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Introduction: Photogrammetric surface scans provide a radiation-free option
to assess and classify craniosynostosis. Due to the low prevalence of
craniosynostosis and high patient restrictions, clinical data are rare. Synthetic data
could support or even replace clinical data for the classification of craniosynostosis,
but this has never been studied systematically.
Methods: We tested the combinations of three different synthetic data sources: a
statistical shape model (SSM), a generative adversarial network (GAN), and image-
based principal component analysis for a convolutional neural network (CNN)–
based classification of craniosynostosis. The CNN is trained only on synthetic data
but is validated and tested on clinical data.
Results: The combination of an SSM and aGAN achieved an accuracyof 0.960 and an
F1 score of 0.928 on the unseen test set. The difference to training on clinical datawas
smaller than 0.01. Including a second image modality improved classification
performance for all data sources.
Conclusions:Without a single clinical training sample, a CNNwas able to classify head
deformitieswith similar accuracy as if it was trainedon clinical data. Usingmultiple data
sources was key for a good classification based on synthetic data alone. Synthetic data
might play an important future role in the assessment of craniosynostosis.
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1. Introduction

Craniosynostosis is a group of head deformities affecting infants involving the irregular

closure of one or multiple head sutures and its prevalence is estimated to be between four

and 10 cases per 10,000 live births (1). As described by Virchow’s law (2), depending on

the affected suture, distinct types of head deformities arise. Genetic mutations have been

identified as one of the main causes of craniosynostosis (3, 4), which has been linked to

increased intracranial pressure (5) and decreased brain development (6). The most-

performed therapy is surgical intervention consisting of resection of the suture and

cranial remodeling of the skull. It has a high success rate (7) and is usually performed

within the first 2 years of age. Early diagnosis is crucial and often involves palpation,

cephalometric measurements, and medical imaging. Computed tomography (CT) imaging

is the gold standard for diagnosis, but it makes use of harmful ionizing radiation which

should be avoided, especially for very young infants. Black-bone magnetic resonance
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imaging (MRI) (8) is sometimes performed, but requires sedation

of the infants to impede moving artifacts. 3D photogrammetric

scanning enables the creation of 3D surface models of the child’s

head and face and is a radiation-free, cost-effective, and fast

option to quantify the head shape. It can be employed in a

pediatrician’s office and has potential to be used with

smartphone-based scanning approaches (9).

Due to its low prevalence, craniosynostosis is included in the list

of rare diseases by the American National Organization for Rare

Disorders. Due to limited data, strict patient data regulations, and

difficulties in anonymization (photogrammetric recordings show

head and face), there are no publicly available clinical datasets of

craniosynostosis patients available online. Synthetic data based on

clinical data could potentially be used as a substitute to develop

algorithms and approaches for the assessment of craniosynostosis,

but so far only one synthetic dataset based on a statistical shape

model (SSM) from our group (10) has been made publicly

available. Scarce training data and high class imbalance due to the

different prevalences of the different types of craniosynostosis (4)

call for the usage of synthetic data to support or even replace

clinical datasets as the primary resource for deep learning (DL)–

based assessment and classification. The inclusion of synthetic data

could facilitate training due to the reduction of class imbalance

and increase the classifier’s robustness and performance. In

addition, synthetic data may also be used as a cost-effective way to

acquire the required training material for classification models

without manually labeling and exporting a lot of clinical data.

Using synthetic data for classification studies in a supporting

manner or as a full replacement for clinical data has gained

attraction in several fields of biomedical engineering (11, 12),

especially if clinical data are not abundant. While the classification

approaches of craniosynostosis on computed tomography (CT)

data (13), 2D images (14), and 3D photogrammetric surface scans

(15–17) have been proposed, the dataset sizes were below 500

samples [e.g. (17, 15, 13)] and contained high class imbalances.

The usage of synthetic data is a straightforward way to increase

training size and stratify class distribution.

However, although the need for synthetic data had been

acknowledged (15), synthetic data generation for the classification

of head deformities has not been systematically explored yet. With

the scarce availability of clinical data and multiple options of

synthetic data generation available, we aim to test the effectiveness

of multiple data synthesis methods both individually and as multi-

modal approaches for the classification of craniosynostosis. Using

synthetic data as training material facilitates not only the

development of larger and more robust classification approaches

but also makes data sharing easier and increases data availability.

A popular approach for 3D data synthesis is statistical shape

modeling. It describes the approach to model 3D geometric shape

variations by means of statistical analysis. With the application of

head deformities, they have been employed to distinguish clinical

head parameters (18), to evaluate head shape variations (19), to

assess therapy outcome (20), and to classify craniosynostosis (16).

Although their value in the clinical assessment of craniosynostosis

has been shown, the impact of SSM-based data augmentation for

the classification of craniosynostosis has not been evaluated yet.
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With the introduction of a conversion of the 3D head geometry

into a 2D image, image-based convolutional neural network

(CNN)–based classification (17) can be applied on low-resolution

images. Generative adversarial networks (GANs) (21) have been

suggested as a data augmentation tool (15) and have been able to

increase classification performance for small datasets (22).

The goal of this work is to employ a classifier based on synthetic

data, using three different types of data synthesis strategies, which

can create any number of samples based on a set of clinical

training data: SSM, GAN, and image-based principal component

analysis (PCA). The three modalities are systematically compared

regarding their capability in the classification of craniosynostosis

when trained only on synthetic data. We will demonstrate that the

classification of craniosynostosis is possible with a multi-modal

synthetic dataset with a similar performance to a classifier trained

on clinical data. In addition, we propose a GAN design tailored

toward the creation of low-resolution images for the classification

of craniosynostosis. The GAN, the different SSMs, and PCA, were

made publicly available along as all the 2D images from the

synthetic training, validation, and test sets.
2. Methods

2.1. Dataset and preprocessing

All data from this study were provided from the Department of

Oral and Maxillofacial Surgery of the Heidelberg University

Hospital, in which patients with craniosynostosis are routinely

recorded for therapy planning and documentation purposes. The

recording device is a photogrammetric 3D scanner (Canfield

VECTRA-360-nine-pod system, Canfield Science, Fairfield, NJ,

USA). We used a standardized protocol that had been examined

and approved by the Ethics Committee Medical Faculty of the

University of Heidelberg (Ethics number S-237/2009). The study

was carried out according to the Declaration of Helsinki, and

written informed consent was obtained from parents.

Each data sample was available as a 3D triangular surface mesh.

We selected the 3D photogrammetric surface scans from all available

years (2011–2021). If multiple scans for the same patient were

available, we selected only the latest preoperative scan to avoid

duplicate samples of the same patients. All patient scans had been

annotated by medical staff with their diagnosis and 10

cephalometric landmarks. Figure 1 shows the available landmarks

on the dataset. We retrieved patients with coronal suture fusion

(brachycephaly and unilateral anterior plagiocephaly), sagittal

suture fusion (scaphocephaly), and metopic suture fusion

(trigonocephaly), as well as a control group with the dataset

distribution displayed in Figure 2. Besides healthy subjects, the

control group also contained patients suffering from mild

positional plagiocephaly without suture fusion. Subjects with

positional plagiocephaly in the control group were treated with

helmet therapy or laying repositioning. In contrast, all patients

suffering from craniosynostosis required surgical treatment and

underwent remodeling of the neurocranium. The four head shapes

resulting from craniosynostosis are visualized in Figure 3.
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FIGURE 2

Pie chart of the class ratios in the clinical dataset (control 56%, coronal
5%, metopic 14%, and sagittal 25%). The legend in the center shows the
absolute number of samples in the dataset (496 samples in total).

FIGURE 1

Landmarks provided in the dataset, used for the alignment for statistical
shape modeling and the coordinate system creation of the distance
maps (17). The three landmarks on the right exist for both left and
right parts of the head.
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We used the open-source Python module pymeshlab (23)

(version 2022.2) to automatically remove some recording artifacts

such as duplicated vertices and isolated parts. We also closed

holes resulting from incorrect scanning and removed irregular

edge lengths by using isotropic explicit re-meshing (24) with a

target edge length of 1 mm. In an earlier work (17), we defined a

2D encoding of the 3D head shape (“distance maps,” displayed

in Figure 3, bottom row), which was also included in the pre-

processing pipeline with the default parameters of (17).
FIGURE 3

The four classes of the dataset with their distinct head shapes and their
resulting distance maps representation. Top row: frontal view; middle
row: top view; bottom row: 2D distance maps.
2.2. Data subdivision

We aimed to test multiple data generation models (GAN, SSM,

and PCA) to create training material for the classification. It was

therefore required to strictly separate the data from which we

trained the generative models to the data on which we evaluated the

classification performance. The test set had to be strictly unknown
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to the classification model to avoid leakage (an overestimation of the

model performance due to statistical information from the training

or validation set “leaking” into the test set).

We introduce a terminology for this study design, which is also

visually depicted in Figure 4. The clinical dataset is split in a stratified

fourfold cross-validation scenario into 75% “model data” and 25%

“evaluation data” (the stratification refers to the class distribution, so

the same class ratio as shown in Figure 2 was present in both splits).

The “model data”was clinical datawhich had two purposes: Its first

purpose was to serve as training data for the three generative models.

Those generator models would in turn synthesize the training sets for

the CNN classification model. Second, converted into the 2D domain,

the “model data” served as the validation set for the CNN

classification model. The “evaluation data” was composed of the

remaining 25% of the clinical data and was strictly separated from the

other data only to be used in the 2D distance maps domain as the test

set for the CNN classification model. This set was therefore a true

independent test set since it was never seen either during creation of

the data synthesizers or during training of the CNN classification.

As the CNN classification model operated on 2D images, all 2D

images were created from each 3D surface scan as 28� 28-sized

craniosynostosis distance maps, which was sufficient for good

classification in an earlier study (17). Each of the synthetic data

generators, SSM, GAN, and PCA, are described below.
2.3. Data synthesis

2.3.1. Statistical shape model
The pipeline for the SSM creation was similar to Dai et al.

(25) and consisted of initial alignment, dense correspondence

establishment, and statistical modeling to extract the mean
frontiersin.org
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FIGURE 4

Data subdivision for the creation of synthetic data and the datasets for the classification experiment. The “model data” were used to produce the synthetic
samples on which the CNN was trained and for creating the validation set. The “evaluation data” comprised the other part of the clinical data and were
used to create the 2D images for the test set for the CNN. Green: data; blue: 3D–2D image conversion; dark red: generative models.
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shape and the principal components from the sample covariance

matrix (see also Figure 5). For correspondence establishment, we

employed template morphing.

We used the mean shape of our previously published SSM

(10) as a template, which would be morphed onto each of the
Frontiers in Medical Technology 04
target scans. Procrustes analysis was employed on the 10

cephalometric landmarks to obtain a transformation including

translation, rotation, and isotropic scaling from the template

to each target according to the cephalometric landmarks on

the face and ears. For correspondence establishment, we
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FIGURE 5

The statistical shape model pipeline employed in this study. The target scan is colored green with the deforming template in white.
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employed the Laplace–Beltrami regularized projection (LBRP)

approach (26) to morph the template onto each of the

targets. We used two iterations: a high stiffness fit (providing

a now landmark-free transformation from template to the

target, improving the alignment also from the back of the

head not covered with the landmarks) and a low stiffness fit

(allowing the template to deform very close to the targets

(27)). The deformed templates were then in dense

correspondence, sharing the same point IDs across all scans

and were used for further processing.

GPA was performed to remove both rotational and translational

components on all the morphed templates so that the mean shape

could be determined and removed. The remaining zero mean data

matrix served as a basis for the principal component analysis. To

counterbalance higher point density in the facial regions, we used

weighted PCA instead of ordinary PCA for the statistical modeling.

The weights were assigned according to the surface area that each

point encapsulated and computed using the area of each triangle of

the surface model. We created one SSM for each class, ensuring that

the models were independent from each other and did not contain

influences from the other classes. We cut off the coefficient vectors

after 95% of the normalized variance to remove noise and ensured

only the most important components were included in the SSMs.

The synthesis of the model instances could then be performed as

s ¼ �sþ VL1=2 a, (1)

with �s denoting the mean shape, V the principal components, L the

sample covariance matrix, and a the shape coefficient vector. We

created 1000 random shapes of each class using a Gaussian

distribution of the shape coefficient vector and created

craniosynostosis distance maps for each sample.

2.3.2. Image-based principal component analysis
We used ordinary PCA as another modality to generate 2D

images. While the SSM also made use of PCA in the 3D domain,

image-based PCA operated directly on the 2D images. This was a

computationally inexpensive and less sophisticated alternative to

both GANs and SSMs since neither extensive model training and

hyperparameter tuning nor 3D morphing and correspondence

establishment were required. We employed ordinary PCA for

each of the four classes separately and we again created 1,000
Frontiers in Medical Technology 05
samples for each class. Since SSM is related to PCA, the image

synthesis could be performed as

i ¼ �iþ VL1=2 a, (2)

with �i denoting the mean image in vectorized shape, V again the

principal components, L the sample covariance matrix, and a

the coefficient vector of the principal components. We again

drew 1,000 random vectors from a Gaussian distribution and

transformed them back into 2D image-shape.
2.3.3. Generative adversarial network
The GAN combined multiple suggestions from different GAN

designs and was designed as a conditional (28) deep convolutional

(29) Wasserstein (30) GAN with gradient penalty (31) (cDC-

WGAN-GP). The design in terms of the intermediate image sizes

is visualized in Figure 6. For the full design including all layers,

please see Appendix 1 in the Supplementary Material.

We opted for a design including a mixture between transposed,

interpolation, and normal convolutional filter kernels, which

prevented checkerboard artifacts and large patches. The

combination of interpolation layers and transposed convolutional

layers lead to better images than each of the approaches alone (see

also in Appendix 1 in the Supplementary Material, Figure S1)

present in our previous approach (32). The conditioning of the

GAN was implemented as an embedding vector controlling the

image label that we wished to synthesize. We trained the GAN for

1,000 epochs using the Wasserstein distance (30), which is

considered to stabilize training (33). Instead of the originally

proposed weight clipping, we used a gradient penalty (31) of

l ¼ 1. We used 10 critic iterations before updating the generator

and a learning rate of a ¼ 3� 10�5 for both networks. The loss L

can be described as follows (31):

L ¼ E~x�EDD(~x j y)� Ex�EGD(x j y)þ l(krx̂D(x̂)k2 � 1)2 (3)

with ~x denoting the generator samples G(z j y) and

x̂ ¼ ex þ (1� e)~x with e denoting a uniformly distributed

random variable between 0 and 1 (31). Exemplary synthetic

images created by the GAN during different stages of training are

depicted in Figure 7.
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FIGURE 6

Visualization of the intermediate image sizes from the used GAN model. Left: generator; right: critic (discriminator). The filter kernel sizes are described in
Appendix 1 in the Supplementary Material.
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2.4. Image assessment

To assess image similarity, structural similarity index

measure (SSIM) is one of the most popular metrics (34). Our

goal was a metric to assess image similarity from the synthetic

images to its clinical images from the same class. We adjusted

the metric and computed the SSIM for each synthetic image

to all the clinical samples from the same class and selected

the maximum value for each synthetic image and defined it as

its structural similarity index measure to closest clinical sample

(SSIMcc). This way, the SSIMcc is 1 if it matches any of the

clinical samples from the same class and � 0 if it is very

dissimilar to any of them:

SSIMcc,i ¼ max
8n[N

SSIM(pi,synthetic, pn,clinical) (4)

with i denoting a synthetic image and n denoting the clinical

index of the same class among the N clinical samples.
FIGURE 7

Image development of the GAN generator during different stages of training
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2.5. CNN training

Resnet18 was used as a classifier since it showed the best

performance on this type of distance maps (17). We used pytorch’s

(35) publicly available, pre-trained Resnet18 model and fine-tuned

the weights during training. During training, all images were reshaped

to a size of 224� 224 to match the input size of Resnet18. We

performed a different run of CNN training on all seven combinations

of the synthetic images. Since we used fourfold cross-validation, this

yielded four results for one of the synthetic image combinations.

Since we aimed to compare different synthetic data sources, the

CNNs were trained on the synthetic training set and the best-

performing network was chosen according to the maximum F1 score

on the validation set. The validation set was the 2D image

representation of the full “model data.” The test set was never touched

during training and only evaluated in a final run after training and

was composed of the 2D image representation of the “evaluation data.”

To evaluate the synthetically trained models against a clinically

trained model, we additionally employed one CNN trained on the
visualized as a 2 � 2 grid.
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FIGURE 8

Classification training using the synthetic training set, the validation set, and the test set. The CNN classifier using clinical data uses the validation set as a
training set. Green: datasets; blue: violet: classification models.

FIGURE 9

Number of training samples in each classification scenario. The clinical
scenario has 372 samples during each cross-validation fold, while all
synthetic scenarios have 4,000, 8,000, or 12,000 samples.
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2D images of the full “model data,” which had been used as the

validation set for the synthetically trained CNNs and also tested

it on the 2D images of the “evaluation data” to have the same

test set as for the other CNNs. This is visualized in Figure 8.

When multiple data sources were used, the models had a

different number of training samples (see Figure 9), and all

synthetically trained models were trained for 50 epochs.

Convergence was achieved usually already during the first 10

epochs, indicating that there was sufficient training material for

each model. We used the Adam optimizer, cross entropy loss, a

batch size of 32 with a learning rate of 1� 10�4, and a weight

decay of 0:63 after each five epochs.

We used the following types of data augmentation during

training: Adding random pixel noise (with s ¼ 1=255), adding a

random intensity (with s ¼ 5=255) across all pixels, horizontal

flipping, and shifting images left or right (with s ¼ 12:44 pixels).

All those types of data augmentation corresponded to real-world

patient and scanning modifications: Pixel noise corresponded to

scanning and resolution errors, adding a constant intensity was

equal to a re-scaling of the patient’s head, horizontal flipping

corresponded to the patient as if they were mirrored in real life,

and shifting the image horizontally modeled an alignment error

in which the patient effectively turns their head 20� left or right

during recording.

All the clinical 2D images, the GAN, and the statistical models

were made publicly available.1 We included a script to create

synthetic samples for all three image modalities to allow users to
1https://github.com/KIT-IBT/craniosource-gan-pca-ssm
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create a large number of samples. The synthetic and clinical

samples of this study are available on Zenodo (36).
3. Results

3.1. Image evaluation

Figure 10 shows images of each of the different data synthesis

types compared with clinical images. From a qualitative, visual

examination, the synthetic images had similar color gradients,

shapes, and intensities as the clinical images. GAN images

appeared slightly noisier than the other images and did not show

the left and right ear visible in the other images.
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FIGURE 10

Images of all three data modalities and clinical samples. The image modalities from top to bottom: SSM, GAN, PCA, and clinical. The four classes from left
to right: control, coronal, metopic, and sagittal.
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From the quantitative comparison (see Figure 11), the GAN

images showed the least similarity to the clinical images among

all classes. The images of the coronal class were the least similar

images among all classes. Overall, median SSIMcc was above 0.92

for all classes and all synthetic modalities.
3.2. Classification results

All comparison presented here were carried out on the

untouched test set and are displayed in Table 1. When
Frontiers in Medical Technology 08
considering only synthetic training images, the highest mean F1

score was obtained by the combination of the GAN and the SSM

(0.929), which is slightly higher than the combination of all three

synthetic image modalities (0.928) but slightly lower than using

clinical images (0.931). The SSM scored the highest mean F1

score on the single image sources (0.823), while including a

second image sources always led to mean F1 scores higher than

0.9. In contrast, the single synthetic data sources led to mean F1

scores from 0.657 (GAN) to 0.823 (SSM).

The mean accuracy of the three synthetic image sources scored

highest among the synthetically trained classification (0.960), while
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FIGURE 11

Boxplots of SSIMcc (structural similarity index measure to the closest clinical sample) of each class and each of the synthetic data generators. Outliers are
marked with crosses, and the median is shown with a red bar.

TABLE 1 CNN-classification comparison on the test set trained on
different synthetic data sources.

Data source Accuracy F1-score
GAN 0:738+ 0:146 0:657+ 0:066

PCA 0:742+ 0:097 0:687+ 0:100

SSM 0:885+ 0:030 0:823+ 0:031

GAN-PCA 0:944+ 0:017 0:901+ 0:042

GAN-SSM 0:956+ 0:009 0.929+ 0.027

PCA-SSM 0:942+ 0:015 0:908+ 0:034

GAN-PCA-SSM 0.960+ 0.014 0:928+ 0:022

Clinical 0:968+ 0:013 0:931+ 0:033

The mean metric from fourfold cross-validation and the standard deviation are

shown. Bold values represent best results overall, and bold italic values represent

best result on the synthetic data source.
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still being slightly inferior to using clinical images (0.968). Mean

accuracy was 0.944 or higher when using two synthetic image

sources and in the range of 0.728 (GAN) to 0.885 (SSM) for a

single synthetic image source. However, mean accuracy values

are a less reliable metric compared to the F1 score due to the

high dataset imbalance.
4. Discussion

Withoutbeing trainedona single clinical sample, theCNNtrained

from the combination of a PCA, an SSM, and a GAN was able to
Frontiers in Medical Technology 09
correctly classify 96% of the images. Classification performance on

the synthetic images proved to be very close compared to training

on the clinical images using the SSM and the GAN (and optionally

also PCA). This suggests that certain combinations of synthetic data

might be indeed sufficient for a classification algorithm to

distinguish between types of craniosynostosis. Compared with

classification results from other works, the accuracy of the purely

synthetic data–based classification (96.8%) performed in a similar

range to other approaches on clinical data such as 90.1% (37), 95.7%

(13), 97.8% (16), 98.4% (17), and 99.5% (15). It has to be noted that

all those experiments were computed on different datasets and a

quantitative comparison does not indicate a better model. However,

it does show that the classification approach on purely synthetic

training data achieves performances in a similar range to models

from the literature trained on clinical data.

The number of training samples also increased with the

combination of synthetic image sources; both the number of

training samples and the type of synthetic images might have

played a role for an increased classification performance using a

GAN, PCA, and SSM. However, the best F1 score on synthetic

images was achieved by the combination of only GAN and SSM,

so the increased number of samples was likely not the primary

influence on the classification accuracy. The SSM appeared to be

the data source contributing the most to the improvement of the

classifier: Not only did it score highest among the unique data

sources, but it was also present in the highest scoring
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classification approaches according to its F1 score. As the SSM

models 3D shapes, the 2D distance maps derived from the SSM

are always valid 3D samples, while PCA and the GAN could, in

theory, create 2D images, which do not correspond to a valid 3D

shape. In contrast, the GAN-based classifiers only showed a good

classification performance when combined with a different data

modality and its synthesized images seemed to show less

pronounced visual features than the other two modalities.

Possible reasons include that the SSIMcc was lowest for the GAN,

and since one conditional GAN synthesized images for all

pathologies, the images might still contain features that are

derived from images from other classes. The PCA images were

neither required nor detrimental for a good classification

performance.

By itself, none of the synthetic data sources was an adequate

replacement for clinical data. However, a combination of

different data modalities seemed to be the key element for

achieving a good classification performance. Both SSM and PCA

model the data according to a Gaussian distribution, while the

GAN uses an unrestricted distribution model. The different

properties of modeling the underlying statistical distribution of a

Gaussian distribution (SSMs and PCA), on the one hand, and

without an assumed distribution (GAN), on the other hand,

might have led to a compensation of their respective

disadvantages increasing the overall performance for the

combinations. One limitation of this study is the small dataset.

As the clinical classification uses the same dataset for training

and validation, this might make it prone to overfitting. However,

the resulting classification metrics achieved in this study were

similar to a classification study on clinical data alone (17)

(accuracy: 0.984 and F1 score: 0.964), which suggests that

overfitting has not been an issue. In addition, all clinical data

were acquired in the same clinical center, which might make the

classification models less robust when compared to data acquired

in other hospitals. Since the trained models are publicly available,

they can be tested by other groups on their own data.
5. Conclusion

We showed that it is possible to train a classifier for different

types of craniosynostosis based solely on artificial data

synthesized by an SSM, a PCA, and a GAN. Without having

seen any clinical samples, a CNN was able to classify four types

of head deformities with an F1 score of 0.929 and performed

comparable to a classifier trained on clinical data. The key

component in achieving good classification results was using

multiple but different data generation models. Overall, the SSM

was the data source contributing most to the classification

performance. For the GAN, using a small image size and

alternating between transposed convolutions and interpolations

were identified as key elements for suitable image generation.

Datasets and generators were made publicly available along with

this work. We showed that clinical data are not required for the

classification of craniosynostosis paving the way into the cost-

effective usage of synthetic data for automated diagnosis systems.
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