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Editorial on the Research Topic
New technologies improve maternal and newborn safety
1 Introduction

Daily, it’s reported that 800 women and 6,700 newborns lose their lives during or

shortly after childbirth. Furthermore, approximately 5,400 babies are stillborn each day,

with 40% of these losses occurring during the birthing process (1). A significant portion

of these stillbirths, maternal deaths, neonatal fatalities, and injuries are preventable

through the provision of safe, respectful, and quality care during pregnancy, childbirth,

and the early days of a newborn’s life. The World Health Organization (WHO)

encourages healthcare facility administrators, policymakers, and healthcare providers

worldwide to adopt five principal goals for World Patient Safety Day 2021 (2). These

goals are directed at improving the safety of mothers and newborns at critical

healthcare moments, particularly during childbirth (2). The goals encompass: “(1)

Reducing unnecessary and harmful interventions for women and newborns during

childbirth; (2) Strengthening the support and skills of healthcare workers to provide safe

care for mothers and infants; (3) Promoting respectful care to ensure a positive birth

experience; (4) Improving the safe use of medications and blood transfusions during

childbirth; and (5) Methodically recording and analyzing safety incidents related

to childbirth” (2).

There’s a profound interest in pioneering innovations that enhance the safety of

mothers and newborns, particularly in addressing the dangers posed by inadequate

maternal and neonatal care during pregnancy, childbirth, and the initial postnatal

period (3, 4). However, significant challenges hinder the efficacy and affordability of

existing interventions. As such, this synopsis aggregates the recent breakthroughs (5)

and methodologies (6–11), delves into potential impact on improving maternal and

infant safety, and reflects on how these advancements may guide future academic research.
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2 Intrapartum ultrasound in assessing
labor dynamics

Approximately half of the world’s stillbirths, as well as maternal

and neonatal deaths, stem from complications during labor, delivery,

and the immediate postnatal phase, especially prevalent in regions

with limited resources (12). While these fatalities are largely

avoidable through prompt interventions like cesarean sections,

there are apprehensions surrounding both their underutilization

and overutilization (13). Historically, the primary role of obstetric

ultrasound has been in prenatal screenings for fetal anomalies

(14). Yet, its utility in monitoring labor progression is emerging,

bolstered by an increasing corpus of evidence attesting to its

capability to objectively evaluate labor dynamics (15). The advent

of true intrapartum ultrasound, an innovative facet of this

technology, is gaining ground. This approach has illuminated the

complex physiological mechanisms of labor, offering detailed

insights into the phases of childbirth and potentially forecasting

the outcomes of instrumental vaginal births. Nonetheless, the

technique’s complexity and susceptibility to inaccuracies,

particularly when operated by obstetricians without specialized

ultrasound training, cannot be overlooked. In this context, the

integration of Artificial Intelligence (AI) could be revolutionary. AI

has the potential to streamline and refine this process, improving

the accuracy of measurements and diminishing the dependency on

the individual clinician’s expertise (16–19).

The Grand Challenge on Pubic Symphysis-Fetal Head

Segmentation (PSFHS) from Transperineal Ultrasound Images

(https://doi.org/10.5281/zenodo.7861699), a segment of the 26th

International Conference on Medical Image Computing and

Computer-Assisted Intervention (MICCAI), marks a significant

stride in this arena (https://ps-fh-aop-2023.grand-challenge.org/)

(20, 21). This challenge drew over 100 teams to develop AI

algorithms specifically for obstetric ultrasound imaging. The goal

was not limited to analyzing images; it also encompassed the

assurance that these AI solutions conform to clinical standards

while assessing biometric parameters accurately (6, 22–25). The

triumph of the MICCAI-PSFHS Challenge underscores the

evolution of advanced intrapartum ultrasound technology,

highlighting not just technological progress but also the potential of

AI models to predict the most suitable delivery methods. For

instance, we launched the Intrapartum Ultrasound Grand Challenge

(IUGC) (https://zenodo.org/records/10979813) as part of MICCAI

2024 (https://codalab.lisn.upsaclay.fr/competitions/18413) (26). This

challenge calls for the development of automatic, user friendly

systems for fetal biometrics, aiming to minimize intra and inter

observer variability and enhance the reliability of measurements.

Such advancements could revolutionize labor management,

blending the precision of technology with the nuances of human care.
3 Biosignal-based methods for
fetal-maternal monitoring

Continuous fetal heart rate (FHR) monitoring via

cardiotocography (CTG) stands as the primary technique for
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assessing fetal well-being during labor, simultaneously tracking

FHR and uterine contractions (UC) (27). This dual

monitoring allows for real-time analysis of these critical

parameters. The extraction of FHR and UC data

predominantly relies on either invasive or non-invasive

methods, with the latter being more commonly used.

Specifically, non-invasive methods like Doppler ultrasound

and the tocodynamometer involve attaching two external

transducers to the mother’s abdomen. Despite their

widespread use, these signals often encounter interference

from fetal or maternal movements and may diminish in

quality as maternal body mass index increases. This limitation

in CTG data reliability poses a substantial challenge in

meeting the performance criteria necessary for its extensive

clinical deployment (7, 9, 28–32). This challenge underscores

the urgent need for innovative monitoring techniques

such as the non-invasive fetal electrocardiogram (33) and

electrohysterogram (34) to improve the fundamental data

quality vital for developing automated systems.

In response to this need, the biennial Workshop on Signal

Processing and Monitoring in Labor (SPaM) serves as a

collaborative platform, promoting a range of interdisciplinary

research approaches and innovations. The SPaM Workshop

(https://www.wrh.ox.ac.uk/research/spam-in-labour) aims to

cultivate a truly interdisciplinary arena and create a shared

language among clinicians, physiologists, and signal processing

specialists (35). The development of novel data-driven

methods for CTG analysis during labor necessitates

comprehensive datasets that encapsulate uncommon clinical

situations. Currently, only a limited number of public CTG

datasets are available: (1) The Czech Technical University and

University Hospital in Brno (CTU-UHB) dataset (36),

which includes 552 CTG recordings with unprocessed FHR

and UC signals, and (2) the Lille dataset, which contains 156

CTG recordings from the obstetric clinic at Saint Vincent de

Paul Hospital (Lille, France) (37). Jinan University also

provides two datasets under a data sharing agreement: one

with 784 signals for signal categorization (29), and

another with 331 signals for automated feature extraction

from signals (7, 32).

The past decade has seen an influx of machine learning and

deep learning approaches in the medical field, prompting

numerous studies focusing on the analysis of CTG signals

(38–45). Modern systems demonstrate impressive efficacy in

detecting fetal hypoxia in retrospective patient groups.

Nevertheless, several challenges must be overcome to facilitate

their integration into clinical practices. Primarily, creating

and disseminating comprehensive, open, and anonymized

multicentric databases of perinatal and CTG data from labor is

crucial to enhance system precision (31). Furthermore, these

systems should provide comprehensible metrics along with

risk assessments for fetal hypoxia to build trust and

acceptance among medical professionals. Finally, it’s vital to

establish and adhere to universal evaluation standards for

these systems using retrospective patient groups and to

validate their clinical utility.
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4 Biophysics-based computer
modelling

The successful progression of labor is closely associated with

changes in cervical compliance, particularly evident through

cervical shortening. The proper timing of these uterine changes

is crucial, as deviations can lead to significant clinical

consequences. Notably, premature uterine activation, often

accompanied by early cervical shortening, can result in preterm

birth, affecting an estimated 15 million infants worldwide each

year, as reported by the WHO (46). These early births

significantly heighten the risk of neonatal death (constituting

more than half of all neonatal deaths) and various long-term

health issues. The relatively limited understanding of the

physiology behind uterine activation constrains our ability to

enhance clinical interventions for severe pregnancy complications

such as preterm birth and uterine dystocia. Recognizing the

potential of multi-scale computational modeling of the uterus is

gaining momentum. This approach aims to integrate diverse

pieces of information into a unified, predictive, and testable

model of uterine behavior, thereby informing the creation of new

diagnostic and treatment strategies for these pressing

clinical challenges (47).

While uterine models offer an alternative to in vivo experiments

on animal and human subjects through simulations, authentic data

from these subjects are crucial for developing a uterine model that

provides clinically relevant insights (48–50). Therefore, noninvasive

methods of data collection are incredibly valuable. Pioneering

work by researchers at Washington University School of Medicine

in St. Louis has led to the development of innovative imaging

technology that enables real-time, three-dimensional visualizations

of the intensity and spread of uterine contractions across the

entire surface of the uterus during labor (51). This technology, an

extension of imaging techniques previously used for the heart,

provides a noninvasive, intricately detailed view of uterine

contractions, surpassing the capabilities of current tools that only

detect the presence of contractions (52, 53). Although

advancements in data recording technology have streamlined the

process of gathering authentic clinical data, a significant portion of

research still proceeds without experimental data. Even when

experimental data is incorporated into research, the collected

information may not be sufficient or suitable for both the

development and validation of models.
5 Digital twin in fetal-maternal health

Digital twins (DTs) in healthcare represent sophisticated

virtual models of patients, created by integrating individual

patient data, wider population statistics, and real-time updates

related to patient-specific and environmental variables (54).

These DTs for precision health are complex virtual constructs

designed to emulate the anatomy, context, and behavior of

human bodies or healthcare systems, including their

interconnections. They are regularly updated with information
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from their real-life counterparts and are characterized by their

predictive functionality. The validity of a DT can be verified,

making it an invaluable tool for decision-making, providing

critical insights to inform the delivery of health and wellness care

(8). At the heart of the digital twin concept is the dynamic, two-

way communication between the virtual and physical realms.

This continuous flow of data from the human health system to

the computational model ensures the digital twin remains in

lockstep with the human health system. Such a close alignment

significantly improves the capacity to identify risk factors based

on current or expected behaviors and/or adverse events.

Although DTs are a relatively new concept in healthcare

compared to other industries, they have demonstrated potential

across various sectors of precision medicine (55, 56).

Applications include managing chronic diseases like asthma and

diabetes, tailored cancer treatments, personalized cardiovascular

system models (57–60), and predictive simulations for treatment

responses in infectious diseases. However, integrating DTs into

healthcare presents several challenges and obstacles that must be

addressed. Overcoming these challenges is imperative for DTs to

fulfill their promise as a cutting-edge framework for individual

health management and healthcare services.

In today’s advancing landscape, sophisticated technologies

such as medical imaging, data analytics, and AI are reshaping

prenatal care for pregnant women and fetuses (61–64). These

technologies significantly enhance the accuracy and efficacy of

healthcare services, signifying a profound shift towards more

individualized and predictive healthcare approaches. As these

technologies continue to mature and merge with the digital twin

concept, they are poised to unlock unparalleled capabilities in the

monitoring, diagnosis, and treatment of health conditions,

potentially transforming the realm of maternal and fetal medicine.
6 Conclusions

The research marks a significant stride forward in enhancing

maternal and newborn safety, setting the stage for notable

advancements in diagnosis and treatment. The promise of these

developments lies not just in the individual technologies, but in

the synergy of multidisciplinary research, the seamless integration

of cutting-edge technologies, and the tailoring of care to

individual needs. This holistic approach is pivotal in

revolutionizing fetal-maternal health, promising to elevate the

quality of life for countless patients globally. The path forward is

one of collaboration and relentless innovation, leading to a future

where fetal-maternal monitoring transcends its current

boundaries to become more precise, efficacious, and universally

accessible, thereby transforming the landscape of maternal and

newborn healthcare.
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