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Ultrasound-based radiomics and
clinical factors-based nomogram
for early intracranial hypertension
detection in patients with
decompressive craniotomy
Zunfeng Fu1†, Lin Peng2†, Laicai Guo3, Chao Qin1, Yanhong Yu1,
Jiajun Zhang1 and Yan Liu1*
1Department of Ultrasound, The Second Affiliated Hospital of Shandong First Medical University, Tai’an,
China, 2Department of General Practice, The Second Affiliated Hospital of Shandong First Medical
University, Tai’an, China, 3Department of Neuro-intensive Care Unit, The Second Affiliated Hospital of
Shandong First Medical University, Tai’an, China
Objective: This study aims to develop and validate a nomogram that combines
traditional ultrasound radiomics features with clinical parameters to assess early
intracranial hypertension (IH) following primary decompressive craniectomy
(DC) in patients with severe traumatic brain injury (TBI). The study incorporates
the Shapley Additive Explanations (SHAP) method to interpret the
radiomics model.
Methods: This study included 199 patients with severe TBI (training cohort:
n= 159; testing cohort: n= 40). Postoperative ultrasound images of the optic
nerve sheath (ONS) were obtained at 6 and 18 h after DC. Based on invasive
intracranial pressure (ICPi) measurements, patients were grouped according to
threshold values of 15 mmHg and 20 mmHg. Radiomics features were
extracted from ONS images, and feature selection methods were applied to
construct predictive models using logistic regression (LR), support vector
machine (SVM), random forest (RF), and K-Nearest Neighbors (KNN). Clinical-
ultrasound variables were incorporated into the model through univariate and
multivariate logistic regression. A combined nomogram was developed by
integrating radiomics features with clinical-ultrasound variables, and its
diagnostic performance was evaluated using Receiver Operating Characteristic
(ROC) curve analysis and decision curve analysis (DCA). The SHAP method was
adopted to explain the prediction models.
Results: Among the machine learning models, the LR model demonstrated
superior predictive efficiency and robustness at threshold values of 15 mmHg
and 20 mmHg. At a threshold of 20 mmHg, the AUC values for the training
and testing cohorts were 0.803 and 0.735 for the clinical model, 0.908 and
0.891 for the radiomics model, and 0.918 and 0.902 for the nomogram
model, respectively. Similarly, at a threshold of 15 mmHg, the AUC values were
consistent across models: 0.803 and 0.735 for the clinical model, 0.908 and
0.891 for the radiomics model, and 0.918 and 0.902 for the nomogram
model. Notably, the nomogram model outperformed the clinical model.
Decision curve analysis (DCA) further confirmed a higher net benefit for
predicting intracranial hypertension across all models.
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Conclusion: The nomogram model, which integrates both clinical-semantic and
radiomics features, demonstrated strong performance in predicting intracranial
hypertension across different threshold values. It shows promise for enhancing
non-invasive ICP monitoring and supporting individualized therapeutic strategies.
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radiomics, machine learning, optic nerve sheath diameter, transcranial color doppler
Introduction

Monitoring and regulation of intracranial pressure (ICP) are

essential in the comprehensive management of various

neurological disorders, especially traumatic brain injuries (TBI)

(1). Research indicates that up to 72% of TBI patients experience

elevated ICP within the first 24 h post-injury (2). Although

invasive ICP (ICPi) monitoring is widely used, it is constrained

by the need for specialized resources, expertise, and the potential

risks it entails, such as infection and hemorrhage (3). These

limitations highlight the ongoing need for noninvasive, accurate,

and accessible methods of ICP assessment in TBI patients.

It is acknowledged that the role of ICPi monitoring in TBI

patients undergoing primary decompressive craniotomy (DC)

remains a topic of debate. Proponents argue that maintaining

adequate cerebral perfusion pressure (CPP) is essential for TBI

management, and that without ICPi monitoring, it is challenging

to guide and implement CPP-directed treatments. Studies

indicate that many TBI patients continue to experience elevated

ICP post-DC, which can result in dangerously low CPP

(<60 mmHg), thus making ICPi monitoring critical for informed

treatment decisions (4, 5). Conversely, some experts oppose

routine ICPi monitoring, suggesting that experienced clinicians

can estimate ICP by evaluating pressure at the decompression

window and using CT or MRI to detect complications such as

recurrent hematomas or changes in ventricular size. They also

point to the increased costs and potential risks associated with

invasive monitoring. Furthermore, there is no consensus on

critical ICP thresholds after primary DC, and for severe TBI,

management strategies that focus on maintaining ICP below

20 mmHg have not demonstrated superiority over imaging and

clinical examination-based approaches (6, 7). Despite these

differing opinions, both sides emphasize the importance of

correctly interpreting monitoring data and acknowledge non-

invasive ICP monitoring as a valuable alternative.

Among various noninvasive approaches, measuring the optic

nerve sheath diameter (ONSD) via ultrasound has emerged as a

promising technique due to its simplicity, bedside applicability,
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and cost-effectiveness (8). The rationale behind this approach is

straightforward: elevated ICP causes distension of the optic nerve

sheath (ONS), leading to an increase in ONSD. Several studies

have shown a strong correlation between ONSD and ICP,

establishing it as a valuable parameter for noninvasive ICP

assessment (9–11). However, the clinical implementation of

ultrasonic ONSD measurement faces challenges due to

methodological inconsistencies, including variations in transducer

selection, measurement planes, and patient positioning, leading

to inaccuracies and limit the generalizability of results (9, 10).

Given these limitations, is there an alternative method that could

enhance the diagnostic capability for early prediction of

increased ICP based on ONSD images? One potential solution is

the application of ultrasound radiomics.

Ultrasound radiomics, an emerging and rapidly evolving field,

has transformed medical imaging by enabling comprehensive

feature extraction and in-depth analysis of tumor phenotypes

(12, 13). The confluence of advanced algorithms and artificial

intelligence has expanded the scope of radiomic analysis beyond

conventional boundaries, particularly in tumor classification and

prognosis, as evidenced by a growing body of research that

delineates its utility in lesion characterization (13–15). Despite

these advancements, there is a paucity of literature quantifying

the radiomic features of the ONS on sonographic imaging, an

area ripe for exploration in terms of its clinical applicability. In

light of this, investigating the comparative efficacy of current

machine learning models utilizing ultrasound radiomics for the

early diagnosis of intracranial hypertension (IH) is both timely

and highly significant.

In this study, we employed different machine learning

methodologies to develop and validate an integrated model that

combines radiomics features with clinical-ultrasound parameters to

predict the onset of early IH under different thresholds

(15 mmHg, 20 mmHg) in primary DC patients after TBI.

Moreover, the Shapley Additive Explanations (SHAP) technique

was utilized to interpret our models. This method helps clarify the

significance of individual features within the prediction model and

illustrates their contributions to specific predictions (16).
ence intervals; DCA, decision curve analysis; DICOM, digital imaging and
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Materials and methods

Patient population

This retrospective observational study’s materials were

collected at the Neuro-intensive Care Unit (NICU) of the second

hospital affiliated with Shandong First Medical University,

located in Taian, Shandong Province, China. It was conducted

from May 2018 to August 2024 and was approved by the

hospital’s Ethics Committee (Nos: 2021-A-037). A total of 199

patients with TBI who underwent primary DC were included

after a series of inclusion and exclusion criteria (Figure 1.

Flowchart for selecting the study population). All cases had

complete two-dimensional ultrasound images of ONS. The cases

were randomly divided into a training cohort and a testing

cohort in an 8:2 ratio.
Treatment methods

In TBI patients, the decision to perform primary DC is based

on injury mechanism, clinical presentation, Glasgow Coma Scale

(GCS) scores, and CT findings. Unilateral DC is performed for

hematomas confined to one hemisphere, while bilateral or

frontotemporal decompression is used for bilateral hematomas

or frontal lobe injuries. The surgical incision typically involves a

9 × 9 cm bone window, extended arcuately to the dura mater.

Hematomas, necrotic tissue, and blood clots are removed to

ensure hemostasis, and the dura mater is loosely closed or

covered with an artificial substitute. ICP is measured using

either an intraparenchymal probe or a ventricular catheter

connected to an external pressure transducer. The placement of

the ICP probe depends on lesion location, ipsilateral for

unilateral lesions and on the right side for diffuse injuries. ICP

management follows a protocol that includes sedation,

optimizing CPP, administering hyperosmolar fluids, and

hypothermia, as per institutional guidelines. Given the absence

of definitive guidelines for IH following primary DC, we

established cutoff values of 15 mmHg (mild elevation) and

20 mmHg (moderate to severe elevation) to assess the model’s

predictive performance across these thresholds.
Image acquisition

ONS imagings were performed within 24 h post-DC using

the Mindary M9 ultrasound system with a L12-4s probe (1–

5 MHz) (Shenzhen, Guangzhou, China). Patients were in a

supine position and the probe was applied to the closed upper

eyelid with standard gel, angled to capture the ONS in the

transverse plane. Adhering to the as low as reasonably achievable

(ALARA) principle, the ultrasound output was minimized for

safety. Measurements for ONSD were taken 3 mm behind the

optic disk, with duplicates in transverse section per eye to

reduce variability.
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Additionally, bedside middle cerebral artery (MCA)

assessments were also recorded by the Mindary M9 ultrasound

system equipped with an SP5-1s probe (1–5 MHz). bilateral

evaluation of MCA, including pulse index (PI), peak Systolic

Velocity (PSV), end-dystolic velocity (EDV), mean velocity

(MV). The definitive PI value was ascertained by averaging the

two side measurements, or by selecting the higher value in cases

of substantial discrepancy.
Radiological and clinical data analysis

Clinical records and imaging data were obtained from our

hospital’s routine documentation system and picture archiving

and communication system (PACS). A retrospective analysis was

conducted on clinical variables, including age, weight, height,

body mass index (BMI), gender, ejection fraction (EF), mean

arterial pressure (MAP), partial pressures of oxygen (PO2) and

carbon dioxide (PCO2) in arterial blood, heart rate, and

respiratory rate. Two experienced ultrasound specialists (QC and

WQQ), blinded to the ICPi value and clinical data,

independently evaluated the ONS images. One specialist had 4

years of experience, and the other had 15 years of expertise in

ultrasound examinations. Both had undergone standardized

training for ONSD measurements and reached consensus on the

image assessments.
Image segmentation

All US images were stored in Digital Imaging and

Communications in Medicine (DICOM) format and were

independently reviewed by two experienced ultrasound specialists

above. They manually segmented the region of interest (ROI) by

using ITK-SNAP software (version3.8.0, http://www.itksnap.org/).

A complete schematic diagram is depicted in Figure 2.

The reliability of intra- and inter-observer reproducibility was

assessed using the intraclass correlation coefficient (ICC).

A random sample of 60 patients was selected, including 18 with

IH and 42 with normal intracranial pressure (ICP <20 mmHg),

for ROI segmentation. This segmentation was performed by the

specialists one month before the study began. An ICC value

greater than 0.9 was considered to indicate strong agreement.
Feature extraction and selection

Radiomic features were extracted from the segmented ROI

regions using PyRadiomics (http://pyradiomics.readthedocs.io).

The extracted features were classified into three main categories:

(I) geometry, (II) intensity, and (III) texture. Geometric features

characterize the two-dimensional shape of ONS, while intensity

features represent the statistical distribution of voxel intensities

within the ONS. These intensity features reflect the first-order

statistical distribution of voxel intensities, providing insight into

the ONS’s overall brightness and contrast. Texture features
frontiersin.org
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FIGURE 1

Flowchart for selecting the study population. DC, decompressive craniectomy; ICP, intracranial pressure; ICPi, intracranial pressure invasive; MCA,
middle cerebral artery; NICU, neuro-intensive care unit; ONSD, optic nerve sheath diameter; TBI, traumatic brain injury; TCCD, transcranial color
doppler; IH, intracranial hypertension.
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capture the patterns and spatial distribution of intensities at higher

orders, offering additional information on the ONS’s internal

structure. Specifically, the extraction of textural features employs

a variety of methods such as the gray-level co-occurrence matrix

(GLCM), gray-level run length matrix (GLRLM), gray level size

zone matrix (GLSZM), Gray level dependence matrix (GLDM)

and neighborhood gray-tone difference matrix (NGTDM).

For feature Selection, Z-score normalization was applied to

standardize all features. Statistical analysis was performed using

the Mann–Whitney U-test, and features were selected based on

their p-values, with only those having a p-value <0.05 retained.

To evaluate feature repeatability, Spearman’s rank correlation

coefficient was computed. Features with a correlation coefficient

greater than 0.9 were considered highly correlated, and one of

the correlated features was excluded. The signature construction

from the discovery dataset was carried out using Least Absolute

Shrinkage and Selection Operator (LASSO) regression. LASSO

regression applies the regularization parameter λ to shrink

regression coefficients toward zero, eliminating irrelevant

features by assigning them a coefficient of zero. The optimal
Frontiers in Medical Technology 04
value of λ was determined through 10-fold cross-validation,

selecting the value that minimized cross-validation error.

LASSO regression modeling was performed using the scikit-

learn package in Python.
Development of machine learning models
and nomogram

After LASSO feature selection, the refined set of features was

used to develop radiomics models. To identify the classifier with

the highest performance in recognizing IH, we evaluated four

widely used machine learning algorithms: logistic regression

(LR), support vector machine (SVM), random forest (RF), and

K-Nearest Neighbors (KNN). The diagnostic efficacy of these

models was compared based on metrics such as the area under

the receiver operating characteristic curve (AUC), specificity,

positive predictive value (PPV), and negative predictive value

(NPV). The optimal radiomics model was determined based on

these comparisons.
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FIGURE 2

Process of this study. ROI, region of interest.
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For clinical-ultrasonic variables, univariate logistic regression

was first performed to identify significant predictors.

A subsequent multivariable analysis refined the final variables in

the training group to build the model. Odds ratios (ORs) and

95% confidence intervals (CIs) were calculated for each factor.

The same machine learning models used for the radiomic

signature were applied, with 5-fold cross-validation and a fixed

test cohort for consistent evaluation.

The radiomics nomogram was created by integrating both

radiomic and clinical data. Its diagnostic performance was

validated in the test cohort through receiver operating

characteristic (ROC) analysis. Calibration accuracy was assessed

using calibration plots and the Hosmer–Lemeshow test. The

clinical applicability of the predictive models was evaluated

through decision curve analysis (DCA).
Statistic analysis

We utilized MedCalc (version 20.015.0) for standard statistical

analysis, including Student’s t-test or Mann-Whitney U-test for

continuous variables (mean ± SD) and the chi-square or Fisher’s

exact test for categorical variables (ratios). For the extraction of

ultrasound radiomic features, Python (version 3.8.2) with

PyRadiomics was employed. The Python scikit-learn package was

used for LASSO regression modeling. We considered P-values

<0.05 as statistically significant.
Frontiers in Medical Technology 05
Results

Patients’ population and clinical-ultrasonic
characteristics

A total of 199 patients, comprising 130 males and 69 females,

were enrolled in our research, with 159 randomly allocated to the

training set and 40 to the test set. According to different ICP

thresholds, at 20 mmHg, the proportion of hypertension IH was

30.65%, and at 15 mmHg, the proportion of IH was 38.19%. The

Reasons for DC, including: Cerebral contusion/lacer-ation

(n = 34, 17.09%), Acute Intracerebral hematoma (n = 58, 29.15%),

Acute subdural hematoma (n = 107, 53.77%).

No significant disparities were observed between these cohorts

in (age, weight, height, BMI, gender, EF, MAP, PO2, PCO2, heart

rate, and respiratory rate), as detailed in Table 1 and

Supplementary S1. Notable distinctions (PI, ONSD, MV, EDV)

were found in the training set between normal and elevated ICP

groups, as well as in the validation set (PI, ONSD). Univariate

and multivariable logistic regression analyses also identified PI

and ONSD, as significant predictors (Table 2 and Supplementary

S2). These variables were integrated into a clinical predictive

model. Patients in the elevated ICP group (≥20 mmHg) had a

higher likelihood of elevated PI (OR, 4.965; 95% CI, 1.739–

18.247), increased ONSD (OR, 3.609; 95% CI, 1.73–7.523), and

reduced MV (OR, 0.723; 95% CI, 0.685–0.886), as well as

decreased EDV (OR, 0.914; 95% CI, 0.735–0.993). At the
frontiersin.org
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TABLE 2 Univariate and multivariable logistic regression analyses for selecting clinical features of model development (ICP ≥ 20 mmHg).

Variable Univariate analysis Multivariate analysis

OR (95% CI) p-value OR (95% CI) p-value
Age (years) 1.011 (0.983–1.041) 0.442

Weight (kg) 1.014 (0.987–1.042) 0.319

Height (cm) 1.019 (0.98–1.061) 0.330

BMI (kg/m2) 1.028 (0.926–1.142) 0.600

EF (%) 0.032 (0.001–11.649) 0.261

PI 6.971 (2.925–16.616) <0.0001 4.965 (1.739–18.247) 0.011*

MAP (mm Hg) 1.020 (0.983–1.058) 0.293

ONSD (mm) 4.733 (2.345–9.553) <0.0001 3.609 (1.732–7.523) 0.004*

PaO2 (mm Hg) 0.988 (0.975–1.001) 0.052

PaCO2 (mm Hg) 1.024 (0.913–1.150) 0.685

Respiratory rates (bpm) 1.064 (0.964–1.175) 0.218

Heart rates (bpm) 1.031 (0.993–1.07) 0.114

Sex 0.639 (0.331–1.233) 0.182

EDV 0.957 (0.933–0.981) 0.0005 0.914 (0.735–0.993) 0.005*

MV 0.978 (0.963–0.994) 0.006 0.723 (0.685–0.886) 0.001*

PSV 0.994 (0.989–1.010) 0.917

*Represents p < 0.05. OR, odds ratio; CI, confidence interval; bpm, breaths per minute or beats per minute; EDV, end-dystolic velocity of MCA; EF, ejection fraction; MAP, mean arterial
pressure; MCA, middle cerebral artery; MV, mean velocity of MCA; PCO2, partial pressure of carbon dioxide in arterial blood; PI, pulse index; PO2, partial pressure of oxygen in arterial

blood; PSV, peak systolic velocity of MCA.

TABLE 1 Baseline characteristics of patients in cohorts.

Variables Training cohort (n= 159) Testing cohort (n = 40)

All
(n= 159)

Normal
(n = 110)

Elevated(≥
20 mmHg)
(n= 49)

P
value

All
(n = 40)

Normal
(n= 28)

Elevated(≥
20 mmHg) (n = 12)

P
value

Age (years) 60.52 ± 10.93 59.88 ± 11.05 61.94 ± 10.61 0.354 62.50 ± 9.40 63.07 ± 9.71 61.17 ± 8.90 0.564

Weight (kg) 74.20 ± 10.89 73.95 ± 11.29 74.76 ± 10.03 0.862 75.15 ± 12.10 73.54 ± 12.70 78.92 ± 10.05 0.201

Height (cm) 168.48 ± 7.91 168.19 ± 8.32 169.14 ± 6.91 0.397 168.68 ± 7.25 168.07 ± 7.29 170.08 ± 7.27 0.428

BMI (kg/m2) 26.07 ± 2.76 26.08 ± 2.91 26.07 ± 2.42 0.984 26.36 ± 3.44 26.00 ± 3.77 27.22 ± 2.42 0.309

EF (%) 0.63 ± 0.05 0.64 ± 0.06 0.63 ± 0.05 0.584 0.62 ± 0.05 0.62 ± 0.05 0.61 ± 0.06 0.373

PI 1.19 ± 0.42 1.08 ± 0.37 1.43 ± 0.42 <0.001* 1.21 ± 0.39 1.15 ± 0.31 1.34 ± 0.54 0.04*

MAP (mm Hg) 86.79 ± 7.56 86.34 ± 6.92 87.80 ± 8.81 0.476 89.20 ± 9.84 88.96 ± 9.31 89.75 ± 11.40 0.847

ONSD (mm) 4.76 ± 0.50 4.65 ± 0.41 5.00 ± 0.60 <0.001* 4.84 ± 0.50 4.72 ± 0.43 5.13 ± 0.57 0.01*

PaO2 (mm Hg) 121.06 ± 24.83 122.07 ± 25.46 118.80 ± 23.44 0.444 119.35 ± 24.23 126.61 ± 24.28 102.42 ± 13.69 0.09

PaCO2 (mm Hg) 34.89 ± 2.63 34.93 ± 2.70 34.80 ± 2.50 0.633 35.95 ± 2.41 35.54 ± 2.28 36.92 ± 2.50 0.097

Respiratory rates
(bpm)

20.57 ± 3.01 20.48 ± 2.96 20.76 ± 3.14 0.526 20.18 ± 3.10 19.64 ± 2.57 21.42 ± 3.94 0.133

Heart rates
(bpm)

84.21 ± 8.22 83.61 ± 7.42 85.57 ± 9.73 0.165 84.20 ± 7.91 83.57 ± 7.67 85.67 ± 8.62 0.45

MV (cm/s) 62.54 ± 22.82 66.35 ± 23.24 53.97 ± 19.47 0.003* 62.04 ± 19.04 61.56 ± 17.31 63.17 ± 23.42 0.745

PSV (cm/s) 107.04 ± 29.30 107.35 ± 27.75 106.34 ± 32.80 0.966 111.17 ± 25.30 110.60 ± 24.88 112.50 ± 27.33 0.831

EDV (cm/s) 37.61 ± 14.69 40.15 ± 14.54 31.92 ± 13.51 <0.001* 39.11 ± 11.94 41.02 ± 11.56 34.67 ± 12.11 0.098

Sex 0.213 1.0
Male 104 (65.41) 68 (61.82) 36 (73.47) 26 (65.00) 18 (64.29) 8 (66.67)

Female 55 (34.59) 42 (38.18) 13 (26.53) 14 (35.00) 10 (35.71) 4(33.33)

*Represents P < 0.05. Numerical data are presented as mean ± standard deviation. Categorical data as numbers (n%); bpm, breaths per minute or beats per minute; EDV, end-dystolic velocity of
MCA; EF, ejection fraction; MAP, mean arterial pressure; MCA, middle cerebral artery; MV, mean velocity of MCA; PCO2, partial pressure of carbon dioxide in arterial blood; PI, pulse index of

MCA; PO2, partial pressure of oxygen in arterial blood; PSV, peak systolic velocity of MCA.

Fu et al. 10.3389/fmedt.2025.1485244
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15 mmHg threshold, a similar trend was observed, with elevated PI

(OR, 1.047; 95% CI, 1.002–1.073), increased ONSD (OR, 10.912;

95% CI, 4.332–27.716), and reduced MV (OR, 0.955; 95% CI,

0.925–0.987), along with decreased EDV (OR, 0.947; 95% CI,

0.912–0.983).
Radiomic signature models and
performances

A total of 107 handcrafted features are extracted, including 18

first order features, 14 shape features, and the last are texture

features. The Mann-Whitney U-test identified 87 radiomic

features with statistical significance. Following the Spearman rank

correlation test, 49 features were selected for further evaluation.

The Rad score was calculated using a LASSO regression model,

which identified 14 features at 20 mmHg and 18 features at

15 mmHg with nonzero coefficients (depicted in Supplementary
FIGURE 3

Radiomics feature selection using the LASSO algorithm and performance o
feature. Different colored lines represent the corresponding coefficients o
model. (C) Feature weight coefficients after selection. (D) ROC curves fo
cohorts. LASSO, least absolute shrinkage and selection operator; ROC, rece
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Table S3). The coefficients and mean standard errors (MSE)

obtained from 10-fold cross-validation are presented in

Figures 3A,B, while Figure 3C shows the coefficient values for

the final selected features at 20 mmHg. For the 15 mmHg data,

refer to Supplementary Figure S1.

Figure 4 illustrates the ROC curves for four distinct radiomic

models: LR, SVM, RF, and KNN, evaluated in both the training

and validation cohorts (Figures 4A,B for 20 mmHg, Figures 4C,D

for 15 mmHg). In the 20 mmHg training cohort, the RF model

demonstrated the highest efficacy, achieving an AUC of 0.941,

with an accuracy of 0.893, sensitivity of 0.694, specificity of

0.982, PPV of 0.944, and NPV of 0.878. In contrast, the LR

model outperformed the others in the 20 mmHg validation

cohort, with an AUC of 0.840, accuracy of 0.853, sensitivity of

0.696, specificity of 0.892, PPV of 0.800, and NPV of 0.858 (see

Table 3 for further details). The RF model’s performance in both

cohorts indicated potential overfitting. Consequently, to ensure

robustness and generalizability, the LR model was considered the
f the radiomics signature model. (A) LASSO coefficient profiles for each
f each feature. (B) Selection of the tuning parameter (λ) in the LASSO
r the radiomics signature LR model in both the training and testing
iver operating characteristic.
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FIGURE 4

ROC analysis of different models on rad signature. (A) ROC curves for the training cohort at 20 mmHg. (B) ROC curves for the testing cohort at
20 mmHg. (C) ROC curves for the training cohort at 15 mmHg. (D) ROC curves for the testing cohort at 15 mmHg. LR, logistic regression; SVM,
support vector machine; RF, random forest; AUC, area under the curve; ROC, receiver operating characteristic.

TABLE 3 Diagnostic performance of different models for predicting IH in training and test cohorts (≥20 mmHg).

Model_name Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Task
LR* 0.836 0.908 0.8606–0.9546 0.776 0.864 0.717 0.896 Train

0.850 0.891 0.7697–1.0000 0.833 0.821 0.667 0.920 Test

SVM 0.849 0.911 0.8566–0.9657 0.878 0.836 0.705 0.939 Train

0.825 0.853 0.6917–1.0000 0.667 0.929 0.800 0.867 Test

KNN 0.855 0.922 0.8801–0.9630 0.612 0.964 0.882 0.848 Train

0.750 0.804 0.6512–0.9560 0.417 0.893 0.625 0.781 Test

RandomForest 0.893 0.941 0.9062–0.9751 0.694 0.982 0.944 0.878 Train

0.700 0.812 0.6590–0.9660 0.833 0.643 0.500 0.900 Test

Clinic signature* 0.667 0.803 0.7276–0.8783 0.898 0.564 0.478 0.925 Train

0.775 0.735 0.5448–0.9254 0.583 0.857 0.636 0.828 Test

Nomogram* 0.843 0.918 0.8739–0.9621 0.816 0.855 0.714 0.913 Train

0.925 0.902 0.7637–1.0000 0.833 0.964 0.909 0.931 Test

*Represents models were constructed using LR. LR, logistic regression; SVM, support vector machine; RF, random forest; AUC, area under the curve; PPV, positive prediction value; NPV,

negative prediction value.
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FIGURE 5

Performance evaluation of clinical, radiomics, and nomogram models using AUC, DCA, and calibration curves. (A–C) Results for the training cohort.
(D–F) Results for the testing cohort. AUC, area under the curve; DCA, decision curve analysis.
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most suitable for clinical application (Figure 3D). The same

situation was also observed in both cohorts at 15 mmHg

(Supplementary Figure S1).
Integrated model development and
verification

At the threshold of 20 mmHg, the performance of the clinical,

radiomics, and nomogram models is also summarized in Table 3.

In the training cohort (Figure 5A), the clinical model achieved

an AUC of 0.803, the radiomics model achieved an AUC of

0.908, and the nomogram model achieved an AUC of 0.918. In

the testing cohort (Figure 5D), the clinical model attained an

AUC of 0.735, the radiomics model reached an AUC of 0.891,

and the nomogram model achieved an AUC of 0.902. The

decision curve analysis (DCA) of all three models is shown in

Figures 5B,E, demonstrating that, within the training cohort, the

nomogram model and radiomics model provided a higher net

benefit compared to the clinical model in predicting IH.

Calibration curves, presented in Figures 5C,F, illustrate the

concordance between the predicted and observed IH in both

cohorts. The Hosmer–Lemeshow test indicated no significant

difference between the predicted and observed lines in both the

training (P = 0.319) and testing cohorts (P = 0.125). Additionally,

the DeLong test confirmed that the nomogram and radiomics

models outperformed the clinical model in predictive accuracy in
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the training cohort (P = 0.001), while no significant advantage

was observed in the testing cohort (P = 0.115). Figure 6 illustrates

the nomogram designed for clinical application, where the total

score represents the probability of IH (20 mmHg) in post-DC

TBI patients. For the 15 mmHg data, refer to Supplementary

Figures S2, S3.
Explanation of prediction models for IH

The relationships between features and IH post-DC, which

were used to construct the optimal predictive model (clinical-

radiomic models), were analyzed using the SHAP algorithm. In

the IH prediction model (≥20 mmHg), we identified that features

such as original_firstorder_Maximum, original_shape_Voxel

Volume, and original_gldm_Dependence NonUniformity

Normalized were positively correlated with the occurrence of

IH (Figure 7A).

Furthermore, we demonstrated how to interpret the assessment

of a single patient within the model. For patient 1, the SHAP value

was higher than the baseline value, indicating that this patient

exhibited IH. The arrows representing the features highlighted

their quantitative contribution to the assessment of elevated

intracranial pressure (ICP) (Figure 7B). For instance, the value of

the feature original_glcm_Inverse Variance was −1.263 for this

patient, which positively contributed to the SHAP value. In

contrast, for patient 2, who had normal ICP, the SHAP value
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FIGURE 6

Clinical application of the nomogram in the prediction of IH (≥20 mmHg) in post-DC TBI patients.
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was noticeably lower than the baseline value. The feature

original_glrm_Gray Level NonUniformity Normalized had a value

of 2.3798, which decreased the SHAP value, indicating a lower

likelihood of IH.
Discussion

Machine learning provides objective, reliable, and accurate

models to support clinical decision-making (17). Several studies

(18–21) have highlighted its effectiveness in assisting medical

practitioners in identifying IH. However, radiomic studies

leveraging ONS ultrasound images through machine learning

remain limited. Our study demonstrates that ultrasound-based

radiomic models not only predict the early onset of increased

ICP following DC but also improve diagnostic performance when

combined with clinical features in a nomogram. These findings

suggest a promising non-invasive assessment method with

practical value and reliability for the early detection of IH in

post-DC patients.

As is well known, patients undergoing DC do not conform to

the Monroe-Kelly doctrine. This is because, after DC, the cranial

contents can bulge towards the decompressive bone window.

Such changes not only disrupt the original equilibrium state but

also affect cerebrovascular autoregulation. Consequently, the

traditional pressure-regulating mechanism, which relies on a

closed cranial cavity, becomes compromised. In this scenario, the

standard invasive ICP thresholds (e.g., 20 mmHg) are no longer

applicable to DC patients. Furthermore, the clinical applicability

of indices such as the PI, EDV and related non-invasive ICP

estimation formulas is also called into question. Although some

studies (22, 23) have attempted to assess ICP by observing

changes in the ONSD post-DC, these approaches are limited by

small sample sizes, poor reproducibility, and high operator

dependence, making large-scale clinical application difficult.

Scholars hold differing views on the threshold for defining IH

and its management after primary DC (24, 25). Some suggest that

when ICP reaches 15 mmHg, brain tissue in post-DC patients may

already be suffering from IH-related damage, necessitating
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proactive clinical interventions. In our study, we utilized two ICP

thresholds (15 mmHg and 20 mmHg) to distinguish post-DC IH.

The results revealed that radiomic features based on ONS

achieved stable AUC values around 0.9 in both the training

(0.908 vs. 0.950) and testing cohorts (0.891 vs. 0.889) for both

thresholds. In contrast, clinical features performed worse at the

15 mmHg threshold compared to 20 mmHg in both training

(0.795 vs. 0.808) and testing (0.681 vs. 0.735) cohorts. This

suggests that ONS radiomic features are more advantageous in

detecting early-stage ICP elevation.The observed results may be

attributed to radiomics extracted from ONS imaging, which

uncover subtle imaging features imperceptible to the human eye,

providing additional insights for IH prediction. Meanwhile, the

limited ultrasonic ONSD expansion from 15 to 20 mmHg,

combined with operator measurement errors, contributes to the

instability of the clinical model.

Through SHAP analysis, we observed that key radiomic

features primarily originate from the GLCM and the GLSZM.

GLCM features, such as contrast and correlation, capture the

spatial distribution relationships of pixel intensities within the

ONS. Early IH leads to ONS enlargement, causing blurred and

uneven reflective interfaces within the ROI. These changes alter

GLCM feature values, providing critical diagnostic information.

GLSZM features, particularly those representing large low-gray

regions, highlight changes in the proportion of hypoechoic or

anechoic areas within the ONS. These alterations are associated

with increased fluid volume and tissue acoustic property changes

due to edema, further aiding in the diagnosis of IH. In terms of

shape features, parameters such as roundness and aspect ratio are

influenced by variations in the shape of the ONS caused by

changes in ONSD. Alterations in roundness can effectively

quantify these changes, providing valuable diagnostic insights.

After rigorous selection and validation, these features collectively

characterize the pathophysiological changes of IH from multiple

dimensions, offering key information to support model

predictions and providing a foundation for clinical interpretation.

Additionally, our clinical data indicate that post-DC patients

with IH often exhibit ONS dilation alongside increased PI and

reduced EDV and MV, consistent with most studies (26–29).
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FIGURE 7

SHAP summary plots for the clinical-radiomic model in predicting intracranial hypertension. (A) Feature relevance and the contribution of combined
features to the model’s predictive performance. (B) SHAP force plots illustrating how the clinical-radiomic model distinguishes treatment responses in
two patients. Patient 1 has intracranial hypertension, while Patient 2 does not. The data presented in this figure are shown with two decimal places
following Z-score normalization. SHAP, Shapley Additive Explanations.
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However, minimal variations in respiratory rate, heart rate, and

MAP between groups can be attributed to stringent postoperative

ICP management, ensuring PaO2 and PCO2 are maintained

within optimal ranges. Although the clinical signature model

achieved an AUC of 0.803 in the training set and 0.735 in the

test set, these results fall short compared to previous studies (25)

reporting AUCs of 0.88–0.99. Discrepancies are largely due to

factors such as race, age, and measurement standards

significantly influencing ONSD measurements, leading to varying

cutoff values across studies (8). Summarizing these findings, we

conclude that ONSD and its related clinical models, at the
Frontiers in Medical Technology 11
current stage, lack the accuracy and reliability required to replace

invasive ICP monitoring, especially in post-DC TBI patients.

Finally, in our comparative analysis of predictive models, LR

demonstrated superior predictive performance compared to

SVM, RF, and KNN models, consistent with findings reported by

Kim (27). This advantage likely stems from the intrinsic linearity

of early IH data, which aligns with the linear algorithm of LR,

enabling it to outperform the nonlinear approaches of RF and

SVM. Although the RF model achieves high accuracy through

ensemble learning across multiple decision trees, its

generalizability is limited in smaller sample sizes, making it
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susceptible to overfitting. In contrast, the LR model exhibits greater

stability and efficiency, achieving comparable predictive

performance with smaller datasets, even when compared to

larger training cohorts.

This study has several notable limitations. First, its

retrospective and single-center design may have introduced

selection bias. Second, there remain ongoing debates regarding

the subjective nature of manual segmentation, particularly in

establishing boundaries. Future efforts aim to achieve full

automation through deep learning techniques. Third, unlike

typical TBI cases, post-DC TBI patients do not conform to the

Monroe-Kelly doctrine, and their ICP thresholds are less clearly

defined. Additional parameters, such as surgical incision size,

operation duration, and blood loss, may be necessary for more

accurate classification and evaluation. Fourth, the study focused

solely on ONSD imaging, overlooking the potential advantages of

a multimodal approach, which has shown significant promise in

similar contexts. Further prospective studies are needed to

explore whether integrating multimodal radiomic data could

improve the model’s predictive accuracy. Fifth, the small sample

size of the training and testing cohorts underscores the need for

larger studies to improve the predictive model. Expanding the

sample size, using stratified sampling, and applying regularization

techniques like LASSO or ridge regression can reduce bias,

prevent overfitting, and enhance model stability through

further validation.
Conclusion

Our study introduced and validated an integrated model based

on ONS ultrasonic imaging that combines clinical-ultrasonic

parameters with radiomics signatures for the early detection of

IH within the post-DC TBI patients at different thresholds. The

model, optimized with logistic regression (LR), demonstrated

superior diagnostic efficacy in our analysis. It offers a novel

avenue for precision medicine and has the potential to improve

clinical treatment strategies, ultimately aiming to enhance patient

outcomes in the critical period following TBI.
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