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Background: Segmentation of ischaemic stroke lesions from magnetic

resonance images (MRI) remains a challenging task mainly due to the

confounding appearance of these lesions with other pathologies, and

variations in their presentation depending on the lesion stage (i.e., hyper-

acute, acute, subacute and chronic). Works on the theme have been reviewed,

but none of the reviews have addressed the seminal question on what would

be the optimal architecture to address this challenge. We systematically

reviewed the literature (2015–2023) for deep learning algorithms that segment

acute and/or subacute stroke lesions on brain MRI seeking to address this

question, meta-analysed the data extracted, and evaluated the results.

Methods and materials: Our review, registered in PROSPERO (ID:

CRD42023481551), involved a systematic search from January 2015 to

December 2023 in the following databases: IEE Explore, MEDLINE,

ScienceDirect, Web of Science, PubMed, Springer, and OpenReview.net. We

extracted sample characteristics, stroke stage, imaging protocols, and

algorithms, and meta-analysed the data extracted. We assessed the risk of bias

using NIH’s study quality assessment tool, and finally, evaluated our results

using data from the ISLES-2015-SISS dataset.

Results: From 1485 papers, 41 were ultimately retained. 13/41 studies

incorporated attention mechanisms in their architecture, and 39/41 studies

used the Dice Similarity Coefficient to assess algorithm performance. The

generalisability of the algorithms reviewed was generally below par. In our

pilot analysis, the UResNet50 configuration, which was developed based on

the most comprehensive architectural components identified from the

reviewed studies, demonstrated a better segmentation performance than the

attention-based AG-UResNet50.

Conclusion: We found no evidence that favours using attention mechanisms in

deep learning architectures for acute stroke lesion segmentation on MRI data,

and the use of a U-Net configuration with residual connections seems to be

the most appropriate configuration for this task.

Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/view/

CRD42023481551, PROSPERO CRD42023481551.
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1 Introduction

Stroke remains a leading cause of mortality and long-term

disability worldwide (1), placing a substantial burden on

healthcare systems and societies (2). The majority of strokes are

ischaemic (3). They can occur in different locations and are

largely heterogeneous in appearance (3). After stroke onset, the

progression of ischaemic injury continues for minutes-to-days,

depending on brain region vulnerability, cellular constituents,

and residual perfusion levels (4). There are three main stages

used to describe the manifestations of stroke in radiological

images: acute (less than 24 h), subacute (24 h to 5 days) and

chronic (afterwards). Surrounding the ischaemic core, or

irreversibly damaged tissue, appears a region that is functionally

impaired, but potentially salvageable, known as ischaemic

penumbra (5). Accurate diagnosis during acute-to-subacute

stages allows for interventions (e.g., thrombolytic drugs or

surgery) that may potentially salvage the penumbral area.

Magnetic resonance imaging (MRI) technology has not only

enabled the non-invasive investigation of human brain features,

but also of ischaemic injuries, thanks to the high dimensionality

and particularly low signal-to-noise ratio found in MR images.

Stroke lesions in the acute phase appear subtle in structural

sequences but display very high intensities in diffusion weighted

images (DWI) in most cases. Subacute strokes show greater mass

effect, stronger and well-defined signal in structural sequences

with well-defined margins, as well as in DWI in general.

Segmentation of the infarcted regions in these images, as well as

the normal tissues, has been important to advance stroke

research and, ultimately, patient outcome. Since manual

segmentation methods are time-consuming and subject to inter-

rater variability, there has been a growing interest, since 2015 (6),

in applying deep learning (DL) techniques to automate stroke

lesion segmentation tasks and enhance their accuracy. DL

methods can automatically extract intricate spatial and textural

features within MR images, while requiring low-to-moderate

subject matter expertise. DL also addresses long-dated machine

learning-related challenges, such as discerning patterns in high-

dimensional data, such as imaging data. To this end, various

ischaemic lesion segmentation (ISLES) challenges have been

taken place within the context of one of the major international

medical image processing conferences: the Medical Image

Computing and Computer Assisted Intervention (MICCAI), in

years 2015, 2016, 2017, 2022, and 2024.

Not surprisingly, several methods have been proposed to

automatically assess ischaemic lesions from MRI using DL. These

have been analysed previously (Figure 1), but the data that

pertains to segmentation of ischaemic stroke lesions have not

been meta-analysed, nor their outcomes have been independently

evaluated. We systematically review the literature from 2015 to

2023 to investigate the accuracy and generalisability of the

proposed DL methods in acute-to-subacute stroke lesion

segmentation on MRI, focusing on details of DL architectures

and attention mechanisms, seeking to answer the following

question: What would be the optimal DL model architecture for

acute and subacute ischaemic stroke lesion segmentation on

brain MRI? After meta-analysing the relevant data extracted from

the sources reviewed, we conducted a pilot analysis to evaluate as

many of the elements identified in the review as possible.

2 Background

2.1 Deep learning (DL) architectures

Convolutional neural networks (CNNs) are useful architectures

for processing data with grid-like topology (e.g., 2D/3D grid of

pixels/voxels) (7). They employ convolution blocks to produce

“feature maps” through the use of sparse inter-layer interactions,

with kernels smaller in size than the input (8). A standard

convolutional block in a CNN (Supplementary Data Sheet 2 S1a)

consists of a linear convolution operation on a kernel, which

produces a feature map that is passed through an activation

function to introduce non-linearity and enable the network to

learn more complex relationships in the data (9), before it gets

down-sampled by a pooling operation.

CNNs are widely used in medical image segmentation (10),

with an architecture that typically ends with fully-connected layer

(s) responsible for doing the predictions (e.g., pixel/tissue

classification). Predictions are connected to a cost or loss

function which measures their discrepancy with ground-truth

data. Network parameters are then optimized through

backpropagation, by minimizing the loss function until

convergence, often aided by regularisation methods (9). However,

(i) they produce feature maps with lower spatial dimensions than

the input image, and (ii) they classify individual pixels using

patches extracted around each pixel, and those often overlap

significantly, which in turn creates redundancy in convolution

operations. Fully Convolutional Networks (FCNs) address both

drawbacks (i) by replacing CNN’s fully-connected layer(s) with

“up-sampling convolutions” that output images of the same size

as the input, and (ii) by generating likelihood maps instead of

pixel-by-pixel predictions. However, the FCN’s output maps are

of particularly low resolution (6).

U-Net architecture was first used for image segmentation in

2015 (11), and it has since achieved overwhelming success. It

Abbreviations

ADC, apparent diffusion coefficient; AIS, acute ischemic stroke; AG, attention

gate; BCE, binary cross-entropy; BN, batch normalization; BOLD, blood

oxygenation level dependent; CNN, convolution neural network; CSF,

cerebrospinal fluid; DenseNet, dense convolutional network; DL, deep

learning; DWI, diffusion-weighted imaging; EHR, electronic health record; ES,

early stopping; FCN, fully-convolutional network; FE, fixed-effects; FLAIR,

fluid-attenuated inversion recovery; FPR, false positive rate; FNR, false

negative rate; GCN, global convolution network; HD, Hausdorff’s distance;

HPC, high performance computing; IQR, interquartile range; MA, meta-

analysis; ML, machine learning; MLP, multi-layer perceptron; MRI, magnetic
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uses a symmetric encoder-decoder structure based on

convolutional blocks, where down-sampling (encoder) operations

compress images and up-sampling (decoder) operations restore

them, until they reach the input image’s original size (12), as

opposed to FCNs. U-Nets also introduce skip connections that

connect encoder-decoder layers of equal depth, hence allowing

them to train with limited data while avoiding the vanishing

gradient problem (13).

The ResNet architecture was published shortly after U-Net

(14), to further tackle the vanishing gradient problem, also using

skip connections. A standard ResNet block (Supplementary Data

Sheet 2 S1b) consists of an “identity path” (green arrow in the

figure) that can bypass the “residual path”, thus giving the

network the option to simply copy activations to the next layer

and preserve information when learned features do not require

more depth. Skip connections also tackle the degradation issue,

where adding layers leads to higher training error since accuracy

gets “saturated” as the network keeps learning the data (15).

ResNets can improve model convergence speed (16), but since

most residual blocks only slightly change the input signal, they

produce a large amount of redundant features (17). This is where

DenseNets help.

The first DenseNet architecture was published shortly after

ResNet (18). It employs dense connections interconnecting all

layers in order to maximize information and gradient

propagation (13). A standard Dense block is represented in

Supplementary Data Sheet 2 S1c. Original inputs and activations

from previous layers are both kept at each block, hence

preserving the global state, while encouraging feature reuse with

less network parameters (12). Reusing features across layers also

allows DenseNets to tackle the vanishing gradient problem (19).

To solve the difficulties in optimizing network parameters, and

given the impact of U-Net configurations, an out-of-the-box model

that combines two basic types of networks: 2D U-Net and 3D

U-Net in three different configurations to perform semantic

segmentation of 3D images has gained popularity since its

publication in 2021 due to its high level of performance in

multiple biomedical applications. It is referred as nn-UNet (20)

and owes its high performance to its architectural design that

allows its self-configuration in any new given medical image

segmentation task.

2.2 Attention mechanisms

When our eyes focus on a certain object, groups of filters

within our visual perception system are used to create a blurring

effect so that the object of interest is in focus, and the rest is

blurred (21). Attention mechanisms attempt to achieve the same

“blurring effect” but for machine-based image processing.

Attention can capture the large receptive field and retrieve

underlying contextual details by modelling the relationships

between local and global features (22). The impact of

incorporating attention mechanisms into a DL architecture has

long been debated, yielding contradictory results (23–26). Also, it

is not clear which way of incorporating attention will be more

beneficial for a specific task. Therefore, to shed light on this issue

for our particular purpose—ischaemic acute and subacute stroke

lesion segmentation—we specifically extract and analyse the type

and presence of attention mechanisms in the sources reviewed.

In this work, we categorize attention mechanisms as “spatial”,

“channel”, or “hybrid”.

FIGURE 1

Summary of the scope of the review articles published from 2017 until 2023 that cover similar topics as the present review, and have contributing

sources that partially overlap with the ones analysed here.
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“Spatial attention” (Supplementary Data Sheet 2 S2a) is

responsible for generating masks that enhance the features that

define a specified object (e.g., lesion) on a given feature map,

therefore enhancing the input to subsequent layers of a

network (21). Examples of spatial attention methods include

attention gates, i.e., computational blocks to implement

“attention” as described above; self-attention, which operates

solely on input sequences, thus enabling a model to further

exploit spatial relationships within input scans (27); and cross-

attention [e.g., Gomez et al. (28)], which enables the network

to simultaneously process encoder and decoder features, in

order to pass the most aligned encoder features with respect to

decoder features of same depth, and therefore decrease noisy

signals in skip connections (27).

“Channel attention” (Supplementary Data Sheet 2 S2c) refers

to the process of assigning a weight to each feature map or

channel, emphasizing those that contribute most significantly to

the learning (21). Conversely, spatial attention assigns weights to

pixels. Each map specializes in detecting specific features (e.g.,

horizontal edges, brain anatomy). Examples of channel attention

methods include squeeze-and-excitation blocks (29), which were

used by Woo et al. (30) and Lee et al. (31). In summary, channel

attention focuses on the importance of different feature maps,

while spatial attention focuses on the importance of specific

regions within a feature map.

“Hybrid attention” combines spatial and channel attention.

Examples include dual attention gates, which combine spatial

and channel attention gates (sAG + cAG) (32); and multi-head

attention, which uses parallel processing by applying attention

across multiple “heads” simultaneously, where each head may be

configured to implement any channel or spatial attention

operation (27).

3 Materials & methods

3.1 Protocol registration

We registered this systematic review protocol with the

International Prospective Register of Systematic Reviews

(PROSPERO), registration number: CRD42023481551 (November

2023). We conducted our review following the PRISMA

guidelines (33, 34).

3.2 Search strategy

We conducted a literature search (January 2015–December

2023) for papers published in IEEE Explore, MEDLINE,

ScienceDirect, Web of Science, PubMed, Springer, and

OpenReview.net. We identified keywords by expanding five

subject components: accuracy, acute ischaemic stroke, deep

learning, lesion segmentation, and MRI.

We also did citation tracking of reviewed articles, and hand-

searching of the two journals “Stroke” and “NeuroImage:

Clinical” (Recall: 100%). Two reviewers (M.B. and M.C.V.H.)

conducted the main search, paper selection, and data extraction,

and discrepancies were resolved by discussion. The full search

strategy is provided in Supplementary Data Sheet 1 A.

3.3 Eligibility criteria

Table 1 summarizes the selection criteria, justifying the basis

for inclusion and exclusion of the different articles found during

the search. Briefly, studies were included if presented (a) DL

TABLE 1 Study selection criteria.

Inclusion criteria Exclusion criteria Rationale for inclusion/exclusion

Stroke types Ischaemic Haemorrhagic Differences in clinical presentations, lesion appearances, & aetiologies

Stroke stages • Acute

• Subacute

• Hyperacute (unless in minor proportion in

the dataset)

• Chronic

Prioritize stages where MRI plays a more prominent role in diagnosis

and treatment planning

Imaging • All MRI modalities

• All scanner types

• All CT modalities

• Any other non-MRI modality

MRI allows in vivo assessment offering better soft tissue contrast &

resolution than CT and PET

Algorithms • All DL approaches (e.g.,

supervised, unsupervised)

• Algorithms segmenting both:

ischaemic core and penumbra

• Non-DL algorithms

• Algorithms segmenting only WMH or

brain tissue/tumours

• Algorithms performing semi-automated

segmentation (with human interaction)

• Algorithms running on simulated/

synthetic lesions

DL is the current state-of-the-art computational approach, much better

than others at learning complex hierarchical features

Population Humans (all ages/sexes) • Non-human studies (e.g., animal-based)

• Human studies using synthetic data

Human-based studies are more clinically relevant. Synthetic data may

not fully capture variations and complexities of real clinical stroke

lesions

Publishing • Peer-reviewed studies

• Proceedings of MICCAI, MIDL,

and IEEE-led conferences

• Publications in English

• Publications between 2015 and

2023

• Pre-prints

• Studies not available in any of the

searched databases

To only retain the most reliable sources of information while also

aiming for a wide readership

Completeness Studies with sufficient information

to be reproduced

Studies not reporting segmentation

performance scores

Reproducibility is key in scientific research
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algorithm(s)/architecture(s) for segmenting ischaemic stroke

lesions in acute and subacute phases in humans, from MRI, and

were peer-reviewed and indexed in any of the databases searched.

Studies were excluded otherwise.

3.4 Data extraction

For each paper, we extracted the following information:

primary outcomes and measures, image acquisition protocol(s),

sample characteristics, ground-truth data, data pre-processing,

learning approach, model architecture, model training, model

hyper-parameters, model validation, external validation,

performance results, and generalisability of the proposed

approach as per custom calculation. To cross-check data entry, a

reviewer (M.C.V.H.) performed double extraction independently

and blind to prior extraction results.

3.5 Data analysis

We analysed the extracted results using custom-built scripts in

python. We calculated fixed-effects and random-effects as part of a

whole group analysis. For these analyses we used the reported dice

similarity coefficients (DSC) and their 95% confidence intervals

(CI) to estimate the effect size. For the effect estimates we used

the weighted average of the reported mean DSC. We further

divided the studies in two groups: (i) studies using attention

mechanisms, and (ii) studies not using attention mechanisms

and repeated the analyses for each group. We also conducted a

sensitivity analysis using the precision metric (instead of the

DSC) to estimate the effect size. Lastly, we conducted a meta-

regression analysis to assess whether there is statistically

significant relationship between the presence of attention

mechanisms and the likelihood of high mean DSC across studies.

We further used the DSC and the standard errors for generating

a funnel plot, followed by the Egger’s test, to assess possible bias

in the meta-analysis.

3.6 Publication quality analysis

We assessed the sources selected following the NIH’s Study

Quality Assessment Tool (https://www.nhlbi.nih.gov/health-

topics/study-quality-assessment-tools).

3.7 Pilot analysis

We conducted a pilot analysis leveraging the findings from our

literature analysis in an independent and publicly available sample.

The specific aims of this pilot were two-fold: (1) proposing an

architecture that leverages the findings of our systematic review

in terms of best development practices: use 2D model with

image-wise training, and increase network depth while leveraging

the power of skip connections by combining U-Net and ResNet;

and (2) to test, in the architectural choice that is most promising,

the main points from the analyses (24 experiments conducted in

total): with vs. without attention mechanisms, using a compound

loss function vs. a region-based loss function, and using input

images of a single modality (DWI) vs. input images of multiple

modalities, to make informed recommendations for developers.

3.7.1 Dataset

We used the ISLES-2015-SISS dataset, published by the

MICCAI 2015 conference (35). It consists of brain MRI from 28

subacute stroke cases to use for model training. For each case, a

set of five MRI sequences are provided: T1-weighted (T1-WI),

T2-weighted (T2-WI), diffusion-weighted (DWI), and fluid-

attenuated inversion recovery (FLAIR), along with the

corresponding ground-truth masks. The data were already

anonymised by removing patient information from files and

facial bone structure from images.

3.7.2 Data pre-processing
The following data pre-processing steps were conducted:

intensity-based normalisation using Min-Max scaling, intensity-

based skull-stripping using BET2 (performed by challenge

organizers), rigid co-registration to the FLAIR sequences

(performed by challenge organisers).

3.7.3 Segmentation architecture, model training
and evaluation

We implemented the DL architecture, AG-UResNet50,

inspired by multiple papers (36–42), especially Guerrero et al.’s

UResNet (39), Jin et al.’s RA-UNet (41), and Gheibi et al.’s

CNN-Res (42). AG-UResNet50 is a five-level end-to-end U-Net

(Supplementary Data Sheet 1 B1), with a ResNet50 replacing its

encoder path (43). Using U-Net in combination with ResNet50

allows us to leverage the power of skip connections further (44),

and make the network deeper. This makes it easier for the

gradient to flow from output layers back to input during back-

propagation, while handling the vanishing gradient problem.

Zhang et al. (45) identified ResNet as an architecture that can

improve segmentation of small lesions. Max-pooling was used for

down-sampling the first set of feature maps produced by the

model, since it can extract extreme features (e.g., lesion edges)

well. Convolution blocks with stride two were used for remaining

down-sampling operations, in order to better retain image details

(13). On the decoder side, we simply used the U-Net’s

deconvolution blocks, but with Leaky ReLU activation instead of

ReLU, in view of its better results in medical image analysis (46),

as also demonstrated by Karthik et al. (47). We kept the up-

sampling interpolation algorithm, which basically inserts new

elements between pixels in the image matrix. Feature maps from

the encoder are combined with those from the decoder in the

same depth using concatenation. “Attention concatenation”,

which was used here, works by incorporating attention gates

(AGs) in skip connections (22), as seen in Karthik et al. (48),

Nazari-Farsani et al. (49), and Yu et al. (50). An AG takes two

input vectors that are added element-wise (Figure 2), resulting in

aligned weights becoming larger and unaligned weights smaller.
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The output vector then goes through ReLU activation, 1 × 1

convolution, and sigmoid activation to produce the attention

coefficients/weights. Coefficients are then up-sampled to the

original dimensions of the input vector using trilinear

interpolation, before being multiplied element-wise. The final

output is passed along in the skip connection.

During training, we used a compound loss function mixing

Binary Cross-Entropy (BCE) and Dice loss. BCE loss

computed the gradient based on the difference in probability

distribution of each pixel in the predicted vs. real sample (51),

while Dice loss directly computed the gradient using the Dice

score of predicted vs. real samples (18). From a regularisation

standpoint, we used pixel dropout, learning rate adjustment

and data augmentation methods, while for optimisation, we

used Adam function and batch normalization. From a training

infrastructure standpoint, the model was developed, trained

and tested on Azure Databricks (python:Torch), using one

sizeable driver: CPU:16 cores; OS:Ubuntu; RAM:56GB;

Runtime:13.2ML. We evaluated the model performance using

DSC, and used five-fold cross-validation. The full code used

for this pilot is available from GitHub (https://github.com/

Elpazzu/UoE-Pilot-Analysis/)

4 Results

4.1 Search results

The search yielded 1,485 papers, of which 41 were ultimately

retained (Figure 3).

All papers had segmentation as primary outcome. Fewer had

prognosis (6 studies) or functional (3 studies) outcomes.

Prognosis studies were either trying to predict tissue fate or

lesion volume [e.g., Wong et al. (52), Wei et al. (53)].

Functional studies mostly tried to predict the modified

ranking scale score (mRS). Only one paper explicitly had

diagnosis as primary outcome, but practically, segmentation

and diagnosis are tightly linked, since by segmenting lesion

pixels, the algorithm is effectively helping physicians with

the diagnosis.

4.2 Sample characteristics

As Table 2 shows, patients were all adults of 18 years old and

above, and males were generally slightly over-represented (58% on

average), except in few studies where the opposite was true [e.g.,

Moon et al. (57)]. From a stroke severity standpoint, reported

mean NIHSS (81) were always on the “minor” or “moderate”

ranges (8 studies). Although both subacute and acute stroke

stages were in scope, most studies (23/41) included exclusively

acute ischaemic stroke cases. Reported patient mean “time-since-

stroke” (TSS) were also exclusively in the acute interval, with 2

studies actually very close to the hyperacute-acute limit. Only four

papers used sample sizes above 500 (Mean 252.2), and samples

were most often collected from multiple centres (27 studies vs. 13

leveraging only one centre). Supplementary Data Sheet 2 S3 shows

a graphical illustration of the sample characteristics.

4.3 Imaging acquisition and manipulation

Table 3 shows the imaging data extracted from the reviewed

sources, and Figure 4 plots the correspondence between the

dimensions of the images used as input to the reviewed

algorithms (i.e., 2D, 2.5D, or 3D) and the spatial resolution and

the manipulation of these images during training (i.e., patch-wise

or image-wise). Most studies (27/41) used images of high or very

high spatial resolution. DWI modality was by far the most used

modality (39 studies), followed by FLAIR (19 studies). Also, most

studies (28/41) adopted a multimodal approach, applying image

fusion early (25 studies), late (2 studies), or in a hybrid manner

(1 study). Twenty-seven studies used a 2D-based approach and

twelve a 3D-based approach (Table 3). 2D models exclusively

used high- or very high-resolution images, whereas 3D models

used mostly moderate- or low-resolution images, which seems

counter intuitive (Figure 4a). 3D models adopted patch-wise

training in 10/12 studies (Figure 4b). Most studies (25/41)

reported mismatch between the stroke lesion borders on different

image sequences; 15 to DWI-FLAIR mismatch, and 12 studies

referred to diffusion-perfusion (DWI-PWI) mismatch. The

magnetic field of the scanner(s) was 1.5 T and 3 T in 27 studies,

FIGURE 2

Architecture of an attention gate (AG), as used in our pilot analysis.
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only 3 T in nine studies, and only 1.5 T in three studies. See pie

charts in Supplementary Data Sheet 1 B.

4.4 Data pre-processing

Eighteen studies used proprietary datasets (Table 4), 22 used

one or a combination of ISLES-2015 (35), ISLES-2017 (82) or

ISLES-2022 (4), and two used data related to the DEFUSE or

iCAS studies (83–85). In relation to skull-stripping, 37 studies

performed an intensity-based approach (using BET2/ITK

software), one study used an atlas-based approach [Moon et al.

(57) using Kirby/MMRR template], and one study used DL to

reduce sensitivity-to-noise (86) [Liu et al. (32) using in-house

“UNet BrainMask”]. Inter-patient image registration onto a

standard space (e.g., MINI) and/or intra-patient registration

(e.g., registration of different sequences) were performed in 29

studies. Notably, Gui et al. (80) introduced the unsupervised,

attention-based ConvNXMorph model to perform cascaded

image registration before feeding the data into the

segmentation algorithm.

4.5 Deep learning (DL) architectures

Within the 39/41 studies that performed semantic

segmentation, 37 studies used U-Net-based models (Figure 5).

But none of them used the original U-Net as-is (11), with

perhaps Cornelio et al. (77) and Aboudi et al. (63) being the

closest. ResNet architecture was the second most used (8 studies),

FIGURE 3

Flow chart of the identification, screening, and paper selection process.
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TABLE 2 Characteristics of the samples of the studies included in the review. See full data extraction table in Supplementary Data C.

First author Sample
size

Number of
medical
centers

Stroke
stage

Age
range

Gender Mean
NIHSS

Mean
stroke-to-
MRI time

Mean
lesion
volume

Lesion
volume
ranges

SC: single-center;

MC: multi-center

Acute;

Subacute

M: Male

F: Female

(in ml) (in ml)

Karthik et al.

(47)

64 MC: 3 Subacute [18+] – – – 17.59 [1.0, 346.1]

Gómez et al.

(28)

75 MC: 2 Acute [18+] – – – 37.83 [1.6, 160.4]

Olivier et al.

(54)

929 MC: 6 Acute

Subacute

[16–94] M: 63.7%

F: 36.3%

7.6 68.8h 21.84 –

Clèrigues et al.

(55)

114 MC: 4 Acute

Subacute

[18+] – – – SISS: 17.59

SPES: 133.21

SISS: [1.0, 346.1]

SPES: [45.6,

252.2]

Liu et al. (56) 64 MC: 3 Subacute [18+] – – – 17.59 [1.0, 346.1]

Moon et al. (57) 79 - Acute – M: 44.3%

F: 55.7%

9.3 83.8h – [0.0, 250]

Zhang et al. (19) 242 SC: 1 Acute [35–90] M: 60.3%

F: 39.7%

– – – –

Wong et al. (52) 875 SC: 1 Acute – M: 48.9%

F: 51.1%

6 - – –

Khezrpour et al.

(58)

64 MC: 3 Subacute [18+] – – – 17.59 [1.0, 346.1]

Hu et al. (59) 75 MC: 2 Acute [18+] – – – 37.83 [1.6, 160.4]

Gheibi et al. (42) 44 MC: 2 Acute – – – – – –

Kumar et al.

(60)

189 MC: 6 Acute

Subacute

[18+] – – – SISS: 17.59

SPES: 133.21

IS17: 37.83

SISS: [1.0, 346.1]

SPES: [45.6,

252.2]

IS17: [1.6, 160.4]

Liu et al. (16) 79 MC: 2 Acute [18+] – – – SPES: 133.21

LHC: -

SPES: [45.6,

252.2]

LHC: -

Zhao et al. (61) 582 SC: 1 Acute - – – – – –

Liu et al. (32) 1,849 SC: 1 Acute

Subacute

[52–73] M: 52.9%

F: 47.1%

3.4 17.7h 3.12 [1.55, 5.33]

Karthik et al.

(48)

64 MC: 3 Subacute [18+] – – – 17.59 [1.0, 346.1]

Liu et al. (62) 114 MC: 4 Acute

Subacute

[18+] – – – SISS: 17.59

SPES: 133.21

SISS: [1.0, 346.1]

SPES: [45.6,

252.2]

Aboudi et al.

(63)

64 MC: 3 Subacute [18+] – – – 17.59 [1.0, 346.1]

Pinto et al. (64) 75 MC: 2 Acute [18+] – – – 37.83 [1.6, 160.4]

Choi et al. (65) 54 MC: 2 Acute [18+] – – – 37.83 [1.6, 160.4]

Kim et al. (66) 296 SC: 1 Acute [58–79] M: 61.3%

F: 38.7%

2.3 12.7h 12.19 [0.0, 279.4]

Woo et al. (30) 429 SC: 1 Acute [24–98] M: 62.3%

F: 37.7%

– 21.4h – –

Lee et al. (31) 429 SC: 1 Acute [24–98] M: 62.3%

F: 37.7%

– 21.4h 27.44 [0.3, 227.6]

Lee et al. (67) 472 SC: 1 Acute [19+] M: 63.3%

F: 36.7%

3 4.9h 3.62 [0.52, 71.8]

Karthik et al.

(68)

64 MC: 3 Subacute [18+] – – – 17.59 [1.0, 346.1]

Zhang et al. (69) 64 MC: 3 Subacute [18+] – – – 17.59 [1.0, 346.1]

Ou et al. (70) 99 SC: 1 Acute – – – – – –

Vupputuri et al.

(71)

189 MC: 6 Acute

Subacute

[18+] – – – SISS: 17.59

SPES: 133.21

IS17: 37.83

SISS: [1.0, 346.1]

SPES: [45.6,

252.2]

IS17: [1.6, 160.4]

Abdmouleh

et al. (72)

64 MC: 3 Subacute [18+] – – – 17.59 [1.0, 346.1]

Duan et al. (73) 120 SC: 1 Acute – – – – – –

Lucas et al. (74) 75 MC: 2 Acute [18+] – – – 37.83 [1.6, 160.4]
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while DenseNets were only used in three studies. Data

augmentation was the most used regularisation method (30

studies), whereas each of dropout, early stopping, weight decay,

class weighting, and learning rate adjustment were used in 9–13

studies. More papers used image-wise training (27 studies vs. 16

for patch-wise training); 7/8 studies that were dealing with

smaller mean lesion volumes (<40 ml) used patch-wise

training. In addition, none of the papers performed

uncertainty quantification, and 32 algorithms were end-to-end

(vs. 9 multi-module). Twenty-five studies used Dice loss

(Table 5), either mixed with other loss functions (10 studies)

or standalone (15 studies). Cross-entropy loss was used in 19

papers, nine times standalone. Focal loss was only used in four

papers, and two papers used Liu et al.’s custom-built loss

function (16). Twelve studies used attention: five used hybrid

attention, four spatial attention, and three used channel

attention (Table 5). Studies deploying ResNet-based

architectures did not incorporate attention. Four studies

embedded deep supervision layers within their U-Net

architecture, effectively applying auxiliary supervision to

intermediate decoder outputs (i.e., lesion masks) in order to

refine feature representation. Such layers are also part of the

self-configuring and task-agnostic nnU-Net model (20), which

was leveraged by two studies in our review, both on 3D

image inputs.

4.6 Performance and generalisability

As Table 6 shows, the performance metrics most frequently

used across the studies reviewed were the overlap metrics Dice,

Recall, and Precision, as well as the Hausdorff distance (87). Six

papers only used one single metric. To comparatively evaluate

the models according to their performance, we assigned a

generalisability score to each of the included studies based on

sample representativeness—considering sample size, number of

study sites, gender equality, age range, length of the data

collection period, number of scanners, external validation

performed –, ground-truth data, and access to clean code

(Table 6, third column from right to left). Liu et al. (32) and

Jeong, et al.’s (79) algorithms were deemed “highly”

generalisable, whereas 19 algorithms had “low” generalisability.

Plotting the reported performance against the generalisability

scores obtained revealed that Dice and generalisability scores

were positively correlated (Supplementary Data Sheet 2 S4a).

Only six papers analysed segmentation performance in relation

to lesion size (i.e., on small vs. large lesions), and in four of them,

accuracy on small lesions was lower or significantly lower

(Figure 6b). As shown in Supplementary Data Sheet 2 S4c, lesion

volume ranges differed substantially between studies, and all

cases with low mean Dice (<0.5) (8 studies) reported low mean

lesion volumes (<40 ml), while all cases with higher lesion

volumes (>60 ml) (4 studies) reported high Dice scores (>0.68).

In other words, segmentation performance was generally better

when lesions were larger.

As shown in Figure 6a, Dice scores were above the overall mean

and relatively consistent across T2-WI, T1-WI, and FLAIR imaging

modalities (mean Dice around 0.7), while PWI exhibited lower-

than-average performance (mean Dice 0.38). Only for DWI did

all the data points fall within the IQR (between 25th and 75th

percentiles), as outliers with below-average Dice scores were

observed for FLAIR (three), T1WI (two) and T1WI (one).

Additionally, the lower half of the IQR (25th-to-50th percentile)

was substantially wider than the upper half (50th-to-75th

percentile) for DWI, whereas the opposite pattern appeared in

the IQR for PWI.

We also saw a positive correlation between spatial resolution

and reported segmentation performance (Supplementary Data

Sheet 2 S4c). Nine studies performed external validation of their

models on unseen data, and 5/7 studies obtained higher Dice

values on their test set than on the external validation set. We

also observed a positive correlation between sample size and

TABLE 2 Continued

First author Sample
size

Number of
medical
centers

Stroke
stage

Age
range

Gender Mean
NIHSS

Mean
stroke-to-
MRI time

Mean
lesion
volume

Lesion
volume
ranges

Nazari-Farsani

et al. (49)

445 MC: 6+ Acute – M: 50%

F: 50%

13 6.2h 50 [15, 123]

Wei et al. (53) 216 SC: 1 Acute – M: 69.7%

F: 30.3%

– – – –

Li and Ji (75) 60 SC: 1 Acute [49–88] - – – – –

Liu et al. (76) 212 SC: 1 Acute

Subacute

– M: 62%

F: 38%

– – – –

Cornelio et al.

(77)

75 MC: 2 Acute [18+] - – – 37.83 [1.6, 160.4]

Yu et al. (50) 182 MC: 6+ Acute – M: 46.7%

F: 53.3%

15 - 54 [16, 117]

Wu et al. (78) 400 MC: 3 Subacute [18+] – – – 27.94 [0.0575, 340.28]

Guerrero et al.

(39)

250 SC: 1 Acute – – – – – –

Jeong et al. (79) 400 MC: 3 Subacute [18+] – – – 27.94 [0.0575, 340.28]

Gui et al. (80) 400 MC: 3 Subacute [18+] – – – 27.94 [0.0575, 340.28]
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TABLE 3 Imaging acquisition and manipulation in the reviewed studies.

First author Spatial
resolution

Image modalities (& Image fusion) Input
dimension

Modality
mismatch

Magnetic
field

1-Very High

(VH);

2-High (H);

3-Moderate (M);

4-Low (L)

Image modalities: SM: Single-modality;

MM: Multi-modality

Image fusion: Early; Late; Hybrid

Format: Modality: {Parameter} {Fusion time}

2D;

2.5D;

3D

T1-T2;

DWI-PWI;

DWI-FLAIR;

T2-FLAIR;

T1-FLAIR

1.5T;

3T

Karthik et al.

(47)

2-H MM: {FLAIR, T2WI, T1WI, DWI-b1000} {Early} 2D DWI-FLAIR 3T

Gómez et al. (28) 2-H MM: {DWI-ADC, PWI-rCBF, PWI-rCBV, PWI-MTT, PWI-TTP,

PWI-Tmax, Raw 4D PWI} {Early}

2D DWI-PWI 1.5T

3T

Olivier et al. (54) Not reported SM: {DWI-b0, DWI-b1000, DWI-ADC} {N/A} 3D None reported 1.5T

3T

Clèrigues et al.

(55)

4-L MM: {FLAIR, T1WI, T2WI, DWI-b1000, PWI-CBF, PWI-CBV, PWI-

TTP, PWI-Tmax} {Early}

3D DWI-PWI;

DWI-FLAIR

1.5T

3T

Liu et al. (56) 2-H MM: {FLAIR, DWI-b1000} {Early} 2D DWI-FLAIR 3T

Moon et al. (57) 1-VH MM: {FLAIR, DWI-b1000} {Early} 2D None reported 1.5T

Zhang et al. (19) 3-M SM: {DWI-b0, DWI-b1000, DWI-ADC} {N/A} 3D None reported 1.5T

3T

Wong et al. (52) Not reported SM: {DWI-b0, DWI-b1000, DWI-eADC} {N/A} 2D None reported 1.5T

3T

Khezrpour et al.

(58)

2-H SM: {FLAIR} {N/A} 2D DWI-FLAIR 3T

Hu et al. (59) 4-L MM: {DWI-ADC, PWI-rCBF, PWI-rCBV, PWI-MTT, PWI-TTP,

PWI-Tmax, Raw 4D PWI} {Early}

3D DWI-PWI 1.5T

3T

Gheibi et al. (42) Not reported MM: {FLAIR, DWI} {Early} 2D None reported –

Kumar et al. (60) 4-L MM: {FLAIR, T2WI, T1WI, DWI-b1000, PWI-CBF, PWI-CBV, PWI-

TTP, PWI-Tmax, DWI-ADC, PWI-rCBF, PWI-rCBV, PWI-MTT, Raw

4D PWI} {Early}

3D DWI-PWI;

DWI-FLAIR

1.5T

3T

Liu et al. (16) 2-H MM: {T1WI, T2WI, DWI-b1000, PWI-CBF, PWI-CBV, PWI-TTP,

PWI-Tmax} {Early}

2D DWI-PWI 1.5T

3T

Zhao et al. (61) 2-H SM: {DWI-ADC, DWI-b0, DWI-b1000} {N/A} 2D None reported 1.5T

3T

Liu et al. (32) 3-M SM: {DWI-b0, DWI-ADC, DWI-IS} {N/A} 3D None reported 1.5T

3T

Karthik et al.

(48)

2-H MM: {FLAIR, T2WI, T1WI, DWI-b1000} {Early} 2D DWI-FLAIR 3T

Liu et al. (62) 2-H MM: {FLAIR, DWI-b1000, PWI-CBF, PWI-CBV, PWI-TTP, PWI-

Tmax} {Early}

2D DWI-PWI;

DWI-FLAIR

1.5T

3T

Aboudi et al. (63) 2-H MM: {FLAIR, T2WI, T1WI, DWI-b1000} {Early} 2D DWI-FLAIR 3T

Pinto et al. (64) 2-H MM: {DWI-ADC, PWI-rCBF, PWI-rCBV, PWI-MTT, PWI-TTP,

PWI-Tmax, Raw 4D PWI} {Late}

2D DWI-PWI 1.5T

3T

Choi et al. (65) 4-L MM: {DWI-ADC, PWI-rCBF, PWI-rCBV, PWI-MTT, PWI-TTP,

PWI-Tmax, Raw 4D PWI} {Early}

3D DWI-PWI 1.5T

3T

Kim et al. (66) 1-VH SM: {DWI-b0, DWI-b1000, DWI-ADC} {N/A} 2D None reported 1.5T

3T

Woo et al. (30) 1-VH SM: {DWI-b1000, DWI-b0, DWI-ADC} {N/A} 2D None reported 1.5T

3T

Lee et al. (31) 1-VH SM: {DWI-b1000, DWI-b0, DWI-ADC} {N/A} 2D None reported 1.5T

3T

Lee et al. (67) 3-M MM: [DWI, DWI-ADC, FLAIR, PWI-Tmax, PWI-TTP, Pred(init)]

{Early}

3D DWI-PWI 1.5T

3T

Karthik et al.

(68)

2-H MM: {FLAIR, T2WI, T1WI, DWI-b1000} {Early} 2D DWI-FLAIR 3T

Zhang et al. (69) 2-H SM: {DWI-b1000} {N/A} 2D DWI-FLAIR 3T

Ou et al. (70) 1-VH SM: {DWI-b1000, DWI-eADC} {N/A} 2.5D None reported 1.5T

3T

Vupputuri e tal.

(71)

2-H MM: {FLAIR, PWI-CBF, PWI-CBV, PWI-TTP, PWI-Tmax, DWI-

ADC, PWI-rCBF, PWI-rCBV, PWI-MTT, Raw 4D PWI} {Early}

2D DWI-PWI;

DWI-FLAIR

1.5T

3T

Abdmouleh et al.

(72)

2-H MM: {FLAIR, T2WI, T1WI, DWI-b1000} {Early} 2D DWI-FLAIR 3T

Duan et al. (73) Not reported MM: {T2WI, DWI-b1000, DWI-b0} {Late} 3D None reported –

Lucas et al. (74) 2-H MM: {DWI-ADC, PWI-rCBF, PWI-rCBV, PWI-MTT, PWI-TTP,

PWI-Tmax, Raw 4D PWI} {Early}

2D DWI-PWI 1.5T

3T
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segmentation performance. Also, single-centre studies showed

better performance (mean Dice 0.71) than multi-centre studies

(mean Dice 0.6).

Dice scores were much higher for studies using ISLES-2022

(mean Dice >0.8), ISLES-2015 (mean Dice >0.7) or proprietary

datasets (mean Dice >0.7), than when using ISLES-2017 (mean

Dice 0.38) or DEFUSE (mean Dice 0.52) (Supplementary Data

Sheet 2 S5a). When attention-based networks were deeper, or

when U-Nets were deeper, Dice scores were higher. The mean

Dice was also higher when attention was used (0.71 vs. 0.6 if not

used) (Supplementary Data Sheet 2 S4d).

Models using focal loss heavily under-performed, while those

using learning rate adjustment over-performed. There was

negative correlation between Dice scores and numbers of epochs

used. Interestingly, only one of the algorithms that used a

relatively high number of epochs was also using early stopping

TABLE 3 Continued

First author Spatial
resolution

Image modalities (& Image fusion) Input
dimension

Modality
mismatch

Magnetic
field

Nazari-Farsani

et al. (49)

Not reported SM: {DWI-b1000, DWI-ADC} {N/A} 3D None reported 1.5T

3T

Wei et al. (53) 1-VH SM: {DWI-b1000} {N/A} 2D T1-T2;

T2-FLAIR;

T1-FLAIR

3T

Li and Ji (75) 1-VH MM: {T1WI, T2WI, T2WI-FLAIR, DWI, DWI-ADC} {Early} 2D T2-FLAIR;

T1-FLAIR

1.5T

Liu et al. (76) Not reported MM: {T2WI, DWI, DWI-ADC} {Early} 2D None reported 1.5T

3T

Cornelio et al.

(77)

2-H MM: {DWI-ADC, PWI-rCBF, PWI-rCBV, PWI-MTT, PWI-TTP,

PWI-Tmax, Raw 4D PWI} {Early}

2D DWI-PWI 1.5T

3T

Yu et al. (50) Not reported MM: {DWI-b1000, DWI-ADC, PWI-Tmax, PWI-MTT, PWI-CBF,

PWI-CBV} {Early}

2.5D None reported 1.5T

3T

Wu et al. (78) 1-VH MM: {DWI-b1000, DWI-ADC, FLAIR} {Early} 2D DWI-FLAIR 1.5T

3T

Guerrero et al.

(39)

1-VH MM: {FLAIR, T1WI} {Early} 2D None reported 1.5T

Jeong et al. (79) 1-VH MM: {DWI-b1000, DWI-ADC, FLAIR} {Hybrid} 3D DWI-FLAIR 1.5T

3T

Gui et al. (80) 1-VH MM: {DWI-b1000, DWI-ADC, FLAIR} {Early} 3D DWI-FLAIR 1.5T

3T

FIGURE 4

(a) Correlation between the dimension and the spatial resolution of input images; (b) correlation between the dimension of input images and the

adopted model training mode.
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TABLE 4 Data pre-processing in the reviewed studies.

First author Data pre-processing methods

Dataset Intensity-based Atlas-
based

Morphology-
based

Deformable
surface-based

Machine learning-
based

Dataset used for

model training

Data pre-processing techniques used prior to model training

Karthik et al. (47) ISLES2015 SISS - Normalization

- - Skull-stripping

– - Resizing - Registration –

Gómez et al. (28) ISLES2017 - Normalization

- Contrast adjustment

- Skull-stripping

– - Resizing

- Rescaling

- Registration –

Olivier et al. (54) Proprietary - Normalization – - Rescaling

- Zero-padding

- Cropping

– –

Clèrigues et al.

(55)

ISLES2015 SISS

ISLES2015 SPES

- Normalization

- Skull-stripping

– – - Registration –

Liu et al. (56) ISLES2015 SISS - Skull-stripping – – - Registration –

Moon et al. (57) Proprietary - Normalization - Skull-

stripping

- Zero-padding

- Resizing

- Registration –

Zhang et al. (19) Proprietary - Normalization – - Zero-padding

- CroppingResizing

– –

Wong et al. (52) Proprietary - Normalization – – – –

Khezrpour et al.

(58)

ISLES2015 SISS - Contrast adjustment

- RGB to greyscale

- Skull-stripping

– - Cropping

- Resizing

- Registration –

Hu et al. (59) ISLES2017 - Skull-stripping – - Resizing

- Cropping

- Registration –

Gheibi et al. (42) Proprietary – – - Zero-padding - Splitting into 2D –

Kumar et al (60) ISLES2015 SPES

ISLES2015 SSIS

ISLES2017

- Normalization

- Skull-stripping

- Resizing - Converting to 3D

- Registration

- Slice classification

Liu et al. (16) ISLES2015 SPES

Proprietary

- Normalization

- Smoothing

- Skull-stripping

– – - Registration –

Zhao et al. (61) Proprietary - Normalization – – – –

Liu et al. (32) Proprietary - Normalization – - Resizing

- Rescaling

– - Slice classification

- Skull-stripping

Karthik et al. (48) ISLES2015 SISS - Skull-stripping – – - Registration –

Liu et al (62) ISLES2015 SPES

ISLES2015 SISS

- Normalization

- Skull-stripping

– - Zero-padding

- Cropping

- Resizing

- Registration

- Splitting into 2D

–

Aboudi et al. (63) ISLES2015 SISS - RGB to greyscale

- Skull-stripping

– - Resizing

- Rescaling

- Registration –

Pinto et al. (64) ISLES2017 - Normalization

- Bias field correction

- - Skull-stripping

– - Resizing - - Registration –

Choi et al. (65) ISLES2016 - Normalization

- Skull-stripping

– - Resizing

- Rescaling

- Registration –

Kim et al. (66) Proprietary - Normalization – - Resizing – –

Woo et al. (30) Proprietary - Normalization – – - Registration –

Lee et al. (31) Proprietary - Normalization – - Resizing - Registration –

Lee et al. (67) Proprietary – – - Resizing

- Rescaling

- Registration -

Karthik et al. (68) ISLES2015 SISS - Normalization

- Skull-stripping

– - Cropping

- Rescaling

- Registration - Slice classification

Zhang et al. (69) ISLES2015 SISS - Normalization

- Skull-stripping

– - CroppingRescaling - Registration - Slice classification

Ou et al. (70) Proprietary - Normalization

- Skull-stripping

– - Resizing – –

Vupputuri

et al. (71)

ISLES2015 SPES

ISLES2015 SISS

ISLES2017 (IS17)

- RGB to greyscale

- Normalization

- Skull-stripping

– – - Registration –

Abdmouleh

et al. (72)

ISLES2015 SISS - Normalization

- - Skull-stripping

– – - Registration –

Duan et al. (73) Proprietary - Normalization

- Skull-stripping

– - Resizing – –

(Continued)
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regularisation, which means that for all the others, the full (high)

amount of epochs was used during training, hence substantially

increasing the probability of overfitting.

4.7 Reported dice scores and segmentation
quality

We explored whether the reported Dice scores are a legitimate

indicator of segmentation quality in this review. For this we

generated a forest plot using the data from the 18 papers that

reported their Dice along with their standard deviation

(Figure 7). In this analysis, the percentage of variation across

studies due to heterogeneity rather than chance (I2) was 23.44%.

We also conducted a sensitivity analysis using Precision scores as

effects size instead of Dice scores. This analysis involved only eight

studies, which reported their precision scores along with standard

deviations. But in this analysis, I2 was 8.49%, indicating a reduced

level of heterogeneity between studies, therefore precluding us to

derive conclusions from it (Supplementary Data Sheet 2 S6).

Funnel plots and Egger’s tests (Supplementary Data Sheet 2

S7, S8) conducted using the Dice scores reported by the included

studies indicated the presence of publication bias in favour of

studies reporting high values of this metric.

TABLE 4 Continued

First author Data pre-processing methods

Dataset Intensity-based Atlas-
based

Morphology-
based

Deformable
surface-based

Machine learning-
based

Lucas et al. (74) ISLES2017 - Skull-stripping – - Rescaling - Registration –

Nazari-Farsani

et al. (49)

UCLA

iCAS

DEFUSE

DEFUSE-2

- Normalization – - - Registration –

Wei et al. (53) Proprietary - Skull-stripping – - Rescaling - Registration –

Li and Ji (75) Proprietary – – - Resizing – –

Liu et al. (62) Proprietary - Normalization

- - Skull-stripping

– - Cropping

- Resizing

- Registration –

Cornelio et al. (77) ISLES2017 - RGB to greyscale

- Contrast adjustment

- Normalization

- - Skull-stripping

– - Resizing - Registration –

Yu et al. (50) iCAS

DEFUSE-2

- Normalization – – - Registration –

Wu et al. (78) ISLES2022 - Skull-stripping – - ResizingRescaling - Registration –

Guerrero et al.

(39)

Proprietary - Normalization – - Resizing - Registration –

Jeong et al. (79) ISLES2022 - Skull-stripping – - Resizing

- Rescaling

- Registration –

Gui et al. (80) ISLES2022 - Skull-stripping – - Resizing

- Rescaling

– - Registration

FIGURE 5

Model architecture types.
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TABLE 5 Deep learning (DL) architectures of the models presented in the studies included (see corresponding summary graphs in the Supplementary
Data Sheet 1 B).

First
author

Architecture
(segmentation

type)

Loss
function

Attention
mechanism/

type

Activation
functions

Regularisation
method

Optimisation
method

Epochs

Karthik et al.

(47)

U-Net

(Semantic)

Dice None Leaky ReLU,

ReLU, Softmax

Data augmentation Adam 120

Gómez et al.

(28)

U-Net

(Semantic)

Focal Additive cross-

attention/spatial

ReLU, Sigmoid - Data augmentation

- Weight decay

- Class weighting

AdamW 600

Olivier et al.

(54)

U-Net

(Semantic)

Dice None Leaky ReLU,

Softmax

- Data augmentation

- ES on validation loss

Adam –

Clèrigues et al.

(55)

U-Net

(Semantic)

Focal None PReLU, Softmax - Data augmentation

- ES on MAE/L1 loss

- Dropout

- Class weighting

AdaDelta –

Liu et al. (56) U-Net (Semantic) Dice Self-gated soft

attention/hybrid

ReLU, Sigmoid - Data augmentation

- Dropout

Adam 150

Moon et al.

(57)

U-Net (Semantic) BCE None ReLU, Sigmoid – Adam 200

Zhang et al.

(19)

DenseNet (Semantic) Dice None ReLU, Softmax - Data augmentation

- Weight decay

- Learning rate adjust.

SGD 2,000

Wong et al.

(52)

U-Net (Semantic) Dice None ReLU,? - Data augmentation – –

Khezrpour

et al. (58)

U-Net (Semantic) Dice None ReLU, Sigmoid - Data augmentation

- ES on validation loss

Adam –

Hu et al. (59) U-Net + ResNet

(Semantic)

Focal None ReLU, Sigmoid - Data augmentation

- Class weighting

Adam 1,500

Gheibi et al.

(42)

U-Net + ResNet

(Semantic)

Custom None ReLU, Sigmoid - Data augmentation

- Weight decay

- Dilution

Adam –

Kumar et al.

(60)

U-Net (Semantic) BCE-Dice None ReLU, Softmax - Data augmentation

- Dropout

- ES on validation set

- Learning rate adjust.

Adam 200

Liu et al. (16) U-Net + ResNet

(Semantic)

Custom None Leaky ReLU,

Sigmoid

- Data augmentation – 70

Zhao et al.

(61)

CNN (Semantic) BCE Squeeze-excitation/

channel

ReLU, Sigmoid - Data augmentation

- - ES on

validation loss

RAdam –

Liu et al. (32) U-Net (Semantic) BCE-Dice Dual attention gates/

hybrid

SeLU (Self-

normalized),

Sigmoid

- Weight decay

- ES on training & val.

- Learning rate adjust.

- Class weighting

Adam 200

Karthik et al.

(48)

U-Net (Semantic) Dice Attention gates/spatial ReLU, Sigmoid - Data augmentation – 150

Liu, L. (62) U-Net + DenseNet

(Semantic)

CE-Dice None ReLU, Sigmoid - Data augmentation

- Dropout

Adam 8

Aboudi,

F. (63)

U-Net (Semantic) CE None ReLU, Sigmoid - Data augmentation Adam 100

Pinto et al.

(64)

U-Net (Semantic) Dice None – – Adam –

Choi et al.

(65)

U-Net + CNN + ResNet

(Semantic)

CE-Dice None ReLU, Softmax - Data augmentation

- Weight decay

- Dropout

- ES

Adam –

Kim et al. (66) U-Net (Semantic) Dice None ReLU, Sigmoid – Adam 1,000

Woo et al.

(30)

U-Net + DenseNet

(Semantic)

– Squeeze-excitation/

channel

ReLU, Sigmoid – – –

Lee et al. (31) U-Net (Semantic) Dice Squeeze-excitation/

channel

ReLU, Sigmoid – – –

Lee et al. (67) U-Net (Semantic) Dice None ReLU, Sigmoid ES on validation loss Adam –

Karthik et al.

(68)

U-Net (Semantic) Dice-

CE + Softmax-CE

Multi-residual

attention/hybrid

ReLU, Softmax - Data augmentation

- Masked dropout

- Dropout

- Learning rate adjust.

Adam 150

(Continued)
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4.8 Influence of attention on dice scores

We conducted a subgroup analysis to evaluate the association

between attention mechanisms and Dice scores. The resulting

forest plot is shown in Figure 8.

There were no statistically significant differences in effect sizes

between the groups. The subgroup “with attention” indicated

moderate heterogeneity in I2 (31.63%) and a very high Z-stat

(39.03, p < 0.001), suggesting a substantially large overall effect.

While this implies that the presence of attention may enhance

segmentation performance, the small number of studies in this

subgroup (five) limits the conclusiveness of this result. In

contrast, the subgroup “without attention” comprised 13 studies,

showing significant heterogeneity in the Q-stat (Q = 20.06,

p = 0.07) and in I2 (35.20%). Despite the absence of attention, a

large overall effect was also observed (z = 3.13, p < 0.001). This

suggests that when attention is not used, the Dice scores differ

between studies.

Further meta-regression analysis to assess the statistical

significance of the relationship between “attention mechanisms”

and “Dice scores” (Supplementary Data Sheet 2 S9) revealed that

8.1% of the variance in Dice scores was explained by the

presence of attention (R-squared: 0.081), but the slope indicating

the change in Dice associated with the presence of attention was

not statistically significant [0.117, p = 0.27, 95% CI of the slope

(−0.100,0.334)]. This indicates that from the literature analysis

we cannot conclude that the presence of attention has a

significant impact on the likelihood of high Dice.

TABLE 5 Continued

First
author

Architecture
(segmentation

type)

Loss
function

Attention
mechanism/

type

Activation
functions

Regularisation
method

Optimisation
method

Epochs

Zhang et al.

(69)

U-Net

(Semantic + Instance)

CE None ReLU, Softmax - Data augmentation

- Momentum

- Weight decay

SGD –

Ou et al. (70) U-Net (Semantic) BCE None ReLU, Softmax – RMSprop 100

Vupputuri

et al. (71)

U-Net (Semantic) BCE Multi-path attention/

hybrid (includes self-

attention)

Leaky ReLU,

Softmax

- ES on validation set

- Dropout

Adam 30

Abdmouleh

et al. (72)

U-Net (Semantic) CE None ReLU, Sigmoid Data augmentation Adam 20

Duan et al.

(73)

CNN + ResNet

(Semantic)

Dice-CE None PReLU, Softmax Data augmentation Adam 600

Lucas et al.

(74)

U-Net (Semantic) Soft QDice None ReLU, Sigmoid Data augmentation Adam 100

Nazari-

Farsani et al.

(49)

U-Net (Semantic) BCE-Volume-

MAE-Dice

Attention gates/spatial ReLU, Sigmoid - Data augmentation

- Class weighting

- Dropout

Adam 80

Wei et al. (53) U-Net + ResNet

(Semantic)

Focal Tversky None ReLU, Softmax - Data augmentation

- Class weighting

- Learning rate adjust.

Adam 150

Li and Ji (75) U-Net (Instance) CE None ReLU, Sigmoid - Data augmentation

- Class weighting

SGD 200

Liu et al. (76) CNN + ResNet

(Semantic)

Dice None ReLU, Sigmoid - Data augmentation

- Weight decay

- Learning rate adjust.

Adam 500

Cornelio et al.

(77)

U-Net (Semantic) Dice None ReLU, Sigmoid - Dropout

- Weight decay

Adam 50

Yu et al. (50) U-Net (Semantic) BCE-Volume-

MAE-Dice

Attention gates/spatial ReLU, Sigmoid - Data augmentation

- Class weighting

- Dropout

Adam 120

Wu et al. (78) U-Net +MLP (Semantic) Dice + Boundary Multi-head self-

attention/hybrid

(includes self-attention)

ReLU, Softmax - Weight decay

- Learning rate adjust

AdamW 35

Guerrero et al.

(39)

U-Net + ResNet

(Semantic)

CCE None ReLU, Softmax - Data augmentation

- Class weighting

- Learning rate adjust

Adam –

Jeong et al.

(79)

Ensemble of 2 (nn)U-

Nets

(Semantic)

Soft Dice-BCE None ReLU, Sigmoid - Weight decay

- Momentum

- Learning rate adjust.

- Data augmentation

- Dropout

Adam 1,000

Gui et al. (80) (nn)U-Net

(Semantic)

Soft Dice-BCE None Leaky ReLU,

Sigmoid

- Data augmentation

- Dropout

AdamW 300
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TABLE 6 Performance and generalisability data (see corresponding summary graphs in the Supplementary Data Sheet 1 B).

First
author

Dice Precision Recall Hausdorff
distance

Lesion size-
based results

General-
isability

Train
time

Training library and
infrastructure

‐ Only scores reported on test sets are extracted

‐ When scores are reported per input dataset, the average score is

provided

‐ Format: mean score ± standard deviation

Results as reported

based on lesion size

Karthik et al.

(47)

0.701 – – – N L 7h30 CPU: 3.6 GHz QuadCore Intel Gen7

RAM: 32GB GPU: Nvidia Quadro

P4000 Library: Keras/TensorFlow

Gómez et al.

(28)

0.36 ± 0.21 0.42 ± 0.25 0.48 ± 0.29 – N L – –

Olivier et al.

(54)

0.703 ± 0.2 – – – Sensitivity:

S (<20 ml): 0.987

L (>=20 ml): 0.923

Specificity:

S (<20 ml): 0.923

L (>=20 ml): 0.987

M – GPU: Nvidia Tesla K80 Library:

Keras/TensorFlow

Clèrigues

et al. (55)

0.715 ± 0.205 0.735 ± 0.25 0.745 ± 0.18 27.7 ± 21.45 N M – CPU: Intel CoreTM i7–7800X OS:

Ubuntu 18.04 RAM: 64GB GPU:

Nvidia Titan × (12GB) Library: Torch

Liu et al. (56) 0.764 – 0.944 3.19 N M – –

Moon et al.

(57)

0.737 ± 0.32 0.758 0.755 22.047 Relation dice-lesion

size: Observed

R2 = 0.195

L 24 h Library: O Keras/TensorF loS:

Centos7 GPU: 4×Nvidia Quadro RTX

8000 w

Zhang et al.

(19)

0.791 0.927 0.782 – N M 6h23 CPU: Intel Core i7-4790 3.60 GHz

RAM: 16 GB GPU: Nvidia Titan

X Library: PyTorch

Wong et al.

(52)

0.84 ± 0.03 0.84 ± 0.03 0.89 ± 0.03 – N M – –

Khezrpour

et al. (58)

0.852 0.998 0.856 – N L – GPU: Google Cloud Compute (K80)

Library: Keras/TensorFlow

Hu et al. (59) 0.30 ± 0.22 0.35 ± 0.27 0.43 ± 0.27 - N L – GPU: 4×Nvidia Titan Xp

Gheibi et al.

(42)

0.792 – – – N M 1h27 GPU: Nvidia Tesla P100 Library:

Keras

Kumar et al.

(60)

– 0.633 ± 0.213 0.653 ± 0.223 – N M 11h45 CPU: 2× Intel Xeon Silver 4114

(2.2 GHz, 10C/20 T) RAM: 192GB

GPU: Nvidia Tesla V100 PCIe

Library: Keras/TensorFlow

Liu et al. (16) 0.817 – – 1.92 N M 0h36 Library: Keras/TensorFlow

Zhao et al.

(61)

0.699 ± 0.128 0.852 0.923 – Dice:

S: 0.718 (0.12)

L: 0.689 (0.222)

M – CPU: Intel Core i7-6800K RAM:

64GB GPU: Nvidia GeForce 1080Ti

Library: PyTorch

Liu et al. (32) 0.76 ± 0.16 0.83 ± 0.17 0.73 ± 0.19 – Dice:

S (<1.7 ml): 0.68

(0.19); M (≥1.7 &

<14 ml): 0.75 (0.14);

L (≥14 ml): 0.83

(0.10)

H – CPU: Intel Core E5-2620v4 (2.1 GHz)

GPU: 2×Nvidia Titan XP Library:

Keras/TensorFlow

Karthik et al.

(48)

0.7535 – – – N L 34h04 CPU: 3.6 GHz QuadCore Intel

(Gen 7) RAM: 32GB GPU: Nvidia

Quadro P4000 Library: Keras/

TensorFlow

Liu et al. (62) 0.68 ± 0.19 – – 39.975 ± 27.95 N M – –

Aboudi et al.

(63)

0.558 0.998 – – N L – CPU: Intel Core i5 8th gen RAM: 8GB

GPU: Nvidia GeForce GTX 1050

Library: Keras/TensorFlow

Pinto et al.

(64)

0.29 ± 0.21 0.23 ± 0.21 0.66 ± 0.29 41.58 ± 22.04 N L – GPU: Nvidia GeForce GTX-1070

Library: Keras/Theano

Choi et al.

(65)

0.31 – – 37.7 N L 3h CPU: 2×Intel Xeon CPU E5-2630 v3

(2.4 GHz) GPU: 4× Nvidia GeForce

GTX TITANX Library: Keras

Kim et al. (66) 0.6 ± 0.23 – – – Dice:>0.75 for lesion

volumes >70 ml

L 20h CPU: Intel Xeon Processor E5-2680

(14 CPU, 2.4 GHz) OS: Ubuntu Linux

14.04 SP1 RAM: 64GB GPU: Nvidia

GeForce GTX 1080 Library:

TensorLayer

(Continued)
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4.9 Risk of bias assessment

After assessing the possibility of biases in the included studies,

33 studies scored “GOOD”, and eight scored “FAIR” in the NIH

study QA (Supplementary Data Sheet 1 C). Although these

results are positive, we identified cases of potential spectrum bias

(88), mostly due to the following factors: acute stroke studies

were more represented than subacute (30 vs. 18), exposure was

often only assessed once (i.e., no follow-up scans) (26 studies),

variance and effect estimates were not both provided (23

studies), few experiments were conducted to assess the different

levels of exposure related to the outcome (11 studies), period of

data collection was relatively short (10 studies), study population

was poorly defined (3 studies), and the age range of participants

was not always consistent [e.g., Kim et al. (66) only included

patients between 58 and 79 years old].

We also noticed cases of selection bias. Multiple studies used

the same ISLES datasets to evaluate the performance of their

segmentation methods. This, although advantageous (e.g., cost

effective, allows comparability), introduces selection bias. These

were also studies where males were over-represented in

the sample.

TABLE 6 Continued

First
author

Dice Precision Recall Hausdorff
distance

Lesion size-
based results

General-
isability

Train
time

Training library and
infrastructure

Woo et al.

(30)

0.858 ± 0.0734 – – – Dice:

- S (<10 ml): 0.82

- L (>10 ml): 0.89

L – –

Lee et al. (31) 0.854 ± 0.008 0.845 0.995 – N L – –

Lee et al. (67) 0.422 ± 0.277 0.48 ± 0.308 0.467 ± 0.32 – Dice:

S (<10 ml): 0.377

L (>10 ml): 0.607

M 52h30 CPU: Xeon Processor E5-2650 v4

GPU: Nvidia Titan X Library: Keras/

TensorFlow

Karthik et al.

(68)

0.775 0.751 0.801 – N L – CPU: 4 cores OS: Ubuntu 16.04 RAM:

32GB GPU: 2×Nvidia Tesla P100

Library: PyTorch

Zhang et al.

(69)

0.433 – 0.356 – N L – GPU: Nvidia GeForce GTX 1080 Ti

Library: Keras/TensorFlow

Ou et al. (70) 0.865 0.894 0.818 – N M 4h GPU: 4×Nvidia Quadro RTX 6000

Library: PyTorch

Vupputuri

et al. (71)

0.71 – 0.897 – N M – GPU: Nvidia Tesla K80

Abdmouleh

et al. (72)

0.71 ± 0.11 – – – N L – –

Duan et al.

(73)

0.677 ± 0.165 – – 85.462 ± 14.496 N M – GPU: Nvidia GTX 1080 Ti Library:

PyTorch

Lucas et al.

(74)

0.35 0.52 0.35 21.48 N L – GPU: Nvidia Titan Xp (12GB)

Library: PyTorch

Nazari-

Farsani et al.

(49)

0.5 – 0.6 – N M – –

Wei et al. (53) 0.828 – – – Dice:

S (<769 pixels):

0.761

L (>769): 0.83

M – –

Li and Ji (75) – – – 38.27mm N L – –

Liu et al. (76) 0.658 0.61 0.6 51.04 N M – CPU: Intel Core i7-7700K RAM:

48GB GPU: Nvidia GeForce 1080Ti

Library: Keras/TensorFlow

Cornelio et al.

(77)

0.34 – – – N L 5h OS: Ubuntu v.16.04.3 GPU: Nvidia

GeForce GTX Library: Keras/

TensorFlow

Yu et al. (50) 0.53 0.53 0.66 – N M 35h GPU: Nvidia Quadro GV100 &

Nvidia Tesla V100-PCIE Library:

Keras/TensorFlow

Wu et al. (78) 0.856 0.883 0.854 27.34 N M 0h21 GPU: 6×Nvidia Tesla 4s Library:

PyTorch

Guerrero et al.

(39)

0.4 ± 0.252 – – – N L – Library: Lasagne/Theano

Jeong et al.

(79)

0.787 – – – N H – RAM: 80GB GPU: Nvidia A100

Library: PyTorch

Gui et al. (80) 0.801 ± 001 – 0.783 ± 0.001 3.01 ± 0.03 N M – GPU: Nvidia 3090Ti

Library: PyTorch
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Also, ground-truth data were most often obtained by manually

refining semi-automatic segmentations (e.g., thresholding followed

by region-growing), which introduces observer bias. Sixteen studies

did not provide information about labelling criteria, so it is unclear

whether observer bias was present in those.

We identified two other forms of bias: verification bias in

10 studies, where only one expert did the labelling of

ground-truth images, and measurement bias, as mean Dice

scores on ISLES-2017 were generally much lower than those

on ISLES-2015 or on ISLES-2022, and when segmentation

FIGURE 6

Impact of different MRI modalities on the accuracy of lesion segmentation. (a) Box plot showing the correlation between Dice scores and imaging

modalities used; (b) percentage difference in lesion segmentation performance for small vs. large lesions, calculated as (small lesion performance

—large lesion performance) relative to large lesion performance. Positive values indicate better performance on small lesions, while negative

values indicate better performance on large lesions.

Baaklini and Valdés Hernández 10.3389/fmedt.2025.1491197

Frontiers in Medical Technology 18 frontiersin.org

https://doi.org/10.3389/fmedt.2025.1491197
https://www.frontiersin.org/journals/medical-technology
https://www.frontiersin.org/


performance was reported for small vs. large lesions, the

definition of a small and a large lesion (in ml) was not

consistent across studies.

4.10 Pilot analysis

The best performing model was “UResNet50” on DWI (single-

modality approach), using a weighted compound loss

(BCE = 0.3 + Dice = 0.7), with a Dice score on the validation set

of 0.692 ± 0.132 (Table 7).

The second best was “AG-UResNet50” (0.676 ± 0.222), with a

single-modality approach, and using the same compound loss

(BCE = 0.3 + Dice = 0.7).

Experiments with “UNet” and “AG-UNet” generated relatively

poor Dice scores. Performance was better in single-modality

experiments. Abdmouleh et al. (72) made the same test on the

same dataset, but they achieved quasi-equal performance in their

DWI-only and multi-modal experiments (Dice 0.71). Performance

was also better when using compound loss “BCE = 0.3 +Dice = 0.7”

vs. the other two types. The 12 experiments using attention and

the 12 not using attention yielded similar average Dice scores.

Average training times for UResNet50 was 5 h 43 min, for

U-Net it was 5 h 31 min, for AG-UResNet50 it was 6 h 15 min,

and for AG-UNet it was 5 h 55 min. Multi-modal experiments

took longer to train in all cases (∼3 h longer each time). Same was

true for attention-based experiments (∼30 min longer each time).

5 Discussion

5.1 Systematic review and meta-analysis

We performed a comprehensive systematic search in seven

large databases for sources presenting algorithms that identify

and segment acute and subacute ischaemic stroke lesions from

brain MRI, to inform on the most promising DL architectures

for successfully carry out this task. From 1,485 initially identified

sources, 41 were ultimately retained. Their analyses allowed us to

conclude that the use of a U-Net configuration with residual

connections seems to be the most appropriate configuration for

this task, despite the generalisability of the algorithms reviewed

being generally below par.

5.1.1 Sample representativeness
Although our review protocol did not have age restriction,

samples never included patients below 18 years old. This stresses

the lack of research in paediatric stroke, which may be due to

multiple factors, e.g., delayed identification of stroke, numerous

stroke aetiologies and risk factors in children, and limited

imaging data (89). The underrepresentation of females in studies

can be partially explained by the difficulty of diagnosing females

with stroke, due to factors such as higher proportion of stroke

mimics (e.g., migraine), pre-stroke disability, or neglect of

symptoms among females (90). These uneven distributions of

FIGURE 7

Forest plot related to the whole group analysis.
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gender and age data can affect the universality of our

research outcomes.

We also noticed relatively small sample sizes across studies,

which is not new in AIS research (91). Data augmentation is a

common way to mitigate this issue, and Clèrigues et al. (55)

proposed a novel “symmetric modality augmentation” technique,

which leveraged learned features based on the symmetry of brain

hemispheres. Other ways to deal with small sample sizes include

active learning [e.g., Olivier et al. (54)], semi-supervised learning

using weakly labelled data [e.g., Zhao et al. (61)], or transfer

learning [e.g., Li et al. (75) used TernausNet (92) which was pre-

trained on ImageNet (93), and Jeong et al. (79) used an

ensemble of nnU-Nets which were pre-trained on BraTS

2021 (94)].

FIGURE 8

Forest plot related to the subgroup analysis.

TABLE 7 Results from the pilot analysis.

UResNet50 Mean dice score (± STD)

DWI DWI DWI + FLAIR + T1WI + T2WI DWI + FLAIR + T1WI + T2WI

UResNet50 Train Validation Train Validation

BCE = 0.3 + Dice = 0.7 0.911 ± 0.11 0.692 ± 0.132 0.908 ± 0.041 0.675 ± 0.128

BCE = 0.5 + Dice = 0.5 0.893 ± 0.102 0.610 ± 0.055 0.884 ± 0.318 0.619 ± 0.301

BCE = 0 + Dice = 1 0.902 ± 0.205 0.625 ± 0.306 0.886 ± 0.16 0.608 ± 0.04

UNet Train Validation Train Validation

BCE = 0.3 + Dice = 0.7 0.843 ± 0.322 0.556 ± 0.083 0.838 ± 0.072 0.570 ± 0.159

BCE = 0.5 + Dice = 0.5 0.829 ± 0.031 0.521 ± 0.29 0.836 ± 0.2 0.547 ± 0.234

BCE = 0 + Dice = 1 0.837 ± 0.202 0.560 ± 0.105 0.842 ± 0.085 0.555 ± 0.18

AG-UResNet50 Train Validation Train Validation

BCE = 0.3 + Dice = 0.7 0.907 ± 0.121 0.676 ± 0.222 0.909 ± 0.177 0.664 ± 0.313

BCE = 0.5 + Dice = 0.5 0.899 ± 0.06 0.642 ± 0.176 0.873 ± 0.096 0.630 ± 0.269

BCE = 0 + Dice = 1 0.893 ± 0.19 0.669 ± 0.091 0.877 ± 0.231 0.631 ± 0.164

AG-UNet Train Validation Train Validation

BCE = 0.3 + Dice = 0.7 0.829 ± 0.258 0.522 ± 0.142 0.817 ± 0.109 0.536 ± 0.22

BCE = 0.5 + Dice = 0.5 0.793 ± 0.2 0.518 ± 0.207 0.802 ± 0.163 0.515 ± 0.082

BCE = 0 + Dice = 1 0.797 ± 0.32 0.529 ± 0.099 0.784 ± 0.27 0.498 ± 0.105
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5.1.2 Disease representativeness

Most studies focused exclusively on minor-to-moderate stroke

cases with focus on acute stroke, since DWI and FLAIR are able to

show high signal in AIS-affected brain areas, whereas signal begins

to diminish gradually in DWI towards the subacute stage, often

leading to lower sensitivity for stroke identification if this

modality is used (4). Such differences in MRI signal between

subacute and acute lesions give the idea that combining acute

and subacute cases in one single dataset, as seen in Liu et al. (32)

and Liu et al. (76), might require highly trained observers to

manually delineate the lesions (i.e., generate the reference labels).

5.1.3 MRI protocols

Most studies used DWI, known as the gold standard for early

stroke detection (95), and many used T1-WI, a staple in subacute

stroke research (96), T2-WI, PWI, or FLAIR. PWI was frequently

applied to detect the ischaemic penumbra (86), and most used

FLAIR as it offers enhanced lesion clarity by suppressing CSF

details (97). For instance, Khezrpour et al.’s U-Net used only

FLAIR and got very high accuracy (58). ADC maps were also

often used with DWI for more robust ground-truth data, as

lesions appear simultaneously hyperintense on DWI and

hypointense on ADC in early stroke stages.

The impact of using different imaging modalities (i.e., T1-WI,

T2-WI, DWI, PWI, FLAIR) on lesion segmentation accuracy was

also observed, as each modality may highlight distinct

pathological features, which may, in turn, influence algorithm

performance. More generally, using 3 T magnetic field strength,

as done by 36/41 studies, can also help with small lesions, as it

offers better signal-to-noise ratio and spatial resolution vs. 1.5 T,

and it reduces imaging artifacts by offering more uniform B1

inhomogeneity (98).

DWI-PWI mismatch (99) was commonly used to create

ground-truth sets [e.g., Lee S. et al. (67)], since PWI identifies

penumbral tissue, while DWI delineates the core infarct [i.e.,

areas of restricted water diffusion (96)]. Despite its utility

though, DWI-PWI mismatch analysis remains challenging.

Establishing clear imaging boundaries for recoverable tissue is

not straight-forward (96). Large perfusion abnormalities may be

observed in patients without corresponding clinical deficits (100).

There is no universally defined mismatch ratio, although Kakuda

et al. tried to define one (101) DWI-FLAIR mismatch, on the

other hand, is mostly used for TSS assessment in hyper-acute-to-

early-acute stage (102). Combining both mismatch analyses can

definitely help experts effectively delineate stroke lesions.

5.1.4 Data configurations
Many argue that using 3D images is crucial for DL-based

stroke lesion segmentation, but few methods address the

associated computational challenges (103), which explains why

the majority of retained studies used 2D images.

Several studies used high spatial resolution images to capture

more fine-grained features from the data and improve

segmentation performance on small lesions. Other deepened

their networks further to collect more nuanced features, but the

higher the number of down-sampling operations, the lower the

resolution of the feature maps, to a point where reconstructing

lesions in the up-sampling path becomes virtually impossible.

Furthermore, risks of overfitting/over-learning increase

substantially when networks are deeper, especially in absence of

skip connections.

Cutting 3D images into 3D patches (i.e., patch-wise training) is

a way to mitigate both the computational challenges, by reducing

memory overhead (13), and the small lesions challenge, by

forcing the model to focus on a smaller area of the entire image.

That explains why ten out of twelve 3D studies in this review

have used patch-wise training.

On the other hand, the majority of studies that used ISLES-

2015/2017 have processed those as 2D images, mainly due to

their low-resolution when processed as 3D (slice thickness: 5

mm). However, it was surprising to see so many 3D models use

low resolution images, since the whole point of 3D models is to

capture detailed information from images (104). For instance,

Zhang R. et al. (19) proposed a 3D model that captured both

low-level local features and high-level ones, but they used low-

resolution images.

5.1.5 Validation metrics

Dice was the most used performance metric across studies, as

(i) it is simple to interpret, (ii) it handles class imbalance, and

(iii) its widespread use facilitates comparison between different

methods. However, it remains an overlap metric that is prone to

instability, especially with small lesions (78), and for an

evaluation to be holistic, it must be accompanied by other types

of metrics (e.g., surface-based, boundary-based, volume-based).

Dice scores were higher for single-centre studies, but since too

few of these studies performed external validation, we cannot

exclude “over-adaptation” to the image acquisition protocol(s)

from that one centre, and therefore poor model generalisability.

5.1.6 Loss functions
CE loss quantifies the difference between two probability

distributions (e.g., predictions and ground-truth), but it cannot

handle class imbalance since each pixel/voxel contributes equally

to the loss, and therefore the learning process may easily fall into

a local optimal solution (105). Focal loss is an adaptation of CE

loss that introduces a modulating factor aimed at down-

weighting the impact of well-classified examples (106), but since

“lesion” is already the minority class in our case, focal loss overly

penalizes correctly classified lesion pixels, which explains the very

bad performance of studies using it [e.g., Hu et al.’s Brain

SegNet (59)].

Generally, overlap-based loss functions (e.g., Dice loss) are

more robust to data imbalance issues (106). By penalising false

positives and false negatives differently, Dice loss indirectly

encourages better performance on minority classes. However,

despite its common usage, Dice loss has some limitations (106):

it fails to capture the distance between non-overlapping but close

lesions, overlooks precise contour details (combining it with a

boundary-based loss may help), and it disproportionately

penalises small lesions, especially in presence of large lesions, as
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opposed to distribution-based loss functions (e.g., CE loss) which

have no such bias. A few custom loss functions have also been

proposed to address class imbalance [e.g., Rachmadi et al.’s “ICI

loss” (107), loss with data fusion (108)].

5.1.7 Deep learning architectures
Since most studies were U-Net-based, they primarily performed

semantic lesion segmentation. Perhaps the fact that only two studies

did instance segmentation is linked to the difficulty of delineating

individual lesions in presence of motion artefacts and irregular

shapes (109, 110), as shown by Wu et al. (78).

Meanwhile, several studies proposed quite innovative methods.

Liu et al. (76) proposed a ResNet and a global convolution

network-based (GCN) encoder-decoder where each modality was

concatenated to a three-channel image, then passed as input image

to a series of residual blocks. The output of each block was then

passed to its corresponding up-sampling layer using a skip

connection incorporating a GCN and a boundary refinement

layer. Liu L. et al.’s “MK-DCNN” (62) consisted of two sub-

DenseNets with different convolution kernels, aiming to extract

more image features than with a single kernel by combining low

and high resolution. Four studies proposed “ensemble

mechanisms” (i.e., different networks that process data inputs in

parallel and whose outputs are combined) in order to reduce

overfitting, since sub-networks can learn different features from

the data (13) and/or to decrease prediction variance [e.g., Choi

et al. (65)]. Wu et al.’s W-Net (78) tackled variability in lesion

shape by trying to capture both local and global features in input

scans. A U-Net first captures local features, which then go through

a Boundary Deformation Module, then finally through a Boundary

Constraint Module that uses dilated convolution to ensure pixels

neglected in previous layers can also contribute to the final

segmentation. Pinto at al. (64), Duan et al. (73) and Zhang et al.

(69) proposed “information fusion mechanisms” that effectively

fuse different features either from multiple modalities, or multiple

plane views, thus improving their models’ ability to capture

intricate lesion features. Jeong et al. (79) implemented a hybrid

image fusion approach in their multimodal study, using all

modalities during training to leverage complementary features,

while relying solely on DWI images for inference to mitigate

overfitting and enhance generalizability. Lucas et al. (74) added to

their U-Net skip connections around each convolution block,

besides those linking encoder-decoder layers.

The nnU-Net is particularly useful as it automates complex and

rapidly evolving stages of the pipeline—data pre-processing, network

configuration, optimization, regularization, and data post-processing

(20). The nnU-Net has demonstrated strong generalizability (79),

partly due to its standardized pipelines, its multiple regularization

techniques, and a balanced network depth that helps reduce

overfitting. Its success leverages the modular nature of U-Net

architectures, but it remains relatively rigid; it does not natively

support architectural enhancements like residual or attention or

transformer blocks, custom loss functions, or late/hybrid fusion

strategies for multimodal data, all of which have shown potential

to further improve segmentation performance.

5.1.8 Attention mechanisms

The main purpose of attention mechanisms is to address the loss

of information during down-sampling and up-sampling operations.

Self-attention was often used across studies, since it allows the model

to capture global dependencies within the input data, which can help

in identifying subtle features that span across larger regions.

Overall, there were several interesting implementations, or

pseudo-implementations, of attention. Karthik et al. (68)

embedded multi-residual attention blocks in their U-Net, hence

allowing the network to use auxiliary contextual features to

strengthen gradient flow between blocks and prevent vanishing

gradient issues. Vupputuri et al. (71) used self-attention through

multi-path convolution, aiming to compensate for information

loss, while using weighted average across filters to provide more

optimal attention-enabled feature maps. Ou et al. (70) used

lambda layers, which work by transforming intra-slice and inter-

slice context around a pixel into linear functions (or “lambdas”),

which are then applied to the pixel to produce enhanced

features. As opposed to attention, lambdas do not give “weights”

to pixels. We believe that it is only a coincidence that ResNet-

based models never incorporated attention across reviewed

studies, as numerous relevant publications combine ResNet with

attention (111–113).

5.1.9 Optimization methods
In terms of optimisation methods, RMSProp can be effective in

DL [e.g., Ou et al. (70)], as it is able to discard history from the

extreme past and thus enable rapid convergence during training.

However, Adam remains the most popular method as it

incorporates momentum, which speeds up the optimisation of

model parameters, while performing bias corrections to improve

the accuracy of gradient estimates during training. Also, Adam’s

default hyperparameters often work well in DL, mainly thanks to

the adaptive learning rates which allow smooth parameter

updates even in presence of noisy gradients.

While never performed, uncertainty quantification to obtain

true network uncertainty estimates (88) is of utmost importance

to promote the use of such algorithms in clinical practice, as it

would allow physicians to assess when the network is giving

unreliable predictions (6).

5.1.10 Generalisability & sources of bias in retained

studies
The generalisability of our studies was generally low, for issues

that have already been highlighted above (e.g., small sample sizes,

loose verification of labelled data), but researchers can easily

improve the generalisability of their models by performing

external validation, publishing their code, combining image

acquisition protocols, and/or combining data from multiple centres.

Our risk of bias assessment yielded fairly good results.

However, several instances of potential or actual bias warrant

attention. Findings drawn from reported performance metrics

(e.g., Dice) must be carefully interpreted, as performance

depends on the quality of the data being used, which was

variable across studies. Results of this review may be skewed
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towards acute stroke (rather than subacute), which impacts the

applicability of its results and recommendations in stroke

research and clinical practice. Over-reliance on specific public

datasets, which may have selection biases, may limit the

generalisability of the research findings, as reported results may

not fully represent all possible clinical scenarios. Findings in

terms of segmentation of small vs. large lesions are slightly

flawed, due to the various ways in which these two categories

were defined across studies. Data augmentation helped reduce

overfitting by increasing the size of the training data, but effects

of bias cannot be balanced-out by increasing the sample size by

repetition (114). Differences in expert annotation policies,

commonly referred to as inter-observer (dis)agreement, were

identified as a source of selection bias. Unsupervised or semi-

supervised methods could mitigate this issue. Reframing the

segmentation task as an in-context learning task where the

model is prompted with a small number of example

segmentations from a previously unseen policy at inference time

could also be a solution, but this is still to be tested. Ensembles

of different networks have proven effective for different tasks,

and could be, in fact, the best approach to tackle this issue.

5.1.11 Meta-analyses
Our whole group analysis included 18 studies, which is enough

to consider findings meaningful (115). The random-effects model

worked better for us, which is aligned with the literature, where

RE is considered a more natural choice than FE in medical

research (116). The most interesting finding resulted from the

subgroup analysis. It is the uncertainty in the evidence that

incorporating attention into DL architecture for AIS lesion

segmentation improves model performance.

Meanwhile, the significant heterogeneity observed through these

analyses may be linked to several factors, such as differences in

image acquisition protocols (e.g., spatial resolution, scanners),

patient populations (e.g., stroke stage, severity, aetiology), network

architecture (e.g., U-Net, ResNet), model hyper-parameters, and

more. Therefore, when looking into ways to improve DL-based

stroke lesion segmentation algorithms, our analysis suggests that

one might want to look at factors other than attention (e.g., image

quality, model architecture and complexity).

5.2 Pilot analysis

The relatively high Dice scores obtained on training sets vs.

validation sets are likely caused by overfitting, partly due to the

small sample size, despite efforts to mitigate this with data

augmentation and pixel dropout.

We used the ISLES-2015-SISS dataset for this analysis. It is

worthwhile noting that it may not sufficiently capture the

variability across different populations and lesion types, and the

limited sample diversity could limit the generalizability of the

model across different demographics or lesion types. However,

from the 39 publications analyzed, only 12 used this sample in

the development of their proposed algorithm sometimes as part

of a wider sample (5/12 publications) (Table 4). In terms of

number of 3D volumes the sample is small, but we use a 2D

model for which the number of input samples with image

information multiplies the available data sources by a factor of

approximately 100 considering only one dimension (e.g.,

considering horizontal-only or sagittal-only or coronal-only

slices), but if slices in the three main imaging axes are

considered, then the increase is three times that.

Not using attention yielded slightly better than using it. In this

case, with a small sample size and a relatively deep network,

increasing the number of learnable parameters using attention gates

might have accentuated the overfitting problem. Complementing

our analysis with additional performance metrics (e.g., HD,

Accuracy, Precision) could further support this observation.

The fact that the single-modality approach (DWI-based)

performed better than the multi-modal approach is counter-

intuitive, since combining sequences has often led to an

improved segmentation performance, as shown by Liu et al. (16)

and Liu et al. (76), who did the same comparison of approaches.

However, it could be that specifically in the ISLES-2015-SISS

dataset, the mix of image acquisition protocols across centres,

sequences’ mismatches, and annotation policies have introduced

noise in the data, which was not properly removed during data

pre-processing or managed by the networks (86).

Compound loss (Dice + CE) outperformed Dice loss, as it was

the case with Kumar et al.’s “CSNet” (60). Since Dice loss is not

suitable for small diffuse lesions, combining distribution-based

loss with region-based loss has certainly helped.

UResNet50 addresses the challenge of distinguishing stroke

lesions from other pathologies, which can vary by stage. Its

effectiveness confers it potential to improve diagnostic accuracy

and treatment planning for stroke patients, ultimately

contributing to better clinical outcomes.

6 Study limitations

This review has various limitations. Only articles published in

(or translated to) English that were accessible via institutional login

were reviewed. Accordingly, relevant papers may have been missed.

Incongruences between search terms and article keywords in the

various databases may have also caused relevant articles to be

missed. Since most of the included studies were not longitudinal,

this review lacks an assessment of long-term patient outcomes,

which is an essential factor in validating the clinical relevance

and predictive value of segmentation algorithms. While the

review outlines the impact of lesion size on segmentation

performance, the pilot analysis does not specifically assess how

algorithms can be optimized for lesions of varying sizes.

7 Conclusions and future works

While we included a fair number of studies in this review, the

identified generalisability issues hinder the robustness of our

findings. However, we were able to (i) identify the often subtle

elements and configurations that can make a DL model perform
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better its AIS lesion segmentation task, and to (ii) demonstrate with

confidence that attention mechanisms do not necessarily improve

current DL architectures for AIS semantic lesion segmentation,

and that other details such as model design were much

more important.

We have compared multiple model artefacts (e.g., loss

functions, optimisation methods), discussing their potential

impacts on segmentation performance. A more formal decision

tree could complement our research, helping to (i) facilitate

decision-making during model development, and (ii) enhance

model transparency and trustworthiness in clinical settings.

In this review, algorithms were assessed solely based on

performance (using Dice coefficients). A more comprehensive

evaluation of their practical value could be conducted in future

work by considering other metrics or a combination of them (117),

and factors such as processing time, and resource consumption.

More generally, further well-conducted and well-reported

research is needed in this field to accelerate their use in routine

clinical practice, with special emphasis on: (i) larger datasets,

potentially by leveraging consortia such as the Human

Connectome Project (https://www.humanconnectome.org/) or

ENIGMA (https://enigma.ini.usc.edu/), or curating and fully

anonymising large nationwide data from national health services,

(ii) higher-quality data, such as generating structured labels from

radiologist reports (118), and (iii) longitudinal data to better assess

how segmentation results impact patient treatment and prognosis.

Interpretability of algorithms must also improve, as today,

computer scientists focus primarily on reaching higher levels of

accuracy, while clinical researchers focus on verifying associations

with patient outcomes (119). For instance, deconvolution

networks and guided back-propagation can explain the inner

workings of DL networks (120, 121).

Also, model fine-tuning remains time-consuming. Perhaps

“Neural Architecture Search” will soon be a robust solution for

automatic selection and parameterization of DL models (122).

At last, following the big leap DL took with the advent of GPU,

many scientists are getting prepared for the next big leap, with

quantum computing. Although this review did not focus on such

technological advancements, the application of quantum

algorithmic principles (e.g., running quantum operations on

qubits) to ML has already begun (123), and expertise is being

built for when quantum hardware will be commercially available.

This may increase computing speed significantly.
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