= QartC

heart
bl − Cart(Qlung + Qheart

+ Qgut + Qother)− CartVart K
art
deg . (9)

FIGURE 2

Sub-compartments within each organ compartment.

Nanoparticles can be taken directly into the tissue via

nonspecific uptake (KNS), bound to endothelial cell surface

receptors (Kon), unbound from endothelial cell surface receptors

(Koff ), or taken into the tissue via endo or transcytosis (Kup).

Equation (9) describes the change in concentration of NP in

the arteries over time where Qlung and Qheart denote the flow

rate of blood through the lung and heart compartments, and

Cheart
bl

is the concentration of NP in the vascular compartment

of the heart.

V
lung
bl

dC
lung
bl

dt
= QheartC

heart
bl − QlungC

lung
bl
− K

lung
on V

lung
bl

C
lung
bl

+ K
lung
off

V
lung
EC C

lung
EC

−KNSV
lung
bl

C
lung
bl
− K

lung
deg

V
lung
bl

C
lung
bl

. (10)

Equation (10) describes the change in concentration of NP

in the vascular compartment of the lung over time.

Vheart
bl

dCheart
bl

dt
=

(

QveinCvein + QlungC
lung
bl

)

−
(

QlungC
heart
bl + QveinC

heart
bl

)

−Cheartbl Vheart
bl + Kheart

off CheartEC Vheart
EC

−Kheart
NS Cheartbl Vheart

bl − Kheart
deg Cheartbl Vheart

bl .

(11)

Equation (11) describes the change in concentration of NP

in the vascular compartment of the heart over time.

V i
bl

dCi
bl

dt
= QiCart − QiC

i
bl − Ki

onC
i
blV

i
bl + Ki

off C
i
ECV

i
EC

− Ki
NSC

i
blV

i
bl − Ki

degC
i
blV

i
bl. (12)

Equation (12) describes the change in concentration of the

NP in the vascular compartment of the kidneys, spleen, gut,
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and ‘other’ compartment over time (where i = kidney, spleen,

gut, other).

V liver
bl

dCliver
bl

dt
= QspleenC

spleen
bl

+ QgutC
gut
bl
+ QliverCart

−QhepC
liver
bl, − Kliver

on Cliverbl V liver
bl

+ Kliver
off CliverEC V liver

EC

−Kliver
NS Cliverbl V liver

bl − Kliver
deg Cliverbl V liver

EC .

(13)

Equation (13) describes the change in concentration of

the NP in the vascular compartment of the liver over time.

Equations (6) and (7) were used in the original model to

describe the change in concentration of NP in the endothelial

cell compartments and tissue compartments, respectively, can

also be used in the modified model configuration.

Additionally, Equation (14) was used to express the total NP

degraded in the system at a given time t, which will be useful to

determine mass conservation of the system.

Moltdeg =

g
∑

g=1

(

C
g
bl
V
g
bl
K
g
bl,deg

1t + C
g
ECV

g
ECK

g
EC, deg

1t

+ C
g
TV

g
TK

g
T,deg

1t

)

+ CtveinV
t
veinKvein,deg1t + CtartV

t
artKart,deg1t)

(14)

where t is the total time the model is run, g is the total

number of organs in the model, and1t is the t step of the model.

Equation (15) was used to determine the mass conservation

of the system. If the system is closed, the line formed byMolttotal
over every time point t of the simulation should have a slope of 0.

Molttotal =

g
∑

g=1

(

C
g
bl
V
g
bl
+ C

g
ECV

g
EC + C

g
TV

g
T

)

+ CtveinVvein

+ CarttVart
+Moltdeg . (15)

Equation (34) describes the mass conservation in molar

basis, this equation was used to determine themass conservation

when the system of ODE was set up in terms of molar profiles.

Total Mass (t) =
∑

i

Ni(t),

i ∈ {Vasculature,Endothelial,Tissue,Vein,Artery,Degraded}.

(16)

2.4. Vasculature branching

2.4.1. Branched model development

The purpose of developing a branched model was to

create a more detailed and physiologically relevant version

of the basic compartmental model. Additionally, utilizing this

branched model will ultimately increase the specificity of

uptake rate constants for NP of various sizes. Furthermore, the

branched model will enable the inclusion of key margination

and hydrodynamic interactions whose effects are determined by

the flow rate and blood hematocrit concentration. The branched

network consists of a branched vascular tree that begins at

the main arteries and veins and bifurcates into the capillary

beds, connecting the arterial and venous branching networks

(Figure 3). While asymmetric branching patterns characterize

typical vasculature networks, for simplicity, the branching

model described here will consist of identical daughter vessel

segments at each generation of bifurcation. Daughter vessels

will continue to bifurcate, their diameters following the power-

law relationship until the diameter of the vessel approaches the

size of a red blood cell (the smallest vessel in our network).

Below the development of the branched network is discussed in

greater detail.

The development of this branched network was modeled

after the branching network described in Yang and Wang (20),

but is a simplified version of their three-dimensional vascular

branching network model. The diameter of the daughter vessels

is governed by the power law relationship, where the parent

vessel is d0 and daughter vessels are d1 and d2, and k=3, which

is typically assumed based on a minimum dissipation principle

representing a stable flow condition:

d0 = dk1 + dk2, (17)

where d0 > d1 = d2

Due to the branching nature of the model, we can determine

the number of segments (N) at any generation of branching (n)

using the relationship N = 2n. While the number of segments

increases as the number of generations increase, the diameter of

the branches decreases. Suppose that the diameter of the parent

vessel at a given bifurcation (i) is di,0, and the diameter of the

daughter vessels are di,1 and di,2. Given a symmetric bifurcation

(di,1 = di,2), the following relationship can be used to relate the

diameter of the parent vessels to that of the daughter vessels.

di,2 = di,1 =
k
√

0.5 • dki,0. (18)

Then, the length of each vessel can be determined using the

know length to diameter ratio β = 3, and the diameter of the

vessel, d.

L
(

d
)

= β • d. (19)

This network will begin at the diameter of the main artery

d0 = 600 µ m (main artery diameter in mouse), continue

to bifurcate until the diameter of the daughter vessels reaches

the diameter of a red blood cell (d = 15 µ m). This lower-

bound in vessel diameter results in a network of 16 bifurcations
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FIGURE 3

Branched Network. An example branching network with i = 3 bifurcations and n = 6 generations.

and 32 generations of branching for each branching element. A

schematic of this branching network can be seen in Figure 3.

After constructing this branched network, it is important to

determine the surface area and volume of the vascular network

element as a whole. Supposing di, li, and Ni are the diameter,

length, and the number of daughter vessels in a given generation

i, respectively, Equation (19) can be used to describe the total

vessel surface area in a branching element.

SA = 2

i
∑

i=0

πdiliNi. (20)

Equation (20) can be used to determine the total vascular volume

of a branching element,

V = 2

i
∑

i=0

π

(

di

2

)2

liNi. (21)

It is important to note that the number of generations,

volume, and surface area of one branching element is fixed. I.e.,

the volume of a single branching element does not differ across

organs. Each organ will have a different number of branching

elements dependent on φi, which is the ratio of total organ

vascular volume to that of one branching element.

2.4.2. Branched model equations

The system of ODEs used to describe the branched

compartmental model consists of 457 equations. The organs

are organized in the model B configuration, and therefore

the equations in the branched model take on a similar form

when describing the transport between organs. Therefore, the

equations describing the concentration of NP in the arteries and

veins over time are the same as in the modified compartmental

model configuration, Equations (8) and (9), for veins and

arteries, respectively.

Equations (21–32) describe the rest of the branched vascular

compartmental model that bifurcates from the diameter of

the main vein to the size of a red blood cell and branches

back out to the diameter of the main artery. Each organ

compartment contains four types of equations to describe

the concentration of NP in the vasculature: 1) one equation

describing NP concentration in the first generation (n = 1), 2)

series of equations describingNP concentration in the branching

network until the diameter of the branch is that of a red blood

cell (n = 2 to n = 16), 3) series of equations describing NP

concentration in branching network until diameter of branch

branches back out to the generation before the diameter of the

vasculature is that of the main artery (n = 17 to n =31), 4) one

equation describing the NP concentration in the last generation

(n = 32).

Vbl
lung

dCbl,1
lung

dt
= QheartC

bl,32
heart
− Q1

lungC
bl,1
lung

N1

− ϕlungC
bl
lungV

bl,1
lung

(Kon
lung + KNS

lung)

−ϕlungC
bl
lungV

bl,1
lung

K
lung
deg

+ K
off
lung

ϕlungC
EC
lungV

EC,1
lung

. (22)

Equation (22) describes the NP concentration in generation

n = 1 in the vascular branching network of the lung. Cbl,1
lung

denotes the NP concentration of the lung vasculature in

generation n = 1 of the branching network, Q1
lung

represents the

flow rate through generation n = 1 of the lung vascular network,

Cbl,32
heart

denotes the NP concentration of the heart vasculature

in generation n = 32 (the concentration of NP exiting the

heart compartment), N1 represents the number of branches in

generation n = 1, ϕlung represents the total number of branching

elements in the given organ compartment, Vbl,1
lung

denotes the

vascular volume of a single branching element in generation n
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= 1, and VEC,1
lung

denotes the volume of the lung endothelial cells

of a single branching element in generation n= 1.

Vbl, n
lung

dCbl, n
lung

dt
= Qn−1

lung
Cbl,n−1
lung

Nn−1 − Qn
lungC

bl,n
lung

Nn

−ϕlungC
bl,n
lung

Vbl,n
lung

(Kon
lung + KNS

lung + K
deg
lung

)

+K
off
lung

ϕlungC
EC,n
lung

VEC,n
lung

. (23)

Equation (23) describes the NP concentration in the lung

vasculature in generation n = 2 to n = 16 of the branching

network. Qn−1
lung

, Cbl,n−1
lung

, and Nn−1 denote the flow rate, NP

concentration, and number of branches in the lung vasculature

of the previous generation of the branching network.

Vbl,n
lung

dCbl,n
lung

dt
= Qn−1

lung
Cbl,n−1
lung

Nn − Qn
lungC

bl,n−1
lung

Nn+1

−ϕlungC
bl,n
lung

Vbl,n
lung

(Kon
lung

+ KNS
lung + K

deg
lung

)

+ K
off
lung

ϕlungC
EC,n
lung

VEC,n
lung

. (24)

Equation (24) describes the NP concentration in the lung

vasculature in generation n = 17 to n = 31 of the branching

network.

Vbl,32
lung

dCbl,32
lung

dt
= Q31

lungC
bl,31
lung

N32 − Q32
lungC

bl,32
lung

−ϕlungC
bl,32
lung

Vbl,32
lung

(Kon
lung + KNS

lung + K
deg
lung

)

+K
off
lung

ϕlungC
EC,32
lung

VEC,32
lung

(25)

Equation (25) describes the NP concentration in the lung

vasculature in generation n = 32 of the branching network.

The heart compartment vascular branching network can be

described similarly to the lung compartment, with a series of

four equations.

Vbl,1
heart

dCbl
heart

dt
= QveinCvein + QlungC

bl,32
lung
− Q1

heartC
bl,1
heart

N1

− ϕheartC
bl,1
heart

Vbl,1
heart

(Kon
heart + KNS

heart + K
deg
heart

)

+ K
off
heart

φheartC
EC,1
heart

VEC,1
heart

. (26)

Equation (26) describes the NP concentration in the heart

vasculature in generation n = 1 of the branching network.

The equations describing the NP concentration in the heart

vasculature in generations n = 2 to n = 16 and n = 17 to n =

31 are the same as equations (22) and (23), respectively, but i =

lung should be replaced with i = heart.

Vbl,32
heart

dCbl, 32
heart

dt
= Q31

heartC
bl,31
heart

N32 − QheartC
bl,32
heart
+ QveinCvein

−ϕheartC
bl,32
heart

Vbl,32
heart

(Kon
heart + KNS

heart + K
deg
heart

)

K
off
heart

φheartC
EC,32
heart

VEC,32
heart

. (27)

Equation (27) describes the NP concentration in the heart

vasculature in generation n = 32 of the branching network.

The equations describing the concentration of NP in the liver

compartment are again constructed similarly to the branching

equations in the lung and heart compartments and again consist

of a series of four equations.

Vbl,1
liver

dCbl,1
liver

dt
= QspleenC

bl,32
spleen

+ QgutC
bl,32
spleen

+ QotherC
bl,32
other

− QliverC
bl,32
liver

N1 − ϕliverC
bl,1
liver

Vbl,1
liver

(Kon
liver + KNS

liver + K
deg
liver

)

+ K
off
liver

φliverC
EC,1
liver

VEC,1
liver

. (28)

Equation (28) describes the NP concentration in the liver

vasculature in generation n = 1 of the branching network.

The equations describing the NP concentration in the liver

vasculature in generations n = 2 to n = 16 and n = 17 to n =

31 are the same as Equations (22) and (23) respectively, but i =

lung should be replaced with i = liver.

Vbl,32
liver

dCbl,32
liver

dt
= Q31

liverC
bl,31
liver

N32 − Q32
liverC

bl,32
liver

− φliverC
bl,32
liver

Vbl,32
liver

(

Kon
liver + KNS

liver + K
deg
liver

)

+K
off
liver

ϕliverC
EC,32
liver

Vbl,32
liver

. (29)

Equation (29) describes the NP concentration in the liver

vasculature in generation n = 32 of the branching network. The

equation describing the NP concentration in the kidneys, spleen,

gut, and other compartments are again constructed similarly to

the branching equations in the lung and heart compartments,

and again consist of a series of four equations.

Vbl,1
i

dCbl,1i

dt
= QveinCvein − Qbl,1

i Cbl,1i N1

− ϕiC
bl,1
i Vbl,1

i

(

Kon
i + KNS

i + K
deg
i

)

+K
off
i ϕiC

EC,1
i VEC,1

i . (30)

Equation (30) describes the NP concentration in the i =

kidneys, spleen, gut, and other compartment’s vasculature in

generation n = 1 of the branching network. The equations

describing the NP concentration in the liver vasculature in

generations n = 2 to n = 16 and n = 17 to n = 31 are the same

as equations (22) and (23), respectively, but i = lung should be

replaced with i = kidneys, spleen, gut, other.

Vbl,32
i

dCbl,32i

dt
= Qbl,31

i Cbl,31i N32 − QiC
bl,32
i

− ϕiC
bl,32
i Vbl,32

i (Kon
i + KNS

i + K
deg
i )

+K
off
i ϕiC

EC,32
i VEC,32

i . (31)
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Equation (31) describes the NP concentration in the liver

vasculature in generation n = 32 of the branching network.

Next, we can describe the NP concentration that is bound to the

endothelial cell layer.

VEC,n
i

dCEC,ni

dt
= Kon

i ϕiC
bl,n
i Cbl,ni

−ϕiC
EC,n
i VEC,n

i (K
up
i + K

off
i + K

deg
i ).(32)

Equation (32) describes the NP concentration bound to the

endothelial cells of i = lung, heart, kidney, liver, spleen, gut and

other in generation n =1 to n = 32. Finally we can describe the

concentration of NP that is distributed to the organ tissue.

VT,n
i

dCT,ni

dt
=

32
∑

n=1

(

K
up
i ϕiC

EC,n
i VEC,n

i + KNS
i ϕiC

bl,n
i Vbl,n

i

)

−K
deg
i ϕiC

T,n
i VT,n

i . (33)

Equation (33) describes the NP concentration in the tissue of

i = lung, heart, kidneys, liver, spleen, gut, and other in generation

n = 1 to n = 32, where the sum of the antibody-receptormediated

endocytosis (K
up
i ) and non-specific uptake (KNS

i ) is summed

over all generations of branching.

2.5. Parameterization

2.5.1. Parameters for compartmental model

The compartmental model is parameterized with a variety

of physiological inputs such as blood, tissue, endothelial

cell volumes, and blood flow rates collected from previously

published sources (21, 22). Other parameters such as Kon

and Koff for ICAM antibody-coated NP were computationally

determined in a previous study (15), while yet other rate

constants were determined via local sensitivity analysis through

comparison to existing translational studies (23).

The flow rates through each individual organ, Qi, were

determined using Supplementary Table 3 from Diehl and Morse

(21), which gave blood flow rates through mouse organ

vasculature in units of L/g/min, which were ultimately converted

into units of L/min for use in the compartmental models by

using mouse organ weight data from Boswell et al. (22) and

the female and male masses were averaged. Additionally, to

calculate the total flow, Q, the sum of flow rates across all organs

was taken.

Supplementary Table 1 in Diehl and Morse et al. (21) listed

values for vascular volume in various mouse tissues. The

volumes were listed in units of L/g. Themouse organ weight data

from Boswell et al. (22) was used to determine the tissue volume

for the entire organ, V i
bl
.

The volume of blood in the mouse vein was computed using

the following equation, Vtotal = Vart + Vvein +
∑

V i
bl
,where

Vtotal= 2146 µL. The volume of blood in the veins (Vvein) and

the arteries (Vart) is considered to be the same. Then the volume

of blood in the mouse venous system was computed.

Values for interstitial tissue volume and extracellular tissue

volume were obtained using Supplementary Table 2 from Diehl

and Morse (21). Values for interstitial tissue volume (given in

L/g) were used to determine the volume of each organ in its

entirety, V i
T . By using the organ weights from Diehl and Morse

(21), as was done to determine flow rates (Qi), the tissue volume

for each organ in the mouse was computed with units of L.

The parameter lNC,b denotes the height of the endothelial

cell layer, is constant between organs and species and has already

been defined by a previous model (15). Ai can be calculated

by using known relationships from Ramakrishnan et al. (15),

e.g., It is known that φEC =
VEC
VT

and φEC =
l2ECDEC

VT
. Given

φ= 0.3, DEC = 5 × 10−6, and the VT for each mouse organ

previously described, l2EC can be calculated. When Ai and lNC,b
are multiplied together, the resulting value will be representative

of the volume of the endothelial cell layer; V i
EC .

The binding rate of NP to the endothelial cell surface (Ki
on)

was determined using the relationship D
l2

given in (15). The

unbinding rate of NP from the endothelial cell surface (Ki
off

)

can be determined by using Ki
on and KEC from Ramakrishnan

et al. (15) for each organ). However, the log of the KEC had

to be taken to accommodate for crowding effects (24). So,

Ki
off

is calculated as a ratio of Ki
on to Ki

EC ; i.e., we assume a

diffusion limited on-rate, where the diffusion occurs through the

glycocalyx. The off-rate is computed based on the on-rate and

the equilibrium constant.

2.5.2. Parameterization of NP-size dependent
branched model

The relation between KEC and particle diameter was

obtained from Figure 9 of McKenzie et al. (24). A linear

relationship between log(Keq)) and particle diameter (a) was

established using the slope-point form for every organ, the point

on the line being the (a, log(KEC)), for a = 800 nm, which

was obtained using Monte Carlo simulation in Ramakrishnan

et al. (15). The binding rate is computed as; Kon =
D
l2

where l = thickness of the glycocalyx layer and D is given

by the Stokes-Einstein equation; D =
KBT
6πηr , then Koff =

Kon
log(KEC)

. The values of KON , KOFF , and log(KEC), are reported

in Supplementary Tables S1–S3, in supporting information.

KUP KNS

2.5.3. Local sensitivity analysis

Parameters that do not have an explicit value stated in

previously published literature were subject to local sensitivity

analysis. These parameters included Ki
deg

, Ki
NS, K

i
up; where i =

lung, heart, kidneys, liver, spleen, gut, and other. To perform
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the local sensitivity analysis the values of Ki
deg

, Ki
NS, Ki

up

were changed incrementally so the output curve closely

resembled that of an experimental data set (discussed in Section

2.5.1). Larger Ki
NSand Ki

up values resulted in a steeper initial

biodistribution curve. Generally, Ki
NSand Ki

up had a similar

magnitude result in the biodistribution curve. Larger Ki
deg

resulted in a smaller maximum biodistribution and a quicker

decay in the biodistribution curve. The results of an example

local sensitivity analysis for the spleen is shown in Figure 4.

The parameters determined via the local sensitivity analysis that

were used in the compartmental models can be found at the SI

GitHub link.

Following the sensitivity analysis in model A, model B, and

the branching model, values for K
deg
i , KNS

i , and K
up
i were

determined and are available at the SI GitHub link. It is logical

to assume that non-specific uptake should be greatest in the

liver and gut because they are considered clearance organs.

However, the local sensitivity analysis revealed that the highest

non-specific uptake rate was in the lungs. This discrepancy is due

to the presence of potentially invalid experimental data. It was

apparent that no matter how high the liver KNS value was set

during the sensitivity analysis, the biodistribution produced by

themodel was always significantly smaller than the experimental

data set. In fact, forcing a match to the liver data can only be

realized at the expense of violating the conservation of mass,

which indicates an experimental error in the reporting of the

liver data. It is important to note that earlier iterations of

the model not described in the paper used other experimental

data sets for validation, and the liver biodistribution output

matched the experimental data well. So, we conclude that the

experimental data reported by Dong et al. (23) for the liver is

invalid. As for the gut and other KNS values, they were entirely

arbitrary. Since the experimental data set used for validation did

not report NP biodistribution data for gut or other, we could

not perform a valid sensitivity analysis on this parameter for

these compartments.

2.5.4. Global sensitivity analysis

We performed global sensitivity analysis to determine

the combined effect of model parameters on specific

quantities of interest. In particular, we determine the most

significant parameters for maximum uptake of NPs inside

organ tissue and the mean value of NPs over time in

the endothelial compartment. Maximum uptake of NPs

inside organ tissue is an essential target for better design

of NPs for specific targeting, and the mean of NPs bound

to the endothelial layer can help us understand the role of

non-specific targeting.

We utilized Julia’s GlobalSensitivity.jl package to perform

Sobol sensitivity analysis (25). Sobol sensitivity captures the

effect of variance in model inputs on model outputs in terms

of Sobol indices. Namely, we look at first-order and total-

order Sobol indices. First-order indices tell us about a single

input parameter’s contribution to the model output, and the

total-order indices include the higher-order contributions of an

input parameter.

Figure 5 contains the top four first-order and total-order

Sobol indices for maximum NP uptake by organ tissue. It can be

seen that NP uptake in organs other than the kidney and liver is

affected mainly by parameters corresponding to the same organ,

whereas in clearance organs such as the liver and kidney, the

dominant parameters do not correspond to the same organ.

Figure 6 contains the top four first-order and total-order

Sobol indices for the mean value of NPs in the endothelial

compartment over time. The specific uptake depends on the

binding of NPs to the endothelial layer, and the dominant

parameters for this process provide insight into if the organ

of interest is suitable for targeted drug delivery. If organ-

specific parameters do not dominate the binding of NPs to

the endothelial layer, then the optimization of targeted agents

for that organ will rely on systemic factors and parameters of

other organs. By way of this reasoning, the lungs can be an

ideal targets, whereas it can be hard to design NPs for specific

targeting of the heart, liver and kidney.

2.6. Model validation

2.6.1. Computational performance metrics

The unbranched model was solved using MATLAB’s ode15s

solver for stiff systems and also using various stiff solvers from

Julia’s DifferentialEquations.jl Library. Both A and B models

was run from 0 to 10,000 s (2.78 h) to reflect the time scale

of a given experimental data set. The branched model was

run from 0 to 10,000 s on Julia using the same solvers from

DifferentialEquations.jl but only from 1 ms on MATLAB due

to computational constraints. The simulations were performed

on a 2020 MacBook Pro with 1.4 GHz Quad-Core Intel core

i5 processor and 8 GB 2133 MHz LPDDR3 memory. The

timestep of integration was optimized considering stability and

the conservation of mass as two metrics. While the stiff solvers

in Julia’s DifferentialEquations.jl package do not require a user-

defined timestep, for models A and B the timestep of integration,

1t, was 1 ms, and was 1 ns for the branchedmodel, inMATLAB.

All plots were generated through Julia.

2.6.2. Comparison to experimental data

To ensure that the model output can be considered

accurate, the model was validated using data collected from

an experimental study (23). This study used a variety of

sizes of PEGylated gold nanoparticles and sampled the

biodistribution at various time points (5, 30, 60, and 120

min) in five locations in a mouse. Using WebPlotDigitizer
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FIGURE 4

Local sensitivity analysis: Plot for the Kdeg , Kup, and KNS parameters in the spleen compartment of the model. The blue line is the model output

using optimized parameters obtained via the sensitivity analysis. Other lines show the model output with unoptimized Kdeg , Kup, and KNS

parameters.

(https://apps.automeris.io/wpd/), attenuation values for 100 np

NP were extracted from Figure 5 in Dong et al. (23) and

converted to %ID/g values using the relationship presented in

Figure 6b of Dong et al. (23). Then, using given organ weights

from Diehl and Morse (21), %ID/t (percent of injected dose in

whole tissue) was calculated. These %ID/t values determined

experimentally in Dong et al. (23) were then compared to the

model output to ensure the compartmental model is indeed

predictive. Single time points for the liver and spleen were

reported reliably, so these data sets were used for model

validation. While this paper only describes validation with

one experimental study, it is important to note that previous

iterations of the model used a variety of other experimental

studies for validation.

2.6.3. Mass conservation analysis

A conservation analysis was employed in every iteration of

themodel to ensure that eachmodel described can be considered

a closed system. The conservation curve of the model is the

sum of NP that have been degraded (Equation 14) as well

as those previous time points in every compartment of the

model (arterial, venous, organs, vasculature, endothelial cell,

and tissue) Equation (15). Mass is conserved in the model

when the line formed by all data points from Equation (15)

over time t has a slope of 0. Equation (16) is used for mass

conservation analysis when we setup the system on a molar

basis and the mass is conserved where the moles of NPs

in all compartments add up to give initial value of NPs in

venous compartment.

2.6.4. Sti�ness of the unbranched model

The stiffness ratio characterizes the stiffness of the system.

For a system of linear ordinary differential equations
d y
dt
= Ay,

The stiffness ratio is defined as the ratio of the largest and

smallest eigenvalue of the matrix A.

Stiffness Ratio =
|λmax|

|λmin|
. (34)

Supplementary Table S6 shows the dependence of stiffness ratio

on model parameters, based on the stiffness ratio of our system,

we chose ode15s in MATLAB and QNDF, Rodas4, KenCarp4,

TRBDF2 and RadauIIA5 from Julia’s DifferentialEquations.jl

package to solve our system. All the mentioned solvers are stiff

ODE solvers.

2.7. Quasi steady state approximation

The system of ODEs described by our PBPK model is a

stiff system. The stiffness in the system arises because of the

large differences in order of magnitude of model parameters; in

our system we have very fast binding and unbinding of NPs to

endothelial layer and very slow uptake of NPs into tissue. The

model can be made non-stiff by omiting the ODEs containing

parameters at both time scales i.e. very fast (Kon, Koff ) and very

slow (KUP,KNS). Amore qualitative explanation can be given by

looking at the results from branched model simulation; it can be

seen in the Supplementary Figure S1 that concentration profiles

in the vasculature and endothelial layer quickly drop to zero after

the initial spike. Therefore, the model can be approximated by
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FIGURE 5

Global Sensitivity Analysis: Total order and First-order Sobol indices of Kdeg , Kup, and KNS parameters, for global sensitivity analysis performed on

maximum NP uptake in organ tissue.
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FIGURE 6

Global Sensitivity Analysis: Total order and First-order Sobol indices of Kdeg , Kup, and KNS parameters, for global sensitivity analysis performed on

mean value of NPs bound to endohtelial layer.
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omitting the differential equations related to the vasculature and

endothelial layer. Consider the two subsystems

dNss

dt
= f (Nnss,Nss) (35)

and,

dNnss

dt
= g(Nnss,Nss). (36)

where Nss denotes the moles of NP particles in vasculature and

endothelial in all organs and Nnss denotes the moles of NPs

in vein, artery and tissue compartment in all the organs. This

reduced system consists of ODEs for concentration profiles in

vein, artery and organ tissue (9 in total). The system is much

less stiff than the complete systems because Kon and Koff not do

occur in the reduced system of ODEs. Functions f and g consists

of linear combinations of termsNss andNnss for different organs,

because the original system of ODEs is a linear system. Then the

QSSA involves setting:

dNss

dt
= 0. (37)

We then use the values of Nss obtained by solving equation

(37) as constants in equation (36), this is no different than

solving a system of ODEs in Julia with an extra step of solving

a system of linear (Equation 37). Since the reduced system is

nonstiff equation (36) can be solved with any nonstiff/explicit

ODE solver.

2.8. Neural networks to solve ODEs

It has been shown in Raissi et al. (26) that Neural Networks

can be used to solve partial differential equations; we use the

same protocol to solve our system of ODEs using a neural

network. Our system being a stiff one makes it ideal for testing

the performance of a new method and comparing it against

highly optimized ODE solvers. It has been shown (27) that

neural networks can be used to solve ODEs when the system

of ODEs is nonstiff. We used QSSA to make our PBPK model

nonstiff (stiffness ratio ∼ 104) and trained a neural network to

learn the solution to the ODEs.

Consider a system of first-order ODEs;
dy

dt
= f(y), where

both f and y are vectors of same size. Hypothesize that the

solution can be approximated using a neural network, with

trainable parameters θ , i.e.

y(t) = NN(t, θ). (38)

The derivative of the output from the neural network can be

approximated by a finite difference scheme or can be obtained

using autograd functionality of a neural network. Here we use a

first-order finite difference scheme.

dy(t)

dt
=

d NN(t, θ)

dt
=

NN(t + ǫ, θ)− NN(t, θ)

ǫ
. (39)

The loss function for this problem is:

L(θ) =
∑

ti∈t

[

d NN(ti, θ)

dt
− f(NN(ti, θ))

]2

+ [NN(0, θ))− yic]
2.

(40)

The first term in the loss function is the squared error between

LHS and RHS of the ODEs, computed using forward pass

through the Neural Networks and the second term is the

squared error between true initial condition and predicted initial

condition. The solution NN(t, θ∗) is a unique solution to the

system of ODEs, where,

θ∗ = argmin
θ

L(θ). (41)

Equation (41) is the optimization problem aiming to minimize

the above defined loss in terms of neural network parameters θ .

The procedure described in Algorithm 1 aims to solve Equations

(35) and (36) iteratively. Notations used in the algorithm mean

the same as described in these equations. We solved our PBPK

model with a neural network using Julia’s Flux.jl package (35).

Algorithm 1 Physics Informed Neural Network with QSSA

tbatch ← (0, 103) ⊲ Array consisting of discretized time

θ ← rand ⊲ Randomly Initialized Neural Network

Parameters

Nnss ← NN(tbatch, θ
0) ⊲ NN is a simple feedforward Neural

Network

Loss← INTMAX ⊲ Loss for neural network set to a large

value

tol← 10−8 ⊲ Tolerance to end the while loop

while Loss > tol do

Nss ← Solve g(Nnss,Nss) = 0

Nnss ← NN(tbatch, θ
0)

Loss← criteria( dNnss
dt

, f (Nss,Nnss)) ⊲ Loss function as

defined in Equation (40)

θ ← Update(θ) ⊲ Update theta based on choice of

optimizer for the Loss

end while

3. Results

3.1. Biodistribution from steady state
model agrees with murine in vivo data

Using the steady-state model equation (Equation (2) in

Methods), we plot the %idg values in each of the five organs
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over three different antibody concentrations on the surface of

NP (41, 100, and 162 antibodies coating the surface of the NP),

four different theoretical membrane properties (flat, membrane,

membrane & present macrophages, membrane & present and

active macrophages), and five different organs (lung, heart,

kidney, liver, spleen). Additionally, the in-vivo experimental

%idg data is plotted, in Figure 7 and R values representing the

correlation between the lung %idg values of the given model

and experimental lung values, as well as R values that show the

correlation between the %idg values of all organs of the model

output and the experimental data are given. It is important to

note that the total R values across all organs are much higher

in the modified model discussed in this paper compared to the

original model, comparisons of R values in bothmodels is shown

in Supplementary Table S5. This suggests that the incorporation

of non-specific uptake into the model results in a much more

physiologically relevant model. We also compare the results

obtained from a 30-min simulation of an unbranched model

with experimental data (reported at a 30-min time-stamp). We

observe that by performing local sensitivity analysis for area and

volume of the endothelial layer and organ tissue, respectively,

we obtain a high R for lungs compared to all other models. The

excellent agreement of the steady-state data with the 30-min

time data from the transient model suggests that the steady-state

model is a good approximation for time scales.

3.2. Compartmental model B provides a
better representation of the temporal
biodistribution observed in experiments

Both compartmental models (A and B) were solved using a

variety of stiff solvers available in Julia’s DifferentialEquations.jl

package and the MATLAB ode15s solver (for stiff systems) for a

time period of 10,000 s (2.78 h). The output and corresponding

conservation analysis graphs of models A and B are shown in

Figures 8, 9, respectively.

The normalized root mean squared deviation values

(NRMSD) were calculated comparing the model output to the

experimental data set where the experimental data set provided

time-series data (kidney, liver, spleen). The NRMSD values

in model A were 1.0503, 37.4273, and 0.1025 for the kidney,

liver, and spleen, respectively. The NRMSD values in model

B were 0.6735, 20.1909, and 0.0614 for the kidney, liver, and

spleen, respectively. The NRMSD values were lower in model

B than model A suggesting the modified model (model B) more

accurately represents the experimental data set (23).

The ODE solvers in Julia’s DifferentialEquations.jl package

does not require user-defined timestep and exact mass

conservation was obtained by using any of the available

stiff solvers. MATLAB’s ode15s solver requires a user-defined

timestep (1t). Timestep was chosen so the system remains

stable, and so the system exhibits mass conservation. The 1t

of 0.001 s was chosen for both compartmental models A and

B, for the simulation time of 10,000 s. If the 1t was increased

beyond 0.001 s, the system became unstable and mass was

not conserved. On the other hand, if 1t was decreased, the

model was unable to complete running due to the computing

constraints of MATLAB. It is important to note that mass

conservation is only accurate to the order of 1t but integration

is valid to a higher order. So, to run the model for a time

scale similar to that of experimental studies while maintaining

stability and conservation in the system, a1t of 0.001 for models

A and B is necessary.

3.3. Branched model predicts a delayed
temporal response compared to the
lumped compartmental model

The development of the branched model is incredibly

important because it provides a more accurate representation of

the circulatory system; specifically, the surface area to volume

ratio of the blood vessels in the branched model is more

representative of in vivo mouse models. The framework of the

branched model allows for the incorporation of more specific

hydrodynamic interactions and margination allowing for a

physics-based prediction of NP biodistribution, enabling us to

account for characteristics such as NP size, shape, and surface

chemistry in the model, following the theory in Jabeen et al.

(28). Additionally, the construction of the branched model will

allow for Kon to change depending on vessel diameter and blood

flow rate. This cannot be done in models A and B without

empirical measurements.

The branched model was solved using Julia’s

DifferentialEquation.jl (29) package. Namely, the stiff solvers,

QNDF, Rodas4, KenCarp4, TRBDF2 and RadauIIA5 were able

to solve for t = [0, 104]s. Whereas the most efficient stiff solver

in MATLAB (ode15s) was unable to solve the system of ODEs.

Figure 10 shows the comparison between the molar profiles for

the branched and unbranched models.

3.4. E�ect of nanoparticle size on
biodistribution

The branching model construction allows for exploration of

the effect of differing NP sizes on biodistribution. The effect of

nanoparticle size on biodistribution was also explored using the

branched model and nanoparticle diameters of 4, 15, 50, 79, and

100 nm. In Figure 11, it can be seen that the 5-min simulation

result from our branched model is in good agreement for 5-min

experimental data from Dong et al. (23) for the kidney. Even

though we were not able to get an exact match for Liver and
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FIGURE 7

Modified model from Ramakrishnan et al. (15) that includes non-specific uptake. % idg reported for several membrane conditions, antibody

concentrations, and organ combinations.

Spleen, we observed similar trends between experimental data

and simulation data.

3.5. Model reduction and performance of
newer solvers

3.5.1. Quasi steady state approximation for the
unbranched model

The unbranched model consists of 23 ordinary differential

equations, i.e., two equations for vein/artery, seven equations for

branched vasculature, seven equations for branched endothelial

layer, and seven equations for organ tissues. The reduced system

after using QSSA includes only nine equations. The system

of linear equations for vasculature and endothelial layer (14

equations) is solved using the similar approach.

Figure 12 depicts the comparison between the unbranched

model’s QSSA solution and the unbranched model’s complete

solution. The difference in the solutions can be explained based

on the vasculature and endothelial profiles for the unbranched

model. The difference in profiles for some organs (Kidney, Liver,

Gut, Others) is due to the non-zero gradient in profiles of NP
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FIGURE 8

Output of model A: (A) the normalized concentration of NP in each of the five organ compartments and the arteries and veins of the original

model, and (B) the conservation figure.

bound to endothelial and vasculature for large times, as shown

in Supplementary Figure S2.

3.5.2. QSSA for the branched model

The full branchedmodel consists of 457 ordinary differential

equations, i.e., two equations for vein and artery, 32 x 7

equations for branched vasculature, 32 x 7 equations for

branched endothelial layer, and seven equations for organ

tissues. The reduced system after using QSSA has nine

equations. The system of linear equations for vasculature

and endothelial layer (64*7 equations) is solved using the

backslash (A\b) operator in Julia, and the values of y are

updated in this way at every iteration. However, this makes
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FIGURE 9

Output of model B: (A) the normalized concentration of NP in each of the seven organ compartments and the arteries and veins of the model,

and (B) the conservation figure.

the task computationally more intensive and takes longer than

solving for the complete model, but the objective is to reduce

the system’s stiffness. After using QSSA the system of ODE

was solved using Tsit5 solver in Julia, which is a nonstiff

solver. Figure 13 shows the comparison between QSSA and the

complete solution of the branched model. The difference in

initial onset can be explained from Supplementary Figure S1,

where we can see the gradient is zero for most of the time

but there is a spike initially. QSSA for the branched model is

a better approximation compared to QSSA in the unbranched

model because of the more rapidly vanishing gradients in the

former’s case.

3.5.3. Coupling QSSA and neural networks

Using the methods described in the above sections, we

solved the concentration profile in the tissue, vein and artery

compartments. The neural network predicts these nine outputs,
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FIGURE 10

NP concentration vs. Time for the branched and unbranched models: For the organs which have ϕ > 1 the onset is quicker. For lungs ϕ ∼ 1 and

for spleen ϕ < 1.

which are used to update the steady-state solution of the

remaining 14 equations iteratively.

The neural network was trained for 30,000 epochs on a

CPU. The neural network architecture consists of an input layer

to which discretized time is given as input, two hidden layers

each followed by a hyperbolic tangent activation and an output

layer consisting of 9 outputs followed by Sigmoid activation.

The input to the neural network is a batch of equally spaced

numbers between [0, 1], and the first-order derivative of the

neural network is scaled with maximum time (tmax = 103)

before computing the loss function.

Figure 14 depicts the comparison between the Neural

Network solution and the solution obtained using a nonstiff

ODE solver (Tsit5 in Julia). This method demonstrates
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FIGURE 11

E�ect of NP size: Y axis represents relative concentration of nanoparticles at 5 min w.r.t initial concentration.

the ability of Neural Networks to solve ODEs. However,

we tested this implementation of a simple feedforward

neural network to solve the system of ODEs using QSSA.

For the full model (without QSSA), we found that the

ODE solvers from Julia’s DifferentialEquations.jl library

are more adept and a neural network fails to solve the

full system.

4. Discussion

In clinical settings, the use of nanotechnology, including

drug-carrying nanoparticles (NP), has increased in recent years.

However, the range of NP applications, target, and physical

characteristics significantly impede the ability of NP to be

researched effectively as bench-to-bedside therapeutics. To this
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FIGURE 12

Comparison between complete model and QSSA for unbranched model.

end, researchers have begun to turn toward physiologically based

pharmacokinetic (PBPK) models to guide experimentation and

better understand the targeting behavior of various nanoparticle

compositions in the human body. A multiscale computationally

driven model with physiologically relevant inputs can be

utilized to determine organ-specific biodistribution since

the physiological and hydrodynamic factors governing NP

biodistribution and tissue targeting involve mechanisms that

operate at different timescales. NP behavior must be understood

at every level to create a comprehensive multiscale model. This

includes the binding landscape of a NP in the presence of an

endothelial cell layer. A previous multiscale PBPK model has

determined binding constants of intracellular adhesionmolecule

1 (ICAM1) coated NPs to endothelial cell surface receptors

in mice and humans by utilizing the biophysical properties

of the antibody to receptor interactions, and the cell surface

(15). However, the nonspecific uptake, or uptake via passive

diffusion in the intercellular cleft, is not accounted for in that

model. The purpose of this current study was to 1) modify

an existing steady-state PBPK model (15) to incorporate NP
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FIGURE 13

Comparison between complete model and QSSA for branched model.

uptake via nonspecific transport, 2) develop a novel multiscale

PBPK compartmental model to predict temporal effects, and

3) introduce a compartmental branched vascular model that

can predict the effect of NP size, 4) perform validation with

experimental murine biodistribution data.

The original steady-state model from Ramakrishnan et

al. (15) was modified by adding a nonspecific uptake term

that represents NP uptake via passive diffusion through the

intracellular cleft. The addition of nonspecific uptake increased

the predictive ability of the model, as evidenced by higher R

values when compared to an experimental data set than the

original model. This suggests that incorporating a nonspecific

uptake term into future models is necessary to increase

physiological relevance and predictive ability. Next, a novel

multiscale PBPK compartmental model was created to predict

the continuous temporal biodistribution of NP in five to seven
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FIGURE 14

Comparison between Neural Networks and Tsit5 with QSSA for unbranched model.

organs. Two versions of this model were created, model A

and model B, which differ based on the number of organ

compartments represented (model A: 5, model B: 7), and the

way flow is routed through the model (Model B is more

physiologically relevant). Models A and B were represented with

a system of ODEs (Model A: 17 ODEs, Model B: 23 ODEs)

solved using stiff solvers from Julia’s DifferentialEquations.jl

package and MATLAB’s ode15s solver, then validated with

experimental data. The predictive ability of Model B was greater

than Model A as evidenced by the normalized root mean

squared deviation (NRMSD) analysis. Finally, a branched model

was developed to create a more detailed and physiologically

relevant version of the basic compartmental model while still

maintaining the simplistic compartmental foundation. The

branched network consists of a branched vascular tree that

begins at the main arteries and veins and bifurcates into the
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capillary beds, connecting the arterial and venous branching

networks. This branching model was represented with 457

ODEs which were solved using Julia. The branching framework

allowed for customized output based on NP size. Kon and

Koff values can be calculated and are dependent on NP size.

Biodistribution for NP size of 4, 15, 50, 79, and 100 nm

was plotted.

The compartmental models’ A and B differed slightly in

their composition, with model B more physiologically relevant.

Model A consists of five organ compartments (lungs, heart,

kidneys, liver, spleen), while model B includes the addition

of two additional compartments (gut, other). Additionally,

the lung circulation has been separated out to keep track

of oxygenation and oxygen distribution, and gut and spleen

compartments are coupled to the liver compartment in model B.

A local sensitivity (Figure 4) analysis was performed on several

parameters: Kdeg , Kup, and KNS to determine the values of

these parameters that would best fit the experimental data set

available. Kup and KNS had a similar effect on the model output

across organ compartments. When increased, the slope of the

biodistribution curve over time would increase, with a higher

plateau concentration. When Kdeg is increased, the slope of

the biodistribution curve over time would decrease, typically

decreasing the plateau concentration and also shortening the

length of the plateau, leading to a quicker decrease in NP

concentration in a given compartment.

The multiscale PBPK model framework presented in this

paper presents a significant advance because the predictive

ability is purely mechanism-based. Multiscale physics-based

modeling allows for the system’s behaviors and interactions to

be completely described mathematically, rather than relying on

empirical observations and data to make predictions. Typical

PBPK models (7, 9) are generally empirically based and do not

describe the entire behavior of the system. Creating a purely

physics-based PBPK model allows for more customization. For

example, in this case, it allows NP composition to be varied

by changing certain model parameters to reflect differing NP

surface chemistry or size. This is advantageous since NP exist in

many forms with various surface chemistries, compositions, and

sizes and allows for further model customization in the future.

To continue to evolve this model to allow for customization

beyond NP size, additional modules can be added in the

future. Incorporating a module that defines internalization

rates of varying NP surface chemistries is vital to extending

this model to other NP besides ICAM coated. Additionally,

hydrodynamic interactions in the bloodstream, immune system

effects, and separating various types of NP degradation can be

added to the model to increase the physiological relevance and

translational potential.

The branching model results in an incredibly large and stiff

system of ODEs. To attempt to combat these issues, the stiff

MATLAB ode solver, ode15s, was used. MATLAB produced

biodistribution graphs, but only from 0 to 1 ms. This is because

a small time-step needed to be used to ensure stability within the

model. If the time-step was increased beyond 1 ns, the system

became unstable, and if the run time was increased beyond 1 ms

with the 1 ns time-step, MATLAB became unresponsive. So, it

is clear that there are computing power limitations in MATLAB

solving large stiff ODE systems. We used stiff equation solvers

from DifferentialEquations.jl package in Julia to address this

issue. All the stiff solvers from the package successfully solved

the system large times.

The physiologically relevant PBPK model can produce a

correct output describing the biodistribution of NP. While

the neural net ODE solver was successfully demonstrated

here, the full power of neural networks can be realized by

embedding the multiphysics in the neural networks. Eventually,

this computationally driven PBPK model could be used for

developing a Neural Network to create a reduced but accurate

model for determining NP biodistribution, with more efficiency

than the PBPK compartment model. An input to the neural

network could be characteristics of the NP such as NP size,

vesicle cargo, and concentration of surface proteins. The

discrete NP concentrations in each organ as determined by the

neural network could be trained against the continuous PBPK

compartmental model output (described in this study) at a

given time point. Utilizing ML techniques in this model will

allow for a much more efficient and automated predictive model

for determining NP biodistribution. However, it is necessary

to construct an informative PBPK compartmental model to

ultimately use in the training process of this Neural Network

(26, 27).

4.1. Limitations and future work

• While our model does not include charge effects, parameter

sensitivity is a simple way to address this before an in-

depth study. Indeed, we have carried out local and global

sensitivity analyses on many of the parameters to identify

the sensitive parameters. The model is context-specific, so

if implemented for a different type of nanoparticle, all that

would be required are changes to model parameters.

• We chose to study nanoparticles in a size range of between

10 and 100 nm because experiments reporting temporal

distribution (and not just single time points) were available

in this size range. The studies that reported larger particles

tended to focus on effects at single time points. In principle,

our studies can describe larger nanoparticles, but we need

to know how the parameters such as Kon, Koff , and

Kup change for these larger particles. We note that the

dependence of these parameters on size for the 10–100 nm

range was available through our earlier studies (30); these

studies also reported results for larger particles such as 500

nm. Therefore, in principle, our studies can describe larger

nanoparticles so long as we know how the parameters such
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as Kon, Koff , and Kup change for these larger particles.

The smaller size range we considered is more appropriate

for translational applications as described in Anselmo and

Mitragotri (31), which reports that the nanoparticles used

are primarily in the range we have considered.

• We used the Matlab ODE 15s solver in this study due to

its ease of implementation in Matlab. We also tried other

solvers, such as ODE 45s and ODE 23tb but each posed

problems (inefficiency).We tried using theMatlabODE 45s

solver in earlier iterations of this project. However, theODE

45s solver was significantly slower to solve the system than

the ODE 15s solver. Solving was never actually completed

with the ODE 45s solver due to its inefficiency. We want to

emphasize that it was not our intent to compareMatlab and

Julia systematically. We undertook a limited comparison

presented in this paper out of necessity and concluded

that in the situations where Matlab failed, Julia was able

to provide a viable and computationally tractable solution.

However, a more systematic comparison and depth analysis

of performance have been reported in the literature, and

our observations are consistent with these reports (32).

• We believe our model presents a minimal framework to

interpret salient features of systemic NP transport. This

model can be applied to any other species by changing

the model parameters and validating against experimental

data for the particular species. However, the model is

(woefully) inadequate to capture the full complexity of the

physiological system. Hence it is our philosophy that we

will explore the dynamic range of the model predictions

through sensitivity (local and global), evolvability, and

robustness analysis (35), to the extent that the model

results align with physiological measurements. Our model

offers one plausible interpretation; we can confirm this

by additional constraints such as exploring the effects

of critical parameters in the model and experiments to

ensure the model predicts the correct responses for the

right reasons. Additionally, validation can be performed at

multiple scales by carrying out independent experiments

(33). These multiple steps of statistical analysis, sensitivity

analysis, and multiscale experimental validation must be

done before determining if the minimal framework of the

model is entirely adequate for physiological comparison.

At this point, clinical adaptation or at least adaptation in

translational settings can be attempted. If the model fails

these tests in a given scenario, it is most often because

one or more crucial effects are missing from the minimal

framework. At this point, the model needs to be expanded,

and further validation of the expanded model is warranted

before further use.

• We attempted the simpler model A to determine if

the simple wiring of the organs performs as well as

the more physiologically correct wiring. While model

B outperforms model A, model A gets most of the

constraints correct, implying that most effects governing

tissue accumulation depend on the flow rates and the

compartmental volumes. The flow rates, for the most

part, are only partially sensitive to changes in wiring.

The purpose of the stripped-down versions of the

model is to assess the accuracy of prediction vs. model

complexity to determine what level of complexity of the

model provides an acceptable description of the results.

Moreover, this acceptable limit is set by a user threshold

of how much error tolerance we can accommodate in

our predictions.

• Several papers in the journals described by the reviewer

either do not report temporal data, or they are reported

for nanoparticles which are not targeted; also, very few

studies do all this and study the effect of nanoparticle

size. A physics-based (or data-driven) understanding of the

dependence of different nanoparticle architecture on key

parameters is required before they can be factored into

our model. Hence we chose to focus on (limit ourselves

to) solid spherical nanoparticles in the current study.

We hope to explore more detailed comparisons of other

classes of nanoparticles in the future. We present this

perspective under the limitations in the discussion section.

One drawback of physics-based models is that while the

models are generalizable, they are predicated on physics

being known for different classes of particles. So far, we

have explored the effect of the particle architecture for

three classes—rigid, flexible, and semiflexible (34), and

hope to cover other particles in the future. At this time,

we will systematically explore the literature, uncover the

temporal data reported across nanoparticle classes, and

subject them to comparison to our model. However,

we have not done this step for the current version of

our study.

• Ourmodel is minimal, and within this minimal framework,

we have backed up the model parameters and their

dependence on essential effects such as size and antibody

density on previous physics-based simulations. In this

realm, we have considered cell-membrane-NP interactions

in Kon, Koff , and Kup. These bundle the different

uptake mechanisms and rates. The other mechanisms of

non-specific uptake are bundled into Kns. In principle,

systematic studies of each of these uptake routes while

blocking others can be done and would be insightful to

pursue in future studies.
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