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Use of fractals in determining the
malignancy degree of lung
nodules
Noel Victor Amador-Legon and Marlen Perez-Diaz*

Laboratory of Image Processing, Automatic Department, Universidad Central “Marta Abreu” de las Villas,
Santa Clara, Cuba
Introduction: A Computer-Assisted Detection (CAD) System for classification
into malignant-benign classes using CT images is proposed.
Methods: Two methods that use the fractal dimension (FD) as a measure of the
lung nodule contour irregularities (Box counting and Power spectrum) were
implemented. The LIDC-IDRI database was used for this study. Of these, 100
slices belonging to 100 patients were analyzed with both methods.
Results: The performance between both methods was similar with an accuracy
higher than 90%. Little overlap was obtained between FD ranges for the different
malignancy grades with both methods, being slightly better in Power spectrum.
Box counting had one more false positive than Power spectrum.
Discussion: Both methods are able to establish a boundary between the high
and low malignancy degree. To further validate these results and enhance the
performance of the CAD system, additional studies will be necessary.
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1 Introduction

Clinical research places lung cancer as one of the types of cancer with the highest

morbidity and mortality worldwide, representing about 12.7% of new cases per year

and 18.2% of all deaths (1). Lung cancer is defined as a malignant neoplasm, arising as

a result of uncontrolled growth of cells in the lung tissue, or the lining of the airways

(2). Unfortunately, 80% of detections are in advanced stages. The early detection rate is

only 15% (3). If detection occurs in its early stage, when it is called a nodule, survival

rates of approximately 75% are achieved (1). According to the Mayo Clinic (4), 60% of

people diagnosed with early-stage lung cancer live at least five years after diagnosis. The

five-year survival rate for people who are diagnosed with late-stage lung cancer that has

spread (metastasized) to other areas of the body is 6%.

In an early-stage lung nodules are approximately round lesions, with a diameter

between 5 and 30 mm, which may still be suitable for successful interventions.

Medical imaging techniques, such as computed tomography (CT), have been developed

for the non-invasive diagnosis of lung cancer. On CT, nodules with non-solid or partially

solid content can be distinguished. Both are more likely to be malignant than solid

nodules, which are only 15% malignant when smaller than 1 cm (2). The most modern

CT equipment are capable of detecting very small nodules, even smaller than 5 mm (5).

Figure 1 shows two examples of nodules on CT slices, one malignant and another benign.

Despite all the advances in CT in terms of resolution, speed and availability, the

diagnosis of lung cancer continues to represent a problem worldwide. This is due to
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FIGURE 1

Examples of nodules on CT slices, (A) benign and (B) malignant.
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the overlap of tissues in the thoracic region and the small size of the

nodules, as well as the experience of the visualizing specialists, their

degree of exhaustion, or viewing conditions. All this brings with it

the phenomenon of false negative detection, or misclassification.

To help with problems like the one described above, CAD

systems emerged (2). Most CADs are focused on detection, but not

on the classification and characterization of lesions. Some that do,

take advantage of the morphological and surface characteristics of

the lesions to measure their degree of malignancy. Normally, the

malignancy degree of a lung nodule is established based on criteria

derived from an invasive method for the patient, which is a biopsy.

On the other hand, it has been discovered that most biological

structures can be described by scaling analysis (6), which makes

fractal geometry a powerful tool for the analysis of biological

structures. Its concept does not have both geometric and statistical

rigors. Its condition is defined as follows: a statistical property of

each small part of an object is not significantly different from the

same statistical property measured on the entire object (7).

The term fractal was established by Benoit Mandelbrot in the 80s

of the last century (7). Fractals are geometric objects, whose basic

structure, fragmented or irregular in appearance, is repeated at

different scales. The Hausdorff dimension is a measure of fractal

dimension (FD), which was first introduced in 1918 (8). Several

methods have been developed to calculate it, which follow the

same premise: measure a characteristic at different length scales,

plot the points and fit a least squares regression line. The slope of

the line will be an estimate of the object FD. Some of the methods

that use this principle are: Box counting, Prism counting, Variance

method, Power spectrum, among others (10).

A common aspect that all lung nodules have is the alteration of

lung morphology (10). These morphological abnormalities can be

observed on CT radiological images. It has been appreciated that

the large morphological changes caused by tumor growth have

an impact on its FD.
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This research focuses on tumor shape. Tumors present

geometric properties of self-similarity, due to the existence of

anomalous roughness in their contour (12). In mathematics, self-

similarity, is the property of an object in which the whole is

exactly or approximately similar to a part of itself, for example,

when the whole has the same shape as one or more of its parts.

And this is exactly what a tumor does when it grows. Cells self-

replicate and what was once a whole becomes a part.

The shape of its edges has been associated with its malignancy

degree (2). Well-defined smooth edges are mostly associated with

benign nodules. On the other hand, nodules with spiculated,

irregular or lobulated margins are more frequently malignant (1,

12). The spiculated present the most significant margin of

malignancy, with a predictive value close to 90%, which has

translated into a greater FD (12). This correlation between

malignancy and FD has been quantified in studies, giving results

of sensitivity, specificity and accuracy for detection of 60%, 76%

and 59% respectively (12).

In relation to what has been explained, the objective of this

work has been: Develop an automated system in Matlab, based

on fractal analysis, capable of classifying the malignancy degree

of the detected lung nodules with good sensitivity and specificity.
2 Methodology

2.1 System overview

The CT slices to be analyzed are subjected to a segmentation

stage, to separate the nodule from the rest of the image. In this

stage each pixel, according to its luminance level, was filtered to

differentiate the nodule from the image background. For this, the

Yanni-Horne thresholding method (13) was used. Subsequently,

with the object segmented, a manual cutout of the nodule was
frontiersin.org
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carried out and the outline of the lesion was extracted, to avoid

interference from the rest of the structure of the region in the

calculation of the FD. For this the Sobel operator was used. After

carrying out these procedures, the FD of the nodules was

calculated, using the Box Counting methods and the Power

spectrum (14). These methods were chosen for their mathematical

simplicity, speed of calculation and ease of programming. The

theoretical basis for the procedures are described by Equations (1–

10). The programming codes used are publicly available.
2.1.1 Thresholding using the Yanni-Horne method
The technique is based on comparing the image intensity values

with a threshold. If the intensity value of a pixel exceeds the threshold

value, then the pixel belongs to the object, otherwise the pixel belongs

to the background (13). The output image is a binary image, in which

those pixels whose value is 1 belong to the object and the pixels

whose value is zero belong to the background (15).

The selection of the threshold value by Yanni-Horne was

generated from the histogram of the image. The midpoint

between the two peaks was initialized:

Gmid ¼ (Gmax þ Gmin)=2 (1)

Where Gmax is the highest point other than 0, of the entire gray

scale and Gmin is the lowest. Thus Gmax� Gmin became the

domain of all values other than 0 of the histogram to be

analyzed. This point was updated using the average of the peaks

to the right and left of Gmid.

Gmid0 ¼ (Gpeak1 þ Gpeak2)=2 (2)

From this it was obtained that the optimal way to calculate the

threshold, was the following:

Threshold ¼ (Gmax� Gmin)
XGmid0

g ¼ Gmin

p(g) (3)

Where g is the gray scale value, and p(g) is the probability

distribution function, which gives the probability of occurrence

of each gray level.
2.1.2 Nodule contour extraction
The Sobel operator was worked with 3 × 3 pixel masks. The

masks were designed to detect the maximum at the edges. These

were applied vertically and horizontally by convolution with the

chosen image of the nodule (matrix A). They were called Gx and

Gy when combined. From them it was possible to calculate the

absolute magnitude of the gradient at each point and the

orientation of said gradient as (13):

Gx ¼
�1 0 1
�2 0 2
�1 0 1

� A Gy ¼
1 2 1
0 0 0
�1 �2 �1

� A (4)
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The gradient was calculated as:

jGj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gx2 þ Gy2

p
(5)

The edge orientation angle was calculated as:

a ¼ tan�1(Gy=Gx) (6)

2.1.3 Calculation of FD by box counting
Each image A was covered with boxes of dimension “r” on each

side, resulting in a total of K(r) boxes, which contained at least 1

pixel of the image. Since A is an image of dimension MxN, the

initial value of “r” was the smallest of these dimensions.

Iteratively, “r” was reduced by half, until the distance between

two adjacent pixels was reached (14). The log[K(r)] value on the

“y” axis was plotted against the log(1/r) value on the “x” axis,

with K being the number of boxes covering the pattern, and

“1/r” the scale factor, or reciprocal of the size of the boxes. The

slope of the line corresponded to the FD and was defined as the

amount of change on the “y” axis divided by the amount of

change on the “x” axis, as illustrated in the following equation.

FD ¼ log(K(r))=log(1=r) (7)

As an example, if a lesion is 5 mm in diameter (approximately 10

pixels) and the maximum division into boxes is up to a distance of

1 pixel, then it is divided up to a maximum of 10 boxes. In order to

indicate how the iteration is carried out for the division into boxes,

Figure 2 is presented, in three of the N steps to be carried out until

the minimum distance of a pixel is reached.

The FD vary from 1 to 2 for this type of analysis. This is a range

between a straight line (FD = 1) and a very wavy line (FD = 2), which

completely fills a two-dimensional plane. A steeper slope meant that

the object was more “fractal”, meaning that it became more complex

as the size of r decreased. A lower value implied a flatter slope, which

meant that the object was closer to a straight line, meaning it was

less “fractalized” and therefore its level of detail did not grow as

quickly as the magnification increased (9, 14).

2.1.4 Calculation of FD by power spectrum
To convert a contour into a feature suitable for applying the

fast Fourier transform (FFT), it is necessary to display it as a

function. The display was done through a vector originating

from an arbitrary centroid of the contour, which ended in the

contour itself (14). The centroid coordinates were calculated in

an MxN matrix as follows:

Xctr ¼ 1 þ N=2 (8)

Yctr ¼ 1 þ M=2 (9)

The vector swept 360 degrees in 1-degree increments, and the

magnitude values of the vector were the distribution of the
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FIGURE 2

Representation of box counting.
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function. Thus, by recording the angle and magnitude values, the

function was formed. The calculation of the FD using the power

spectrum was carried out through the FFT. The squared

logarithm of the magnitude was plotted against the logarithm of

the frequency, and fitted to a straight line. Through this linear

fit, the slope (ß) was obtained, which has a direct relationship

with the FD (14). The ß was related to the FD using the

following equation:

FD ¼ (4 þ ß)=2 (10)

Both methods were processed in a Laptop: Toshiba Satellite C75D,

Memory: 8GB of RAM, CPU: AMD A7410, eight cores at 2.4GHZ,

Hard drive: TOSHIBA MQ01ABD100, 1TB, Video card: 1GB

AMD R5 Graphics.

As a reference to prove that both methods work correctly, both

were applied on an object of known FD, the Third-iteration Koch

Snowflake phantom, simulated with Matlab, as if it were a figure

inscribed in a hexagon with 20 mm sideways (FD = 1.2618) (16).

Figure 3 shows this object.
FIGURE 3

Third-iteration Koch snowflake phantom.

TABLE 1 Malignancy degree.

Malignancy degree In 100 CT (1 nodule per patient)
1 8

2 26

3 46

4 10

5 10

Total 100
2.2 Description of the data set used to test
the CAD system

Lung Image Database Consortium and Image Database

Resource Initiative (LIDC-IDRI) (17) was the lung nodule

database used. It also contains the annotation of the malignancy

degree of each nodule made by 4 expert radiologists, on a 5-point

scale, ranging from highly unlikely-1, moderately unlikely-2,

indeterminate-3, moderately suspicious-4, to highly suspicious- 5.

Each nodule has between one and four annotations, depending

on the number of radiologists who evaluated the case. When there

was more than one annotation, the most repeated value was taken

for the present analysis. In this work, the CT scans of 100 patients

were selected. Cases 0001–0101 were chosen because they are
Frontiers in Medical Technology 04
representative of the 5 degrees of malignancy. For these cases,

the slice where the radiologists say that a nodule is best seen in

each CT was used. Table 1 shows the distribution of the 100

cases with the malignancy degree noted.
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TABLE 2 FD average by malignancy degree in 100 slices (1 nodule per
slice).

Malignancy degree Average FD
Power spectrum

Average FD
Box counting

1 1.070 ± 0.032 1.095 ± 0.046

2 1.085 ± 0.045 1.125 ± 0.035

3 1.135 ± 0.015 1.146 ± 0.080

4 1.278 ± 0.040 1.256 ± 0.020

Amador-Legon and Perez-Diaz 10.3389/fmedt.2024.1362688
The “Pylidc” graphical interface was used, taken freely from the

collaborative development platform Git-Hub (18). Pylidc was

developed for using this database, which shows the location of

the nodules and allows all slices to be reviewed. It also indicates

the slice with the best visibility of each nodule and the

annotations made by the expert radiologists about malignancy,

texture and internal structure.
TABLE 3 Malignancy classification.

Method True
positive

True
negative

False
positive

False
negative

Box counting 17 74 6 3

Power
spectrum

17 75 5 3

5 1.305 ± 0.035 1.270 ± 0.040
2.3 Analysis of results

It was necessary to identify the meaning of each calculated FD

value. For this purpose, the database annotation (grade of

malignancy) was used. Once this was done, the range of FD

values obtained for all nodules analyzed by the two methods was

calculated, as well as their descriptive statistics: mean and

standard deviation. The Pearson correlation between FD and

their respective grades of scored malignancy was also calculated

for each method. To evaluate the performance of the system, the

accuracy, sensitivity and specificity indices were used, following

Equations (11–13) (19). They were calculated with respect to the

DB annotation, considering 1, 2 and 3 as low degree of

malignancy, in other words probably benign, and 4 and 5 high

degree of malignancy. The true positives (TP) were nodules

identified as positive by the system and were consistent with the

DB annotation. The true negatives (TN) were nodules that

the system identifies as negative (benign) and that also match the

database record. False positive (FP) and False negative (FN) were

the classification errors regarding the annotation of the DB.

Sens ¼ TP
TP þ FN

(11)

Specif ¼ TN
TN þ FP

(12)

Acc ¼ TP þ TN
TP þ TN þ FP þ FN

(13)
TABLE 4 Results of the CAD system performance (%).

Method Accuracy (%) Sensitivity (%) Specificity (%)
Box counting 91 85 92.5

Power spectrum 92 85 93.7
3 Results

The percentage error of each method calculated for the known

FD digital phantom was +1.24% for Box counting and −1.59% for

Power spectrum.

Table 2 shows the average FD and range for each method for

the DB analyzed.

As can be seen, as the malignancy degree grew, so did its FD, by

both methods. For nodules of adjacent grades, these differences were

not very marked and there was some overlap between the ranges,

being slightly better in Power spectrum. The FD values were in a

similar range those obtained in (12) and (20) for other diseases.

Both methods show strong Pearson coefficients between the

five malignancy degree annotated in the database and the FD

values obtained. The Pearson coefficient value for Box Counting

was R = 0.834, while for Power Spectrum it was R = 0.908.
Frontiers in Medical Technology 05
Table 3 shows the correct and incorrect classifications made

using each method respect to the DB annotation.

From the classification carried out there was a coincidence in

five FPs misclassified by both methods and two FNs. Three of

the false positives identified and misclassified by both methods

have a single annotation in the DB, that is, they were judged by

a single radiologist.

Based on the previous results, Table 4 presents the performance

evaluation of the proposed CAD system.
3.1 Results of the proposed CAD system

To evaluate the results obtained, it is necessary to apply a

classification system. In order to design it, a threshold was

established arbitrarily at the upper end of the FD range,

corresponding to grade 3 (undetermined malignancy). Thus, a

classification system was obtained in two categories, as

proposed in (21). For this, the FD ranges obtained from the

analysis in Table 2 were used, with the cut-offs recommended

by the experts for both methods. The results are as explained

below: Probably benign nodules: overlap between the FD ranges

for grades 1, 2 and 3. Probably malignant nodules: overlap

between the FD ranges greater than the upper value of grade 3,

grades 4 and 5. Figure 4 shows this result for Box Counting

and Power Spectrum. Misclassified values were excluded from

this representation.

For two nodules, one benign and one malignant, the

calculation of the fractal dimension by both methods has been

represented in Figure 5. There is good correspondence between

the results of both methods for the same nodules, regarding the

class where each one is classified according to the FD value.
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FIGURE 4

FD range in box counting and power spectrum.

FIGURE 5

Example of application of box counting (left) and power spectrum (right) for a benign and a malignant nodule.
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As can be seen in general, the Power spectrum had slightly

better results in terms of specificity and accuracy, as well as the

separation between classes. Although Box counting had one more

false positive, in essence both methods have similar performance

and showed a high correspondence in results for the DB used.
4 Discussion

In the diagnosis of lung nodules from imaging, subjective

criteria are usually used to determine the malignancy of nodules

(21), as well as invasive biopsies to verify it. In this research,

mathematics methods were applied to characterize the nodules,

from a quantitative and repeatable approach.

In this work, only the contour of the lesions was focused, leaving

aside the internal structure. For this, the contour was successfully
Frontiers in Medical Technology 06
extracted using the Sobel operator, that was independent of the

internal structure. Studies such as (10, 21) show the use this same

approach to evaluate progress in cancer evolution time and

response to treatments, with satisfactory results. Studies as (12, 20,

22) report FD values in the same range as that reported in the

present work, for the analysis of other pathologies. In our opinion,

it is good that the values are not highly dependent on the

pathology, as it indicates the potential of using this method in

different scenarios, with good generalization power. However, the

dependence of the methods on the spatial resolution of the scanner

to be used, as well as the degree of precision with which the

segmentation method reproduces the contour, must be studied in

depth. This last aspect, in our opinion, should be optimized, based

on a comparative study of various segmentation methods.

In (23) both the contour approach and that of the entire

nodular region were used to characterize the stage in which the
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tumor was located, comparing it with the local roughness

coefficients. Although their results were satisfactory, they were

not entirely conclusive. Studies that are based on fractal analysis

for classification have limitations, mainly based on the resolution

and size of the lesions. To mitigate this problem, artificial

intelligence techniques are currently used (24). In the context of

this work, where methods are applied to generate a CAD system

without using training/validation/testing stages, it is still pending

as future work to test the system against a data of different

origin, where elements such as noise and spatial resolution are

different, to study how image quality influences classification

results. Likewise, it will be necessary to study whether the result

depends on the nodule segmentation method, testing others.

It is interesting to discuss the boundary found for both

methods, where no FD values were found for the DB used. What

would happen to a nodule that obtained a FD value between

1,214 and 1,248 for Box Counting or between 1,137 and 1,230

for Power Spectrum? As the number of 100 nodules used to test

the methods is considered limited, it is not possible to ensure

that obtaining a value in that range is not possible, or on the

contrary, that if another database of similar spatial resolution is

taken and processed exactly according to the scheme proposed in

this work, the limits would not remain reproducible. In this case,

the most conservative response is to consider the lesion with a

FD greater than 1.214 in Box counting and 1.137 in Power

spectrum suspicious for malignancy.

The computational cost with the hardware used was very low,

the segmentation and contour extraction took 9 s per image and

the FD calculation took 1 s per image with Box Counting and 6 s

per image with Power Spectrum, so the CAD proposed is valued

as computationally efficient.

The fractal characteristics of the lesions are not the only

indicators of the possible malignancy of a nodule. Due to this,

studies based on Machine Learning (ML) for the combination of

FD with other characteristics are currently more frequent. Studies

such as (25) which combine fractal analysis with ML, obtain

similar results to those of this research.

The present work is the first part of a more complete system

that will include FD as one more radiomic feature from which a

machine learning classifier will be implemented.
5 Conclusions

It is concluded that our proposed CAD successfully recognize

benign and malignant tumors in most of the cases that have

been used from a database. Fractal dimensions reflect the

characteristics of the lung nodule edges based on the contours

irregularities.
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