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The microbiome of the gut is a complex ecosystem that contains a wide variety of
microbial species and functional capabilities. The microbiome has a significant
impact on health and disease by affecting endocrinology, physiology, and
neurology. It can change the progression of certain diseases and enhance
treatment responses and tolerance. The gut microbiota plays a pivotal role in
human health, influencing a wide range of physiological processes. Recent
advances in computational tools and artificial intelligence (AI) have
revolutionized the study of gut microbiota, enabling the identification of
biomarkers that are critical for diagnosing and treating various diseases. This
review hunts through the cutting-edge computational methodologies that
integrate multi-omics data—such as metagenomics, metaproteomics, and
metabolomics—providing a comprehensive understanding of the gut
microbiome’s composition and function. Additionally, machine learning (ML)
approaches, including deep learning and network-based methods, are explored
for their ability to uncover complex patterns within microbiome data, offering
unprecedented insights into microbial interactions and their link to host health.
By highlighting the synergy between traditional bioinformatics tools and
advanced AI techniques, this review underscores the potential of these
approaches in enhancing biomarker discovery and developing personalized
therapeutic strategies. The convergence of computational advancements and
microbiome research marks a significant step forward in precision medicine,
paving the way for novel diagnostics and treatments tailored to individual
microbiome profiles. Investigators have the ability to discover connections
between the composition of microorganisms, the expression of genes, and the
profiles of metabolites. Individual reactions to medicines that target gut
microbes can be predicted by models driven by artificial intelligence. It is
possible to obtain personalized and precision medicine by first gaining an
understanding of the impact that the gut microbiota has on the development of
disease. The application of machine learning allows for the customization of
treatments to the specific microbial environment of an individual.
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1 Introduction

The gastrointestinal tract, also referred to as the gut, has a large

and intricate ecosystem filled with billions of bacteria. The gut

microbiome is a complex community consisting of a wide variety

of bacteria, archaea, fungus, and viruses (1). Each of these

components has an important role in preserving human health.

The human microbiome, composed of diverse bacteria, has a vital

role in the metabolic processes required for the proper

functioning of enzymes in the gut mucosa and liver, as well as

the overall metabolism of the host (2). The makeup of this

collection of microorganisms is not fixed; it consistently changes

over the course of our lives, influenced by several factors such as

diet, lifestyle, environment, and even heredity. The gut microbiota

influences the host’s well-being via altering the biochemical

makeup of the diet. A study has been carried out to investigate

the functions of various bacteria in metabolic pathways, namely

in the breakdown of food components, because of the crucial role

of gut microbiota in human immune system (3, 4).

The human microbiome, a diverse collection of microorganisms

residing in various anatomical sites, plays a crucial role in health and

disease (Table 1). Microorganisms within the human body may

engage in commensal, mutualistic, or harmful relationships,

influencing host physiology through the production of various

metabolites (10). Traditional culture-based methods have historically

limited our understanding of these complex microbial communities.

However, advancements in metagenomics (MGs) have significantly

expanded our ability to identify and characterize previously

unknown microbial species and their functions, particularly through

whole genome sequencing (WGS) and marker gene sequencing (11).

These technologies have been instrumental in large-scale projects like

the Human Microbiome Project (HMP) and the American Gut

Project, generating extensive datasets that have deepened our

understanding of host-microbiome interactions (12).

The study of the gut microbiome has seen significant

advancements in recent years, with the development of a variety

of computational tools and techniques that have revolutionized

the field (13). The advent of next-generation sequencing
TABLE 1 Gut microbes and metabolites: systemic manifestations linked to se

Condition Key findings Microbial c
Obesity Obesity linked to an increase in specific gut

microbiota; global prevalence of obesity has
increased significantly over the last 40 years.

Increased Firmicute
Bacteroidetes, Rhizo
Lactococcus, Clostri

Type 2 diabetes Dysbiosis associated with poor glucose
tolerance, insulin resistance, and systemic
inflammation.

Altered gut microb
composition affecti
production

Cardiovascular
disease

Gut dysbiosis linked to coronary artery disease
and hypertension.

Increased Collinsella
Escherichia-Shigella
Roseburia, Eubacter

Cancer Gut dysbiosis linked to colorectal cancer,
hepatocellular carcinoma, gastric cancer, breast
cancer, and prostate cancer.

Presence of pro-infl
genotoxic bacteria

Neurological
disorders

Dysbiosis potentially linked to depression,
anxiety, Alzheimer’s disease, Parkinson’s
disease, multiple sclerosis, and autism
spectrum disorders.

Changes in gut mic
composition influen
axis
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technologies has enabled the comprehensive profiling of

microbial communities, allowing researchers to uncover the vast

diversity and complexity of the gut microbiome (14).

Metagenomics approaches, which involve the sequencing of

genetic material extracted directly from environmental samples,

have become a cornerstone of gut microbiome research,

providing a wealth of information on the taxonomic composition

and functional capabilities of these microbial communities (15, 16).

In the past, gut microbiome research has relied heavily on

traditional methods such as culture-based techniques and

phylogenetic marker gene analysis, notably 16S rRNA sequencing.

These approaches have provided foundational knowledge, allowing

researchers to identify and classify microbial taxa within complex

communities (17). However, traditional methods have significant

limitations, particularly in terms of resolution and depth. Culture-

based techniques are limited by their inability to grow the vast

majority of gut microorganisms, while 16S rRNA sequencing

offers limited taxonomic resolution and does not provide

functional insights into microbial activities (18).

Advanced computational and multi-omics approaches are

transforming gut microbiome research by enabling a deeper

exploration of microbial functions beyond traditional taxonomic

classifications. These approaches link microbial composition

with potential roles in health and disease, offering a more

comprehensive understanding of the microbiome’s functional

capacities (19). Visualization and statistical techniques play a

crucial role in interpreting vast datasets, allowing researchers to

identify patterns and correlations within microbiome data.

By focusing on the small molecules and proteins produced by

the microbiome, metabolomics and metaproteomics provide

direct insights into microbial activity and its impact on

host physiology (20).

Technological advancements have significantly enhanced the

study of metabolomes and transcriptomes, deepening our

understanding of microbial gene expression and function. Network

analysis and machine learning further enrich this field by

uncovering complex microbial interactions and predicting potential

biomarkers and therapeutic targets (21). As the integration of
veral Gut associated diseases and disorders.

hanges Mechanisms References
s,
bium,
dium

Production of short-chain fatty acids (SCFAs)
like butyrate increases energy supply to the host,
promoting weight gain.

(5)

iota
ng butyrate

Gut microbiota influences glucose metabolism,
insulin signaling, and inflammation.

(6)

, Lactobacilli,
; decreased
ium spp.

Dysbiosis affects cholesterol metabolism,
promotes TMAO production which contributes
to atherosclerosis, and alters bile acid
metabolism.

(7)

ammatory and Bacteria produce cytotoxic and genotoxic
metabolites that damage DNA, promote
tumorigenesis, and influence tumor progression.

(8)

robiota
cing gut-brain

Dysbiosis disrupts communication between the
gut and brain, potentially affecting CNS
development and function.

(9)
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multi-omics data with AI and machine learning continues to evolve,

these approaches are poised to unlock new insights into the gut

microbiome, paving the way for advancements in personalized

medicine and novel therapeutic strategies (22).

In addition to computational tools, the field of gut microbiome

research has also benefited from the integration of multi-omics

techniques, such as metatranscriptomics, meta-proteomics, and

metabolomics (23). These approaches provide a more

comprehensive understanding of the gut microbiome by

capturing not only the taxonomic composition, but also the

functional activities, metabolic processes, and interactions within

the microbial community (24).

Furthermore, the integration of artificial intelligence and

machine learning algorithms has opened up new frontiers in gut

microbiome research. These advanced analytical techniques have

the potential to uncover complex patterns and associations

within the gut microbiome, enabling the identification of novel

biomarkers and the development of predictive models for various

health and disease states (25, 26).
2 Traditional methods for gut
microbiome research and their
limitation

The study of the gut microbiome has become an increasingly

important field in recent years, as researchers have come to

recognize the critical role that the diverse community of

microorganisms inhabiting the human gastrointestinal tract plays

in maintaining overall health and contributing to various disease

states (27–29). The advancement of molecular techniques,

particularly next-generation sequencing technologies, has

revolutionized our ability to characterize the composition, function,

and ecology of the gut microbiome in unprecedented detail (30).
2.1 Key molecular techniques for
microbiome analysis and their applications

2.1.1 Quantitative real-time polymerase chain
reaction (qPCR)

qPCR is a powerful tool in microbiome analysis that allows for

the quantification of specific DNA sequences. It is used to measure

the abundance of particular microbial taxa or genes within a

sample, providing precise and sensitive data on microbial

population dynamics. This technique is especially valuable in

monitoring the effects of environmental changes, treatment

interventions, or disease conditions on microbial communities (31).

2.1.2 Denaturing gradient gel electrophoresis
(DGGE)

DGGE is used to separate DNA fragments based on their

sequence-specific melting behaviour. In microbiome analysis,

DGGE allows researchers to profile microbial community

diversity by comparing the band patterns generated from

different samples. This technique is particularly useful for
Frontiers in Medical Technology 03
detecting shifts in microbial populations and identifying

dominant species or variants in complex communities (32).

2.1.3 Terminal restriction fragment length
polymorphism (T-RFLP)

T-RFLP is a molecular fingerprinting technique used to analyse

the diversity of microbial communities. It involves the digestion of

amplified DNA with restriction enzymes, followed by the

separation of terminal fragments by size. The resulting fragment

patterns reflect the community composition, allowing researchers

to compare microbial diversity across samples and assess the

impact of various factors on community structure (33).

2.1.4 Fluorescence in situ hybridization (FISH)
FISH is a technique that uses fluorescent probes to target specific

DNA or RNA sequences within microbial cells. In microbiome

analysis, FISH enables the visualization and identification of

specific microorganisms within their natural environment, often in

conjunction with microscopy. This technique is particularly useful

for studying the spatial distribution of microbes, understanding

microbial interactions, and linking microbial identity to function

within a community (34).
2.2 Limitations of molecular microbiome
analysis techniques

Quantitative Real-Time Polymerase Chain Reaction (qPCR) is

highly specific but may not capture the full microbial diversity due

to its reliance on primers targeting specific sequences, potentially

missing out on less abundant or uncharacterized taxa. Denaturing

Gradient Gel Electrophoresis (DGGE) can resolve differences in

microbial communities but often lacks sensitivity for detecting

subtle variations and may not accurately reflect community

composition due to issues with fragment resolution and band

intensity interpretation. Terminal Restriction Fragment Length

Polymorphism (T-RFLP) provides a fingerprint of microbial

diversity but can suffer from inconsistencies in fragment size due

to variability in restriction enzyme activity and PCR amplification,

which may affect reproducibility. Fluorescence in situ

Hybridization (FISH) offers detailed spatial information but is

limited by the availability of specific probes and the potential for

non-specific binding, which can complicate the interpretation of

microbial distribution and interactions. Each method’s limitations

necessitate complementary approaches and careful interpretation

to obtain a comprehensive understanding of microbiome dynamics.
2.3 Traditional methods: phylogenetic
marker gene analysis and sequencing

One of the primary tools utilized in gut microbiome research is

marker-gene analyses, which profile the microbial community by

sequencing specific genetic markers, such as the 16S ribosomal

RNA gene (35). This approach provides information about the

taxonomic composition of the microbiome, allowing researchers
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to identify the dominant bacterial phyla and track changes in

community structure across different populations or conditions.

While these surveys offer valuable insights, researchers are now

transitioning to integrate other data types, such as metabolite,

metaproteome, or metatranscriptome profiles, to gain a more

comprehensive understanding of the gut microbiome and its

functionality (36).

Marker-gene surveys: These approaches profile the microbial

community by targeting and sequencing specific marker genes,

such as the 16S rRNA gene, which provide varying degrees of

taxonomic specificity and phylogenetic information. Disease states

(26, 27, 37). The incorporation of these multi-omics approaches

has been instrumental in advancing our understanding of the gut

microbiome and its role in human health and disease (26).

One of the most commonly used marker genes is the 16S rRNA

gene, which provides valuable taxonomic specificity and

phylogenetic information. The 16S rRNA gene is highly conserved

among bacteria but contains variable regions that allow for the

identification and classification of bacterial taxa at various levels of

resolution. This gene is particularly useful for assessing microbial

diversity and community composition in various environments.

Shotgun metagenomics: This approach involves the sequencing

of the entire genomic content of the microbial community,

providing a deeper understanding of the functional potential of

the gut microbiome, including the identification of specific genes

and pathways involved in various metabolic processes (38).

Through the use of these diverse tools and techniques,

researchers have gained valuable insights into the gut

microbiome and its complex interactions with the host, paving

the way for the development of novel diagnostic and therapeutic

interventions for a wide range of health conditions (26, 37, 39).
2.4 Limitations of traditional microbiome
analysis techniques

While marker-gene surveys have been widely used in gut

microbiome research, they have several limitations. The choice of

the specific marker gene, the DNA extraction protocol, and the

sequencing platform can all introduce biases that can lead to

inconsistencies in the observed microbial community

composition. Additionally, marker-gene surveys often lack the

resolution to fully capture the functional diversity of the gut

microbiome, as they primarily provide information about the

taxonomic structure rather than the metabolic and functional

capabilities of the microbial community (40).

Previously, gut microbiome analysis relied on 16S ribosomal RNA

(rRNA) gene sequencing. This method targets a specific section of the

16S rRNA gene, a genetic indication found in all bacteria. It

determines the identity and percentage of bacterial species in a

sample. 16S rRNA sequencing has helped us understand the gut

microbiome, but it has limits. First and foremost, this method

provides limited gut bacteria functional data. It offers information

about gastrointestinal residents but not their activities or

behaviours. Due to its focus on bacteria, 16S rRNA sequencing may

not capture the whole range of intestinal microbes (41).
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To address these limitations, researchers have turned to more

comprehensive approaches, such as shotgun metagenomics, which

involve the sequencing of the entire genomic content of the

microbial community. Shotgun metagenomics can provide a

deeper understanding of the functional potential of the gut

microbiome, as it allows for the identification of specific genes and

pathways involved in various metabolic processes. However, the

analysis of shotgun metagenomics data can be computationally

intensive and requires specialized bioinformatics expertise (35).

In addition to computational tools, the field of gut microbiome

research has also benefited from the integration of multi-omics

techniques, such as metatranscriptomics, meta-proteomics, and

metabolomics. These approaches provide a more comprehensive

understanding of the gut microbiome by capturing not only the

taxonomic composition, but also the functional activities,

metabolic processes, and interactions within the microbial

community. The integration of these multi-omics techniques has

enabled researchers to unravel the complex relationships between

the gut microbiome and various health and disease states, leading

to the identification of novel biomarkers and the development of

predictive models for person. Bioinformatics platforms: Software

such as QIIME, Mothur, and DADA2 are used for processing

and analysing sequencing data.
3 Computational tools and multi-omics
techniques in microbiome analysis

The conventional techniques employed to examine the gut

microbiome, however helpful, provide only a limited

understanding of this intricate ecology. In order to gain a

comprehensive understanding of the complex relationship between

gut bacteria and their influence on human health, a more

comprehensive approach is necessary. This is where the potential

of multi-omics is harnessed. Multi-omics involves combining

data from many biological fields, including metagenomics,

metatranscriptomics, and metabolomics, to provide a thorough

comprehension of a biological system (Figure 1). Within the

framework of the gut microbiome, this method entails examining

different forms of “omic” data, each offering a unique viewpoint

on the gut environment.

Computational platforms, such as QIIME, Mothur, and DADA2,

are widely used to process and analyse sequencing data in gut

microbiome studies (26). These marker-gene surveys target and

sequence specific genetic markers, like the 16S rRNA gene, which

provide varying degrees of taxonomic resolution and phylogenetic

information about the microbial community (27, 37). In contrast,

shotgun metagenomics involves sequencing the entire genomic

content of the microbial community, enabling a more

comprehensive understanding of the functional potential of the gut

microbiome, including the identification of specific genes and

metabolic pathways (42). The integration of multi-omics

techniques, including metatranscriptomics, metaproteomics, and

metabolomics, has been instrumental in advancing our knowledge

of the gut microbiome and its complex interactions with human

health and disease (43).
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FIGURE 1

A systematic approach for microbiome data analysis, covering the steps from raw reads to community analyses, incorporating multi-omics techniques
and statistical models that allow for more accurate phenotypic and functional profiling.
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A key tool in this field is the QIIME 2 platform, an open-source,

community-developed software suite that enables reproducible,

interactive, scalable, and extensible microbiome data science (26).

QIIME 2 provides a flexible and powerful framework for analysing

and visualizing microbiome data, allowing researchers to perform

a wide range of analyses, from taxonomic classification to

functional profiling, while ensuring the reproducibility and

transparency of their research (25, 26). QIIME 2 offers a range of

features, including the ability to process and analyse high-

throughput sequencing data, perform taxonomic classification, and

generate visualizations to aid in the interpretation of results.

Additionally, the platform’s modular design allows for the

integration of various plug-ins, enabling researchers to extend its

capabilities to address specific research questions.

The utility of QIIME 2 has been demonstrated in numerous

studies, such as the work by Bolyen et al. (26), which described

the platform’s ability to facilitate reproducible, interactive, and

scalable microbiome data analysis (26). Furthermore, the QIIME

2 tutorial by Gonzalez et al. illustrates how the platform can be

used for end-to-end analysis of diverse microbiome datasets,

including the integration of public data through the Qiita

platform (26, 44).

Alongside QIIME 2, other computational tools have also

emerged as invaluable resources in gut microbiome research.

Algorithms for sequence clustering, taxonomic assignment, and

functional prediction have become increasingly sophisticated,

allowing researchers to gain deeper insights into the structure

and function of gut microbial communities (25, 26).
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4 Multi-omics techniques in gut
microbiome analyses

In addition to computational tools, gut microbiome research

has also greatly benefited from the integration of multi-omics

approaches, which provide a more comprehensive understanding

of the microbial community and its interactions with the host

(Figure 2) (20).

One such approach is metatranscriptomics, which involves the

sequencing of the RNA molecules expressed by the microbial

community. By analysing the metatranscriptome, researchers can

gain insights into the functional activities and gene expression

patterns of the gut microbiome, revealing how the microbial

community responds to changes in the environment or the host’s

physiology (45).

Another powerful technique is metaproteomics, which focuses

on the identification and quantification of the proteins expressed

by the gut microbiome (46). This approach can provide valuable

information about the metabolic activities and functional

capabilities of the microbial community, as well as the

interactions between the microbiome and the host (47).

Furthermore, metabolomics, the study of small-molecule

metabolites, has emerged as a crucial tool in gut microbiome

research. By analysing the metabolic profiles of the gut

microbiome, researchers can uncover the complex interplay

between the microbial community and the host’s physiology,

identifying metabolic pathways and biomarkers that are associated

with various health and based on the sources provided, this
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FIGURE 2

A comprehensive and fascinating intersection of multi-omics, machine learning, databases and the gut microbiota showing evident synergy between
multi-omics and machine learning that hold immense promise for advancing our understanding of the gut microbiota and its impact on human health.
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research paper discusses the different tools and techniques used

in gut microbiome studies, including marker-gene surveys,

shotgun metagenomics, and multi-omics approaches such as

metatranscriptomics, metaproteomics, and metabolomics (48).

The paper highlights the limitations of traditional marker-gene

surveys, which can introduce biases and lack the resolution to fully

capture the functional diversity of the gut microbiome. To address

these limitations, researchers have turned to more comprehensive

approaches, such as shotgun metagenomics, which can provide a

deeper understanding of the functional potential of the gut

microbiome (49).

The integration of multi-omics techniques, including

metatranscriptomics, metaproteomics, and metabolomics, has

enabled researchers to unravel the complex relationships between

the gut microbiome and various health and disease states, leading

to the identification of novel biomarkers and the development of

predictive models for personalized medicine (50).
4.1 Microbiomics

As discussed earlier, this field focuses on the identification and

characterization of the microbial population within a sample.

Techniques like 16S rRNA sequencing and shotgun

metagenomics are employed to assess the composition and
Frontiers in Medical Technology 06
diversity of the gut microbiome. Shotgun metagenomics, unlike

16S sequencing, provides a more detailed picture by directly

sequencing all the microbial DNA present in a sample, allowing

for the identification of not just bacteria but also archaea, fungi,

and viruses. Metagenomics refers to the direct examination

and analysis of the genetic material present in genomes obtained

from diverse sources (51). The term “metabolomics” is often

applied incorrectly to 16S rRNA gene sequencing. Sequencing

of 16S rRNA is gene-specific and does not examine the

entire genome. On the other hand, metagenomics is an

approach that utilizes a comprehensive shotgun sequencing

methodology to analyze the genetic material of microbes

discovered in the environment—without requiring culturing

(16, 52). Metagenomics offers an exhaustive enumeration of all

microorganisms present in complex environmental samples,

including those that are both familiar and unfamiliar and

those that are not amenable to laboratory cultivation. In contrast

to unimodal phylogenetic studies, which concentrate on the

diversity of a solitary gene (e.g., the 16S rRNA gene),

metagenomics investigates the multifarious genetic constituents

present within microbial communities. Consequently,

metagenomics provides a more comprehensive compilation of

genomic information and a more precise taxonomic classification

(53, 54). The correlation between function and phylogeny

is facilitated by genomics, along with the compilation of
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evolutionary profiles that depict the structure of the microbial

community. Significantly, it additionally facilitates the

identification of viruses that are challenging to detect through a

single-gene approach due to their broad genetic variability and

the difficulty in differentiating shared genetic attributes (55).

Modern Next-Generation Sequencing (NGS) has progressively

replaced traditional Sanger sequencing as the predominant

technique for shotgun sequencing in metagenomics over the past

few years. In numerous contexts, the 454/Roche and Illumina/

Solexa technologies were utilized extensively to analyze

metagenomics materials (56). Scientists often perform read-based

profiling of selected genes (or markers) obtained from

unassembled shotgun metagenomics reads to classify taxonomy

or annotate genes. They then compare the findings with

reference databases. Taxonomic binning can make use of similar

DNA compositions or nucleotide patterns, such as k-mer lengths,

GC content, or gene homology (57). An example of this is the

Kraken algorithm, which utilizes unique k-mer distributions in

sequences to assign taxonomy (58). On the other hand,

MetaPhlAn2 differentiates between different types of

microorganisms and calculates their relative abundance by using

particular genes that are unique to each group (59).

Despite recent advancements in computational analysis tools

and sequencing methods, various factors can still introduce

biases and inaccuracies in metagenomics shotgun assembly.

Metagenomics shotgun assemblies can employ a combination of

de novo and reference genome-based approaches, each with its

own set of challenges (60).

The Overlap, Layout, Consensus assembly method, commonly

used in whole genome sequencing, is not feasible for metagenomic

shotgun data due to its high processing demands. Consequently,

many new assembly algorithms use the de Bruijn graph

approach, such as MEGAHIT (61), MetaVelvet (62), IDBAUD

(63), and metaSPADES (64, 65). In reference-guided

metagenomic assembly, like MetaCompass (66), contigs are

reassembled by aligning sequencing reads to reference databases,

but the performance is constrained by the quality of the database

and the availability of reference genome sequences (67).

The errors and biases in metagenomic shotgun assembly can be

classified into two primary categories: computational challenges

and experimental issues. From a statistical perspective, the

analysis of microbiome data, including shotgun metagenomics,

faces the usual challenges of count data analysis, such as skewed

distribution, zero inflation, and over-dispersion (68).

Additionally, the experimental process and quality control

filtering can result in highly variable and noisy data, which

requires normalization to ensure comparability of microbiome

abundances among different samples.

The increasing presence of environmental contaminants (ECs)

due to human activities has created significant ecological and

health challenges. As these pollutants accumulate in ecosystems,

they threaten human well-being and various organisms. Recent

research has focused on the gut microbiota’s role in health, given

its influence on metabolism, immunity, and the effects of toxins.

Advanced computational tools and artificial intelligence (AI)

have become crucial in analysing complex microbiome data,
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aiding in the identification of disease biomarkers and

understanding microbiota interactions. This review examines how

these technologies enhance microbiome research, offering

insights into biomarker discovery, predictive modelling, and

strategies to mitigate the health impacts of ECs (69).

The exponential increase in the number of metagenome-

assembled genomes, coupled with advancements in assembly and

binning tools, has provided invaluable insights into the presence

of previously undescribed organisms and their genetic makeup

(70, 71). However, the vast majority of the microbiome diversity

remains unexplored, highlighting the need for continued research

and development in metagenomics analysis methods.

Despite the rapid advancements in computational tools and

sequencing technologies, various factors continue to introduce

biases and inaccuracies in metagenomics shotgun assembly. The

challenges encompass both computational and experimental

issues. From a statistical standpoint, the analysis of microbiome

data faces common challenges such as skewed distributions, zero

inflation, and over-dispersion. Additionally, the experimental

process and quality control measures can result in highly variable

and noisy data, requiring normalization to ensure comparability

across samples. While the exponential increase in metagenome-

assembled genomes has provided valuable insights, the vast

majority of microbiome diversity remains unexplored,

underscoring the need for ongoing research and development in

metagenomics analysis methods (72).
4.2 Metabolomics and metaproteomics

This field explores the comprehensive collection of tiny

molecules (metabolites) found in a biological system, namely the

human stomach. Metabolomics in the field of gut microbiome

study is concerned with the identification and quantification of the

metabolites generated by both the gut microorganisms and the

human host (73). These metabolites are indicative of the metabolic

activities of the gut environment and can offer vital information

about the functional capabilities of the microbiome. The primary

goal of metabolomics analyses is to study the metabolites produced

by bacteria and their interactions with the metabolism of both the

microbiota and the host (74, 75). These approaches are frequently

used to measure small amounts of substances, including as

antibiotics, antibiotic metabolites, and products that are produced

during the metabolism of bacteria and the host.

Metabolomics and Metaproteomics are crucial techniques in

microbiome research that together provide a comprehensive

understanding of microbial functionality (76). Metabolomics

focuses on analysing the small molecules produced by microbial

metabolism, such as amino acids, lipids, and sugars, offering direct

insights into the biochemical activities within a microbial

community (77). This approach helps reveal active metabolic

pathways, detect shifts in microbial processes, and identify

biomarkers linked to health or disease. Metaproteomics, on the

other hand, examines the proteins actively produced by the

microbiome, linking gene expression to protein production and

biological functions. By identifying and quantifying these proteins,
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metaproteomics sheds light on the operational metabolic pathways

and microbial responses to environmental stimuli (78). The

integration of metabolomics and metaproteomics allows

researchers to connect microbial gene expression with functional

outcomes, offering a detailed view of the microbiome’s role in

health, disease, and environmental interactions.
4.3 Metatranscriptomics

It involves the comprehensive analysis of the complete set of

RNA transcripts present in a microbiome sample at a given time.

This technique provides insights into the active gene expression

profiles of microbial communities, revealing which genes are

expressed and at what levels. By analyzing mRNA, researchers

understand which metabolic pathways and biological processes

are active in the microbiome, offering a snapshot of the

community’s functional capabilities. This approach helps

elucidate the functional roles of different microbes and their

contributions to overall microbiome activity, which is crucial for

understanding how microbial communities respond to

environmental changes, disease states, or treatments (79).

This subject is centred on the examination of messenger RNA

(mRNA) transcripts produced by cells in a given sample. Through

the quantification of mRNA levels, we can obtain valuable insights

into the genes that are currently undergoing expression by

both the gut microorganisms and the host intestinal cells.

Metatranscriptomics was first conceived and developed in 2005

as a result of pioneering investigations that sought to identify

genes expressed in environmental samples (80, 81).

Metatranscriptomics and metabolomics are complementary

approaches in microbiome research, each providing unique

insights into the functional dynamics of microbial communities.

Metatranscriptomics examines RNA transcripts to identify which

genes are actively expressed under various conditions, offering a

real-time view of microbial activities and their responses to

environmental changes, stressors, or host interactions. Techniques

like RNA-Seq are commonly used to capture a comprehensive

snapshot of the transcriptome, enabling functional profiling that

identifies active metabolic pathways and regulatory networks (82).

This is particularly valuable in understanding how microbes adapt

to different environmental and host-associated contexts, though

the complexity and variability of microbial communities pose

challenges in interpreting gene expression data.
5 Technological platforms in multi-
omics techniques

5.1 Technological platforms in
metaproteomics and metabolomics

Metaproteomics and metabolomics are burgeoning scientific

disciplines that have made substantial strides in the investigation of

the microbiome. The production of metabolomics data differs

significantly from that of metatranscriptomics and metagenomics,
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as the latter two rely heavily on sequencing. Metabolites are

typically detected and measured by employing a mix of

chromatography techniques, such as gas chromatography and

liquid chromatography, together with detection methods like

nuclear magnetic resonance and mass spectrometry. NMR

provides consistent, quantitative precision, and unambiguous,

definitive results for non-destructive, complex structure

determination. NMR can target different atom nuclei, such as

hydrogen (1H-NMR), carbon (13C-NMR), and phosphorus (31P-

NMR), offering further information on specific metabolite types.

The utilization of LC-NMR greatly enhances the advantages of

NMR-based metabolomics, effectively reducing the complexity of

samples. Each analytical platform has its own advantages and

disadvantages, and the choice of the platform depends on the

focus of the study, the nature of the samples, cost, accessibility,

and available expertise. Metabolomics contains the downstream

products of genomic, transcriptomic, and proteomic processes, and

the metabolome is sensitive to various genetic and environmental

stimuli, requiring careful experimental design to reduce

confounders and optimize information recovery (83–87).

Metaproteomics and metabolomics are complementary

approaches that provide deep insights into the functional activities of

microbial communities. Metaproteomics focuses on identifying and

analysing the proteins actively produced by microorganisms, offering

a real-time view of their metabolic and regulatory pathways. This

method is particularly valuable in complex ecosystems like soil,

oceans, and the human gut, where it helps uncover microbial

interactions and responses to environmental changes. Metabolomics,

on the other hand, studies the small molecules or metabolites

produced within these communities, giving a detailed picture of the

biochemical processes at play. By linking specific proteins identified

through metaproteomics to their corresponding metabolic outputs

revealed by metabolomics, researchers can achieve a comprehensive

understanding of microbial functions. This integrated approach is

especially useful in health-related research, shedding light on the role

of the microbiome in conditions like obesity, diabetes, and

inflammatory diseases. As these fields continue to advance, the

combined use of metaproteomics and metabolomics will be

crucial for developing microbiome-based therapies, improving

environmental management practices, and driving innovations in

biotechnology and personalized medicine.
5.2 Technological platforms in
metatranscriptomics

Metatranscriptomic approaches, which collect the RNA

transcribed by microbial cells, utilize similar analytical principles as

shotgun metagenomics, elucidating the active functional profile of a

microbial community through the analysis of all population-

expressed genes. A snapshot of gene expression, the

metatranscriptome captures the complete mRNA in a given sample

at a precise instant and under specific conditions. Shotgun

metagenomics and metatranscriptomic techniques mostly rely on

Illumina sequencing methods, with the HiSeq or NovaSeq (88)

instrument families being the most commonly used due to their
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cost-effectiveness per base and ability to process large amounts of data.

On the other hand, there has been a shift towards using PacBio and

Oxford Nanopore sequencing technologies (89) to take advantage of

their longer read lengths, which make it easier to map the genetic

information of a reference genome and identify genes (17, 90). The

usual method for sequencing the microbiome sample involves

isolating total RNA, enriching RNA, fragmenting it, synthesizing

cDNA, and producing transcriptome libraries.

Until recently, these techniques were limited to a relatively

particular assortment of alleles. At this time, shotgun sequencing

of complete metatranscriptomics is feasible using metagenomics,

and a thorough examination of gene expression across the entirety

of the genome provides an elaborate synopsis of the functional

attributes and expression patterns of a microbiome. Most of these

techniques follow the initial read mapping-based strategy, with de-

novo assembly of reads into transcript contigs and supercontigs or

mapping of reads to a reference genome constituting a standard

metatranscriptomics analysis pathway. Comparable to alignment-

based methods in whole-genome sequencing, the initial strategy

consists of mapping sequences to reference databases in order to

obtain information that can be used to (91–93).
5.3 Metagenomics

Metagenomics has previously been used to evaluate the

microbial community within a sample or environment, for

example, interrogating the gut microbiome and its association

with chronic diseases. Metagenomics is progressively being

applied as a novel infectious disease diagnostic assay, with two

main approaches: shotgun metagenomics, which attempts to

sequence the entire genetic content present in a sample, and

targeted-amplicon sequencing, which represents a more biased

approach to a particular group of microorganisms (37).

Advances in non-targeted short-read sequencing made during the

Human Genome Project, particularly innovations by J. Craig Venter

and his team, gave rise to shotgun sequencing, wherein nucleic acid

from a sample is fragmented and the entire population of

fragments is subjected to unbiased sequencing followed by

characterization and assignment of the sequenced fragment. This

method serves as a census of organisms in the original sample.
6 Functional classifications in
microbiome research

6.1 Metagenomics: leveraging
computational tools for microbial insights

Researchers possess the capacity to identify discrepancies in

metabolic activity across unique microbial populations, as well as to

scrutinize the taxonomic makeup of a microbiome (16). Through

the implementation of software applications such as PICRUSt or

Tax4Fun (73), it is feasible to predict a functional profile by

utilizing 16S sequencing data. By utilizing the relative abundance of

taxa in the community and the reference genome for each
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taxonomic present, these programs are capable of predicting the

likely functionality of genes. However, it is important to note that

these methods only offer an approximation, as they neglect to

consider the true expression levels of proteins and rely significantly

on reference genomes and their annotations.

Metatranscriptome and shotgun techniques both facilitate

functional analysis. Gene predictions are produced subsequent to

the compilation of a metagenome through the utilization of

software tools such as Glimmer-MG (94) and MetaGeneMark

(95). Functional annotation is executed subsequent to the

identification of coding genes through the implementation of

computationally intensive searches predicated on protein sequence

homology. Typically, databases of orthologues (e.g., EggNOG or

COG), and enzymes, or protein domains and families are queried

using UBLAST and USEARCH-based queries (96). Software

applications such as Pathfinder can be employed to perform

pathway enrichment analysis, classification, and scoring purposes.

KEGGscape (97) and similar applications may be utilized in a

similar fashion to construct a metabolic network (98, 99).

A multitude of publicly accessible automated algorithms has

been devised to manage the substantial computational demands

and tool sets associated with various tasks, including but not

limited to quality filtering, gene calling, functional annotation, and

fundamental statistics and visualization using MG-RAST and

MEGAN-CE (100). While these approaches have significantly

advanced our understanding of microbial communities, it is

important to note that culturing of taxa is still essential to

determine the ecological significance of function (101). Cheaper

sequencing has democratized the application of metagenomics, but

has also come at the cost of reduced sequence length, resulting in

poor gene annotation and overestimates of bacterial richness and

abundance. Recent improvements in sequencing technology are

beginning to provide reads of sufficient length for accurate

annotation and assembly of whole operons and beyond, that will

once again enable experimental testing of gene function and re-

capture the early successes of metagenomics investigations (98).

As sequencing projects remain largely biased towards genomes

linked to human interests, some serious initiatives are being

launched for sequencing organisms that represent all branches of

the tree of life. Concomitant with the genomic revolution,

unprecedented advances in sequencing technology have also led

to the emergence of the field of metagenomics, which offers a

novel, revolutionary approach for studying life in different

environments (102).

This paper has provided an overview of the current state of

functional classifications in metagenomics, highlighting the

computational tools and methods available for researchers to

gain insights into microbial communities.
6.2 Functional profiling in
metatranscriptomics

Metatranscriptomics has emerged as a powerful tool in

unravelling the intricate dynamics of the gut microbiome, shedding

light on the ongoing biological processes and metabolic pathways
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that shape this complex ecosystem (103). Through the analysis of

RNA sequence data, researchers can categorize and characterize the

genes that are actively expressed, providing insights into the

functional behaviours of the resident microbial communities (104).

The process typically involves aligning the metatranscriptomic

data obtained from microbiome samples to specific pathways and

genomes, such as the Kyoto Encyclopedia of Genes and Genomes

(105). Bioinformatics tools like SOAPdenovo have been employed

to construct and align these metatranscriptomic datasets (106).

Comparative analyses across different health and disease states

allow researchers to identify the pathways that experience increased

or decreased activity in response to various factors.

The subsequent annotation of these results using databases like

Gene Ontology, Clusters of Orthologous Groups, and Swiss-Prot

enables a more comprehensive understanding of the metabolic

and functional capabilities of the gut microbiome (107).

The applications of functional profiling in metatranscriptomics

extend beyond the mere cataloguing of microbial gene expression.

Techniques like stable isotope probing have been utilized to isolate

the transcriptomes of specific aerobic bacteria found in

environmental samples, significantly advancing the field of

metabolomics by enabling the targeted investigation of key

microbial species (19).

Functional Profiling in Metatranscriptomics uses RNA

sequencing (RNA-seq) to capture gene expression across microbial

communities, offering insights into their real-time biochemical

activities. Unlike genomics, which identifies potential genetic

capabilities, metatranscriptomics reveals the actual molecular

processes occurring in microbes within their natural environments.

This makes metatranscriptomics essential for understanding

microbial behaviour, host-microbe interactions, and identifying

biomarkers. Despite challenges like RNA degradation and the need

for extensive sequencing, Metatranscriptomics holds significant

potential for advancing our knowledge of microbial ecosystems,

with broad implications for health, biotechnology, and

environmental management (108).

Overall, the integration of metatranscriptomics with functional

profiling has opened new avenues for understanding the complex

interplay between the gut microbiome and host health, paving

the way for more targeted and personalized therapeutic

interventions (26, 27, 37, 98).
7 Key bioinformatics tools for
phylogenetic and microbiome analysis

7.1 Phenotypic classification

Phylogenetic and microbiome analyses are essential for

exploring microbial diversity, structure, and function. Phylogenetic

tools elucidate evolutionary relationships and taxonomic

classifications of microorganisms. Microbiome analysis tools,

including those for 16S rRNA gene sequencing, identify microbial

taxa and their functional potential. Multi-omics approaches

integrate genomic, transcriptomic, proteomic, and metabolomics

data to offer a comprehensive view of microbial interactions.
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These bioinformatics tools are crucial for advancing our

understanding of microbial ecology, health impacts, and

therapeutic possibilities (109).

Phyloseq: Phyloseq is an R package designed for the analysis

and visualization of microbiome data. It provides tools for

importing, analysing, and graphically displaying phylogenetic

trees, taxonomic composition, and diversity metrics. Phyloseq

integrates well with other R packages, making it a flexible choice

for custom analyses and visualizations (110).

USEARCH is a comprehensive software package used for

clustering and analysing 16S rRNA gene sequences. It supports a

wide range of functionalities, including de novo OTU clustering,

chimera detection, and sequence alignment. USEARCH is highly

efficient, capable of processing large datasets quickly, which is crucial

for handling the vast amounts of data generated in microbiome

studies. Although it is a commercial tool, its performance and speed

in OTU clustering make it a preferred choice for researchers seeking

high throughput and accuracy in sequence analysis (111).

BEAST (Bayesian Evolutionary Analysis Sampling Trees):

BEAST is a powerful tool used for Bayesian analysis of molecular

sequences. It is particularly well-suited for phylogenetic analysis

involving time-stamped sequences, allowing researchers to infer

phylogenies and estimate divergence times. BEAST is commonly

used in evolutionary biology and can be applied to microbiome

studies to explore the evolutionary history of microbial taxa (112).

FastTree: FastTree is an efficient tool for constructing

approximately-maximum-likelihood phylogenetic trees from large

alignments. It is widely used in microbiome studies for its ability

to handle large datasets quickly, making it ideal for constructing

phylogenetic trees from 16S rRNA gene sequences or other

marker genes (113).

RAxML (Randomized Axelerated Maximum Likelihood):

RAxML is a popular software tool for maximum-likelihood-based

phylogenetic inference. It is used to create phylogenetic trees

based on nucleotide or amino acid sequences and is known for

its speed and accuracy, making it a valuable tool for large-scale

microbiome phylogenetic analyses (114).

MEGA (Molecular Evolutionary Genetics Analysis): MEGA is a

comprehensive software suite for conducting a variety of phylogenetic

and statistical analyses. It allows users to build phylogenetic trees,

estimate evolutionary distances, and conduct hypothesis testing.

MEGA is user-friendly and widely used in evolutionary studies,

including those involving microbial communities (115).
7.2 Evaluation of microbiome diversity
metrics: alpha and beta diversity

The assessment of microbiome variations often involves the

comparison of alpha and beta diversity measurements, either

individually or in combination (116). Alpha diversity metrics

evaluate the level of diversity present within a given sample,

enabling comparisons across different groups. For instance, it is

common to compare the mean species diversity of samples

collected from a cohort of organisms afflicted with a particular

ailment to that of a cohort devoid of the ailment (117). Species
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richness estimators, such as observed OTUs and the Chao1 index,

are frequently utilized alpha diversity metrics. Additionally, the

Shannon and Inverse Simpson indices are employed to evaluate

both species richness and evenness. An alternative approach to

quantifying diversity is the utilization of phylogenetic richness

estimators, like Faith’s phylogenetic diversity (117). Richness and

evenness estimators, including Shannon and Inverse Simpson, are

regarded as more robust due to their reduced sensitivity to

sample sequence count variability. The Shannon index is

predominantly impacted by the existence of rare operational

taxonomic units, while the Inverse Simpson index is

predominantly impacted by the presence of numerous or

dominant OTUs (10).

As a diversity metric, beta diversity evaluates the dissimilarity

of sample characteristics. The distance matrix is frequently

obtained by computing the distance between every pair of

samples, which is a common method of deriving it. The

Bray-Curtis dissimilarity is a widely employed technique for

computing beta diversity. It is a quantitative metric that

compares two communities by considering the abundance of

various taxa. The Weighted Unifrac distance is a metric that

measures dissimilarities between two communities by

considering phylogenetic relatedness alongside taxonomic

abundances. In contrast, the unweighted Unifrac distance is a

qualitative measure that solely considers the existence or absence

of taxa (117, 118).
7.3 Visualization and statistical techniques
in metagenomics research

Metagenomics research, which involves the study of the

collective genetic material of microorganisms within a given

environment, has experienced a surge in popularity in recent

years. One of the key aspects of such investigations is the

application of visualization and statistical methods to analyse and

interpret the complex datasets generated.

Microbiome studies often entail the comparison of specific

taxa, functional elements, microbial diversity, and control group

characteristics between different groups. However, the inherent

complexity of these datasets, including high dimensionality and

potential zero-inflation, presents challenges when employing

standard statistical methods. To address these issues, researchers

have developed and refined various visualization and statistical

techniques tailored for metagenomics data.

Visual inspection of the data is a common starting point, as it

can reveal potential correlations or patterns that may warrant

further investigation using more rigorous statistical approaches.

Dimension-reduction techniques, such as principal coordinate

analysis and principal component analysis, are frequently

utilized to convert distance matrices into two- or three-

dimensional graphical representations of sample relationships.

These visualizations allow for the classification and annotation

of samples based on relevant metadata (119) (Thomas et al.,

2012). Visual comparison of multiple metagenomes and

statistical comparison of two metagenomes at a time have been
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implemented in tools like MEGAN. These methods provide a

means to effectively explore and compare large metagenomics

datasets (119). As the field of metagenomics continues to

evolve, the development and refinement of computational

approaches for data analysis and integration remains an active

area of research (119).

The transition from classical microbiology to modern

metagenomics has been facilitated by advancements in high-

throughput DNA sequencing technologies, which have enabled

the direct genetic analysis of complex microbial communities

(16). The vast amounts of data generated by these technologies

require the integration of various computational methods to

collect, process, and extract meaningful biological insights.

7.3.1 Utilizing ordination methods for enhanced
visualization and analysis in metagenomics

Ordination techniques are essential tools in metagenomics

research for visualizing and interpreting complex microbial

community data. These methods help researchers to reduce the

dimensionality of large datasets, identify patterns, and explore

relationships between microbial communities and environmental

factors. Below are some key ordination techniques:

Principal Component Analysis (PCA) is a technique used in

metagenomics to reduce data dimensionality by transforming

complex datasets into principal components. This method

simplifies data visualization by focusing on the principal axes

that capture the most variability, which helps in identifying

patterns such as clusters, outliers, and trends across samples.

PCA results are typically displayed in scatter plots of the first

few principal components (120). In contrast, Non-metric

Multidimensional Scaling (NMDS) is designed to preserve the

rank order of distances between samples rather than their

exact numerical distances. This method is particularly suited

for non-parametric data and is used to explore beta diversity

by visualizing how microbial communities differ across

samples. NMDS provides insights into sample dissimilarities

by representing them in two or three dimensions, revealing

gradients or clusters without relying on parametric

assumptions (121).

Canonical Correspondence Analysis (CCA), on the other hand,

integrates aspects of both principal component and regression

analyses to investigate how environmental variables influence

microbial community composition. CCA correlates community

changes with factors like pH or nutrient levels, offering a way to

understand ecological drivers of microbial diversity. The results

are often presented in biplots, where microbial taxa and

environmental variables are depicted together, highlighting their

associations and providing insights into the ecological dynamics

of the communities (122).
7.4 Statistical techniques in metagenomics
research

Statistical techniques are essential for analysing and

interpreting metagenomics data, providing insights into microbial
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community differences, sample classification, and biomarker

discovery (123). PERMANOVA (Permutational Multivariate

Analysis of Variance) is a non-parametric method that tests the

significance of differences in microbial community composition

across various groups or conditions without assuming a specific

data distribution (124). It evaluates whether observed differences

among groups exceed what would be expected by chance, with

results typically presented in distance-based dissimilarity matrices

and permutation test outputs. Random Forests is a machine

learning technique that builds multiple decision trees to classify

samples or predict outcomes based on microbial compositions. It

is robust to overfitting and can handle large datasets, with results

visualized through feature importance plots and confusion

matrices to assess classification performance. LEfSe (Linear

Discriminant Analysis Effect Size) combines linear discriminant

analysis with effect size measurements to identify biomarkers by

highlighting features that significantly differ between groups

(125). This method is used to discover microbial taxa or

functional genes that are discriminatory between conditions, with

results often displayed in bar plots or cladograms to illustrate

the magnitude of differences and key drivers of microbial

community variations.
7.5 Differential abundance analysis

Differential abundance analysis in metagenomics identifies and

visualizes changes in microbial taxa between conditions. It helps

understand how microbial communities respond to factors like

environmental changes, dietary interventions, or diseases. Two

key visualization techniques are volcano plots and MA plots.

Volcano Plots display statistical significance vs. fold change,

with the x-axis showing the magnitude of change in abundance

and the y-axis representing significance [usually -log10

(p-value)]. This plot highlights taxa with substantial changes and

significant differences, facilitating the identification of key drivers

in microbial shifts (126).

MA Plots visualize the relationship between mean abundance

and fold change. The x-axis represents average abundance, while

the y-axis shows log-fold change between conditions. This plot

reveals how changes in abundance correlate with overall levels

and helps identify trends or biases (127).
8 Network analysis and machine
learning: connecting the dots

These “omic” data kinds each contribute to the puzzle.

However, multi-omics’ true potential lies in its ability to integrate

these diverse information. Advanced computational tools and

network analysis methods find information layer connections and

interactions. We can link chemicals to their microbial creators by

combining metabolomics and metagenomics data. Integrating

transcriptomic and metabolomics data can reveal how gut

bacteria metabolic activities affect host intestinal cell gene

expression. Microbiome community connections are often
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studied using network analysis. In various contexts, correlation

networks show community structure disruptions. They can also

study interkingdom relationships between environmental

elements, metabolites, clinical features, and other bacteria in the

microbial community. Graphical networks often compare

interactions in ill vs. healthy states or show species co-occurrence

or mutual exclusion. Machine learning methods can manage

complex data and identify useful properties in microbiome

datasets with many attributes, making them appealing for

evaluation (128). Machine learning aids in deciphering the

intricate relationships within the gut ecology and transforming

the varied biological data into useful insights (129).

This method employs various types of networks to reveal

complex relationships between microbial taxa or genes, offering

insights into community structure, functional relationships, and

ecological dynamics. Two primary types of networks used in this

analysis are co-occurrence networks and correlation networks.

Co-occurrence Networks are designed to illustrate interactions

between microbial taxa within a community. In these networks,

nodes represent different taxa, and edges denote the correlations

or interactions observed between them. Positive edges suggest

that taxa frequently occur together, while negative edges indicate

that their presence might be mutually exclusive. By visualizing

these relationships, researchers can identify groups of taxa that

may influence each other’s abundance or activity. For example,

co-occurrence networks can help uncover ecological partnerships

or competitive interactions, providing insights into the stability

and functionality of microbial communities (130).

Correlation Networks focus on identifying potential interactions

or co-occurrences between microbial species or genes based on their

correlation patterns. In these networks, nodes represent microbial

species or genes, and edges represent significant correlations

between them. Correlation networks are valuable for exploring

how different microbial entities relate to each other in terms of

abundance or gene expression. They can reveal patterns of co-

expression or co-occurrence that might suggest functional

relationships or shared environmental preferences. For instance,

identifying highly correlated species can provide clues about

cooperative metabolic pathways or shared responses to

environmental changes (131).

In the area of gut microbiome research, the integration of

network analysis and machine learning (ML) has been greatly

enhanced by the development of various computational tools.

These tools are designed to analyse complex datasets, identify

patterns, and map interactions within microbial communities (132).

In microbiome research, tools for unsupervised learning, such

as PCA (Principal Components Analysis) and PCoA (Principal

Coordinate Analysis), are essential for simplifying high-

dimensional data and revealing the structure of microbial

communities (133). These techniques reduce the complexity of

large datasets by projecting them onto fewer dimensions while

preserving critical information. This approach is vital in studies

where datasets may contain vast numbers of microbial species or

genes. For instance, a few tools such as

QIIME II, a specialized platform for microbiome analysis,

incorporates PCA and PCoA tools to visualize variations in
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microbial composition across different samples, such as comparing

gut microbiota between healthy individuals and those with

diseases. This platform enables researchers to track microbial

community structures over time and under different conditions,

offering valuable insights into the factors influencing microbial

diversity (25).

Another widely used tool is Emperor, an interactive

visualization software that works seamlessly with outputs from

QIIME 2 and other microbiome analysis pipelines. Emperor

allows researchers to explore and interpret the results of PCA

and PCoA in a dynamic, three-dimensional environment,

facilitating the identification of patterns and relationships within

microbial communities (134). Using the application of these

tools, researchers can acquire a deeper understanding of the ways

in which microbial communities assemble or separate, ultimately

assisting in the recognition of significant microbial taxa and

advancing the creation of targeted measures or treatments. These

unsupervised learning tools are crucial for transforming complex,

high-dimensional data into interpretable visualizations, driving

forward the field of microbiome research (135).
9 Key functional annotation tools for
microbial genomics

Key functional annotation tools for microbial genomics, such

as KEGG, COG, EggNOG, and Pfam, provide critical insights

into metabolic pathways, protein functions, and evolutionary

relationships, enabling comprehensive analysis of microbial

genomes and their functional roles (Table 2).

KEGG offers valuable insights into metabolic pathways and

enzyme functions, essential for understanding the biochemical

processes within microbial communities. It provides detailed

pathway maps and enzyme roles that facilitate the analysis of

microbial metabolism and functional capacities (24). COG

classifies proteins into orthologous groups, enabling researchers

to predict protein functions based on evolutionary conservation

across different organisms. This classification supports functional

prediction and elucidates the evolutionary history of microbial

proteins (140). EggNOG complements COG by employing non-

supervised clustering methods to group proteins into orthologous

categories, aiding in the annotation of metagenomic data and
TABLE 2 Functional classification and annotation tools used in Gut microbio

Tool/database Purpose Descriptio
KEGG (Kyoto Encyclopedia of
Genes and Genomes)

Pathway mapping and
functional annotation of
genes

Provides pathway-base
annotations and enzym

COG (Clusters of Orthologous
Groups)

Classification of proteins
into orthologous groups

Groups proteins with
functions from differen
organisms

EggNOG (Evolutionary Genealogy
of Genes: Non-supervised
Orthologous Groups)

Functional annotation
and evolutionary
classification

Non-supervised cluste
proteins into ortholog

Pfam (Protein Families) Identifying protein
families and functional
domains

Database of protein fa
represented by multipl
alignments
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evolutionary studies. It provides crucial information on

functional roles and orthologous relationships, which are vital for

interpreting the functional potential of microbial genomes (141).

Pfam focuses on identifying protein families and functional

domains through multiple sequence alignments, crucial for

predicting protein functions and detecting conserved domains,

thus enhancing our understanding of protein functionality and

evolutionary conservation in microbial species (142).
10 Inferring microbial interaction
networks from microbiome data: a
comparative analysis of SparCC,
CCLasso, and SPEIC-EASI

The study of microbial communities and their interactions

within complex ecosystems, such as the human gut, has become

a crucial area of research in the field of microbiome science.

Researchers have developed several computational methods to

infer these intricate networks of microbial interactions from

high-throughput sequencing data.

One common approach is to examine pairwise associations

between microbial taxa, where networks are established by

measuring the similarity or correlation coefficients between pairs

of variables. Three commonly used software programs for this

purpose are SparCC, CCLasso, and SPEIC-EASI (143, 144).

SparCC and CCLasso are two popular methods that account

for the inherent compositional nature of microbiome data, which

can lead to spurious correlations if not properly addressed.

However, the SPEIC-EASI model is currently the most

commonly utilized approach due to its strong ability to estimate

interactions using techniques for both sparse neighbourhood and

inverse covariance selection, following the initial CLR

transformation of the count data (144).

Regression-based techniques, such as sparse regression,

Dirichlet-multinomial regression, and generalized boosted linear

models, can also be employed to forecast the abundance of a

particular species based on the abundance of various

combinations of other species (145). Another strategy relies on

the presence-absence patterns of taxa in relation to distinct

phenotypes or outcomes, which is often referred to as association

rule mining.
me analysis.

n Examples of use Outputs References
d
e codes

Metabolic pathway analysis,
functional gene annotation

Pathway maps,
enzyme roles

(136)

similar
t

Functional prediction,
phylogenomic studies

Functional categories,
evolutionary history

(137)

ring of
ous groups

Annotating metagenomic
data, evolutionary studies

Functional roles,
orthologous
relationships

(138)

milies
e sequence

Predicting protein function,
detecting conserved
domains

Protein domains,
functional
annotations

(139)
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These complex network analyses, together with machine-

learning approaches, provide a more comprehensive

understanding of the intricate relationships within the gut

ecosystem. They enable researchers to not only identify the

microbial players, but also understand their functional roles and

how they interact with each other and with the human host.
11 Comparing the interpretability and
performance of machine-learning,
random forest and decision tree
models in clinical predictive modelling

Machine learning is a field within artificial intelligence that enables

independent knowledge acquisition and operational improvement

through the utilization of input data, without the need for explicit

programming (146). Random Forest, an ensemble machine learning

technique, is commonly employed for classification and regression

tasks. It is often utilized to uncover significant taxonomic and

clinical variables that can differentiate various phenotypes or

classifications, or predict specific outcomes (147).

Despite being less precise and reliable, techniques like CART

analyses are more interpretable and, consequently, more

therapeutically actionable. Decision trees allow researchers to

gain insights into the significance of variables, their cutoff points,

and their order of importance. It is crucial to note that these

models should always undergo cross-validation, either through

sample and replacement, or by using independent cohorts for

training, testing, and validation (148).

The goal of this comparative study is to assess the effectiveness

of decision trees, such as those used in CART analyses, and

Random Forest models in the analysis of biomedical data.

Specifically, we aim to evaluate the trade-offs between model

interpretability and predictive performance, as these factors are

crucial considerations for clinical decision-making.

Random Forest is an ensemble machine learning technique that

constructs multiple decision trees and aggregates their predictions

to improve the overall accuracy and stability of the model. This

method has been shown to be effective in uncovering significant
TABLE 3 Machine learning techniques for microbiome data.

Category Technique/algorithm
Supervised learning Random forest Classification a

variables.

CART analysis More interpreta

K-Nearest Neighbor (KNN) Classification o

Support Vector Machine (SVM) Used for classifi

Naive Bayes (NB) Probabilistic cla

Random Forest (RF), LightGBM, XGBoost Ensemble meth

Unsupervised
learning

Principal Components Analysis (PCA) Dimension redu

t-Distributed Stochastic Neighbor Embedding
(t-SNE)

Visualization of

Hierarchical Clustering Groups samples
gene groups.

K-Means Clustering Partitions samp

Self-Organizing Map (SOM) Visual represen
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variables that can differentiate various phenotypes or

classifications, or predict specific outcomes in a wide range of

scientific fields (149).

On the other hand, decision tree-based models, such as CART,

are more interpretable, enabling researchers to gain insights into

the significance of variables, their cutoff points, and their order

of importance. These insights can be more readily translated into

actionable clinical decisions (150).
11.1 Unsupervised and supervised machine-
learning in gut microbiome analysis

Machine learning algorithms can be broadly classified as either

unsupervised learning or supervised learning, and they have been

extensively applied in the study of intestinal microbiota

(Table 3). Unsupervised learning methodologies obtain and

classify novel hidden patterns uniquely from given datasets in

which the dependent variables are unknown, and they are

frequently described as predictions that are driven by data (160).

Dimension reduction and clustering analysis are two main

categories of unsupervised learning techniques. For the

visualization of omics data, principal components analysis,

principal coordinate analysis, and t-distributed stochastic

neighbour embedding (t-SNE) (156) are typical dimension

reduction techniques that extract a subset of crucial variables

from the high-dimensional feature space. Clustering techniques,

such as hierarchical clustering, k-means clustering, and self-

organizing map, are frequently employed to partition a collection

of entities into multiple clusters according to their similarities or

dissimilarities. In the study of intestinal microbiota, clustering

analysis has been used to discern novel patterns, such as the

identification of co-abundance gene groups and enterotypes of

the human microbiota.

Unsupervised machine learning algorithms not only derive

insights directly from the data and group the data, but also use

these insights for data-driven decision making. Supervised

learning, on the other hand, utilizes labelled data to train a

model that can then make predictions on new, unseen data.
Application References
nd regression to identify significant taxonomic and clinical (151)

ble decision trees for clinical applicability. (152)

f samples based on nearest neighbors in the feature space. (153)

cation and regression problems. (154)

ssification based on Bayes’ theorem. (129)

ods for strong performance and interpretability. (152)

ction technique for visualizing high-dimensional omics data. (155)

complex data in lower dimensions. (156)

based on similarity measures, useful for identifying co-abundance (157)

les into clusters based on feature similarity. (158)

tation of complex data structures for pattern recognition. (159)
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11.2 Supervised and supervised machine-
learning in gut microbiome analysis

In contrast, supervised learning methods obtain information and

infer a function from input data that includes dependent variables for

all samples and independent variables (also known as features).

Supervised learning is the process of using known dependent

variables from a training dataset to create a machine learning model

that can predict the outcomes of new samples. ML models can be

used to perform classification problems when the dependent

variables are categorical. Because the dependent variables are

continuous, they can also be used for regression problems.

The application of both unsupervised and supervised learning

techniques has been crucial in the study of gut microbiome,

enabling researchers to uncover novel patterns, identify

enterotypes, and develop predictive models for various health

and disease states (118, 161).
12 Challenges in current applications

The gut microbiota, a complex and dynamic ecosystem of trillions

of microorganisms, plays a pivotal role in human health and disease.

Understanding the intricate interactions within this microbial

community and their impact on the host requires advanced

computational tools and cutting-edge machine learning (ML)

approaches. These technologies have revolutionized the field of

microbiome research, enabling the identification of novel biomarkers

for disease diagnosis, treatment, and personalized medicine (162).

One of the primary challenges in gut microbiota research is the

vast complexity and diversity of microbial communities. The gut

microbiome consists of a host of bacterial, viral, fungal, and archaeal

species, each contributing to the overall ecosystem. Traditional

sequencing methods, such as 16S rRNA gene sequencing, provide a

restricted view of microbial diversity, often missing rare or less

abundant species (163). To overcome this, advanced computational

tools like metagenomics and metatranscriptomics have been

developed to capture a more comprehensive concept of microbial

diversity and function. However, these approaches generate massive

amounts of data, creating a need for sophisticated data processing

and analysis pipelines (164).

Machine learning has emerged as a powerful approach to

handle the complexity of microbiome data. By leveraging

algorithms capable of detecting patterns and making predictions

based on large datasets, ML can identify key microbial features

associated with specific health outcomes (165). In case, ML

models can be trained to distinguish between healthy and

diseased microbiomes, potentially leading to the discovery of

biomarkers for conditions like inflammatory bowel disease (IBD),

obesity, and colorectal cancer. Despite these advancements,

several challenges persist, including the need for large, well-

annotated datasets and the risk of overfitting models to specific

cohorts, which can limit the generalizability of findings (129).

Another significant challenge in the application of ML to gut

microbiota research is the integration of multi-omics data. The
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gut microbiome interacts with various host systems, influencing

metabolic, immune, and neural processes. To capture this

complexity, researchers are increasingly turning to multi-omics

approaches, integrating data from genomics, transcriptomics,

proteomics, metabolomics, and more. Tools like Multi-Omics

Factor Analysis (MOFA) and Integrative Genomics Viewer (IGV)

have been developed to facilitate this integration, enabling a

more holistic understanding of microbiome-host interactions.

However, the integration of such diverse data types requires

advanced computational frameworks and careful consideration of

data harmonization and normalization techniques (166).

Artificial intelligence (AI) and machine learning (ML) in

microbiome analysis face significant challenges, particularly

regarding reproducibility, replicability, robustness, and

generalizability. These challenges are exacerbated by the complex,

interdisciplinary nature of microbiome research, where slight

variations in methods, data processing, and analytical

frameworks can lead to divergent results (152). Reproducibility

issues are not merely technical but are deeply rooted in the lack

of standardized methods, the complexity of biological data, and

the evolving nature of computational tools. The historical

example of Antonie van Leeuwenhoek’s struggle to have his

microbial observations accepted illustrates the enduring difficulty

of ensuring that scientific work can be precisely replicated by

others. Modern examples, like the challenge posed by Philip

Bourne’s group to reproduce their computational analysis,

underscore the immense effort required to replicate complex

bioinformatics research, even when transparency is prioritized.

These challenges highlight the need for greater methodological

transparency, standardization, and collaborative efforts to

enhance the robustness and generalizability of AI and ML

approaches in microbiome research (167).

Furthermore, ethical and privacy concerns associated with

microbiome research pose additional challenges. As the field

moves towards personalized medicine, where individual

microbiome profiles guide treatment decisions, issues related to

data privacy, consent, and ownership become increasingly

important. Researchers must navigate these challenges carefully,

ensuring that the benefits of microbiome-based interventions are

realized without compromising patient privacy or autonomy (168).

Despite these challenges, the potential of advanced

computational tools and ML in gut microbiota research is

immense (Figure 3). The integration of these approaches holds

promise for the discovery of novel biomarkers that can

revolutionize disease diagnosis and treatment. For instance,

biomarkers identified through ML could lead to the development

of non-invasive diagnostic tests for gastrointestinal disorders or

the creation of personalized probiotics tailored to an individual’s

unique microbiome composition.

To fully realize these opportunities, ongoing collaboration

between microbiologists, data scientists, clinicians, and ethicists is

essential. Interdisciplinary teams are needed to develop and

refine computational tools, address the challenges of data

integration and interpretability, and ensure that microbiome

research is conducted ethically and responsibly. Additionally, the

development of standardized protocols for data collection,
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FIGURE 3

Potential challenges and considerations in multi-omics and machine learning for advancing gut microbiome research.

FIGURE 4

Different computational, bioinformatics, AI & ML approaches in gut microbiome analysis and biomarker discovery for achieving D3 (diagnostics,
discovery and decision) and goals of precision medicine.
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analysis, and reporting will be crucial in advancing the field and

enabling the translation of research findings into clinical practice.
13 Conclusion

The analysis of the gut microbiome has undergone a

transformative shift, driven by the integration of advanced

computational tools, multi-omics techniques, and the power of

artificial intelligence and machine learning (169). This
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convergence of technologies is enabling researchers to gain

unprecedented insights into the complex dynamics and

interactions within the gut microbial ecosystem.

One of the key elements fuelling this progress is the availability of

high-throughput sequencing technologies that generate vast datasets

across various omics levels, including genomics, transcriptomic,

proteomics, and metabolomics. These data-rich studies are in turn

supported by a suite of powerful bioinformatics software, such as

QIIME and Mothur, which facilitate the processing and analysis of

the microbiome data (26, 170).
frontiersin.org

https://doi.org/10.3389/fmedt.2024.1434799
https://www.frontiersin.org/journals/medical-technology
https://www.frontiersin.org/


Dakal et al. 10.3389/fmedt.2024.1434799
The multi-omics approach, which combines data from

different biological layers, provides a more comprehensive

understanding of the gut microbiome. By integrating genomic,

transcriptomic, proteomic, and metabolomics information,

researchers can uncover intricate relationships between microbial

composition, gene expression, protein function, and metabolic

profiles. Artificial intelligence and machine learning play a

pivotal role in the interpretation of this complex multi-omics

data. These computational techniques excel at pattern

recognition, enabling the identification of correlations and

associations within large datasets. Furthermore, AI and ML

models can be leveraged for predictive modelling, helping to

forecast disease outcomes or responses to treatments based on

microbiome profiles. This, in turn, has led to advancements in

disease diagnosis, prognosis, and the development of

personalized medicine approaches. The integration of these

cutting-edge tools and techniques has opened up new frontiers in

gut microbiome research. Researchers can now explore the

intricate interactions between the microbiome and the host,

uncover biomarkers for disease, and develop more targeted and

effective therapeutic interventions (Figure 4). As this field

continues to evolve, we can expect to see even more

transformative breakthroughs in our understanding and

management of various health conditions. The integration of

multi-omics techniques, including metatranscriptomics,

metaproteomics, and metabolomics, has been instrumental in

advancing our knowledge of the gut microbiome and its complex

interactions with human health and disease. These approaches

provide a more comprehensive understanding of the gut

microbiome by capturing not only the taxonomic composition,

but also the functional activities, metabolic processes,

and interactions within the microbial community.

Metatranscriptomics examines the RNA molecules expressed by

the microbial community, revealing insights into their functional

activities and gene expression patterns. Metaproteomics focuses

on identifying and quantifying the proteins expressed by the gut

microbiome, providing valuable information about their

metabolic activities and functional capabilities, as well as the

interactions between the microbiome and the host. Furthermore,

metabolomics, the study of small-molecule metabolites, can

uncover the complex interplay between the microbial community

and the host’s physiology, identifying metabolic pathways and
Frontiers in Medical Technology 17
biomarkers associated with various health and disease states. The

integration of these multi-omics approaches has enabled

researchers to unravel the complex relationships between the gut

microbiome and human health, leading to the identification of

novel biomarkers and the development of predictive models for

personalized medicine.
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