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Introduction: Cervical cancer remains a significant health challenge around the
globe, with particularly high prevalence in low- and middle-income countries.
This disease is preventable and curable if detected in early stages, making
regular screening critically important. Cervical cytology, the most widely used
screening method, has proven highly effective in reducing cervical cancer
incidence and mortality in high income countries. However, its effectiveness
in low-resource settings has been limited, among other factors, by insufficient
diagnostic infrastructure and a shortage of trained healthcare personnel.
Methods: This paper introduces the development of a low-cost microscopy
platform designed to address these limitations by enabling automatic reading
of cervical cytology slides. The system features a robotized microscope
capable of slide scanning, autofocus, and digital image capture, while
supporting the integration of artificial intelligence (AI) algorithms. All at a
production cost below 500 USD. A dataset of nearly 2,000 images, captured
with the custom-built microscope and covering seven distinct cervical cellular
types relevant in cytologic analysis, was created. This dataset was then used to
fine-tune and test several pre-trained models for classifying between images
containing normal and abnormal cell subtypes.
Results: Most of the tested models showed good performance for properly
classifying images containing abnormal and normal cervical cells, with
sensitivities above 90%. Among these models, MobileNet demonstrated the
highest accuracy in detecting abnormal cell types, achieving sensitivities of
98.26% and 97.95%, specificities of 88.91% and 88.72%, and F-scores of
96.42% and 96.23% on the validation and test sets, respectively.
Conclusions: The results indicate that MobileNet might be a suitable model for real-
world deployment on the low-cost platform, offering high precision and efficiency in
classifying cervical cytology images. This system presents a first step towards a
promising solution for improving cervical cancer screening in low-resource settings.
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1 Introduction

Cervical cancer (CC) continues to pose a substantial threat to

global health due to its high morbidity and mortality burden. In

2022 alone, this disease presented around 660,000 new cases and

claimed the lives of around 350,000 women globally, making it

the fourth most common and third most fatal cancer among

women (1). However, as illustrated in Figure 1, CC

disproportionately affects women in low- and middle-income

countries (LMICs), standing out as the leading cause of cancer-

related deaths among women in low-income nations. This

disparity can be attributed to various factors, including cultural

aspects, scarce resources, inadequate infrastructure, and a

shortage of skilled healthcare professionals in these areas (2).

The numbers described above contrast with the fact that CC is

a preventable and treatable form of cancer if detected in early

stages. This disease, primarily caused by a persistent infection of

human papillomavirus (HPV), progresses slowly over a period of

about 10 to 20 years, providing a window of opportunity for

detection and intervention (3). In this context, the

implementation of efficient screening programs is crucial to

combat the high incidence and mortality rates associated with

CC. Cervical cytology, commonly known as the Pap test, remains

the most widely used method for cervical cancer early detection

in LMICs (4). During a conventional Pap test, a healthcare
FIGURE 1

Incidence and mortality rates (ASR) of cancers in women aged 15
and above categorized by income levels across countries (1).
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provider collects cells from the cervix using a brush or spatula

and deposits them onto a microscope slide. The sample is then

fixed, stained, and analyzed under a microscope by specialists in

a laboratory to detect abnormalities such as precancerous

changes, cancerous cells, or signs of infections including HPV

(5). This traditional framework for implementing cervical

cytology screening, although proven to be really effective in some

regions (6), is labor-intensive, time-consuming, and reliant on

skilled cytologists for accurate interpretation. This challenge has

led to several efforts to automate the process.

The first attempt at automating cervical cytology screening

emerged nearly 70 years ago with the development of the

Cytoanalyzer, which aimed to reduce reliance on manual

screening (7). This device combined a conventional microscope

with a photomultiplier to convert optical information into

electrical signals, which was reportedly able to distinguish normal

from abnormal cervical cells. Later, during the late 1970s and

1980s, advances in digital technology led to the emergence of

several automated cytology projects (8–13). These systems shared

a common approach: extracting cellular features from digital

images to differentiate normal from abnormal cells. Key features

analyzed included nuclear area, nuclear density, cytoplasmic area,

and the nuclear-to-cytoplasmic ratio. However, none of these

devices reached the market due to their lack of cost-effectiveness

(14). In the late 1980s, innovations in sample preparation

significantly improved specimen quality, making feature

extraction easier (15, 16). However, it was not until the late

1990s that the first commercial automated screening systems

received approval from the U.S. Food and Drug Administration

(FDA). In practice, achieving zero false negatives and zero false

positives is impossible, making the performance requirements for

screening machines a long-standing point of controversy. To this

day, there is no consensus on how to evaluate a screening system

before approving it for routine use (14). Currently, the only two

FDA-approved commercial systems—the ThinPrep Imaging

System and the BD FocalPoint GS Imaging System (17)—still

require human supervision. While both have demonstrated high

effectiveness, their substantial purchase and operational costs—

reportedly in the range of tens of thousands of U.S. dollars—

make them impractical for large-scale screening programs

in LMICs.

In the previous context, open-source hardware development

offers an interesting alternative. Open-source hardware refers to

designs made publicly available, allowing anyone to study,

modify, distribute, manufacture, and sell both the design and its

resulting hardware (18). This approach, combined with the rise

of digital fabrication technologies—such as affordable 3D

printing, CNC machines, and laser cutters—along with accessible

microcontrollers like Arduino and Raspberry Pi, has significantly

boosted local hardware development. Furthermore, institutional

support from universities, research centers, and companies has

further propelled these advancements. This movement has

extended to medical device development, resulting in open-

source alternatives for various types of medical equipment

(19, 20). However, to our knowledge, no direct attempts have

been made on open hardware for automated cervical cytology. At
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their core, these devices rely on automated microscopes paired with

image analysis algorithms.

Commercial automated microscopy systems are expensive,

limiting their adoption in low-resource settings. However, over

the past decade, several open-source microscopy devices have

been developed, making advanced microscopy more accessible.

One of the most widely recognized examples is OpenFlexure

(21), a fully automated, 3D-printed laboratory microscope

featuring motorized sample positioning and focus control. Other

notable open-source microscopes include FlyPi (22), UC2 (23),

and µSmartScope (24). However, certain limitations hinder their

applicability for Pap smear analysis in low-resource settings. The

most critical limitation is their scanning surface coverage. Pap

smears are typically spread over a standard microscope slide,

covering an area of approximately 50 � 25 mm2. For instance,

FlyPi lacks an automated scanning function, while OpenFlexure

and µSmartScope have limited scanning ranges that fail to cover

the entire required area. Although UC2 is developing a large-area

scanning platform, it relies on components that may not be

readily available in low-resource environments. These

constraints highlight the need for further innovations in open-

source microscopy to enable large-scale, automated cervical

cytology screening.

In the field of image analysis, almost all early approaches to

automated Pap smear interpretation followed a similar workflow.

The process began with cell or nucleus segmentation, followed by

manual feature design (nucleus area, cytoplasm area, nucleus

perimeter, cytoplasm perimeter, nucleus-to-cytoplasm ratio,

among others). The extracted hand-crafted features were then

fused and used for final classification (25, 26). However, in

recent years, deep learning (DL) algorithms have transformed the

field, significantly improving the ability to recognize complex

patterns in images (27). Unlike traditional methods, deep

learning models—particularly convolutional neural networks

(CNNs)—can automatically learn informative and meaningful

features directly from raw image data, eliminating the need for

explicit cell segmentation and manual feature engineering (28).

This breakthrough has led to a surge in research on DL-based

automated cervical cytology analysis, with numerous studies

exploring different algorithmic approaches, imaging modalities,

and sample preparation techniques (17). Notable results have

been achieved with transfer learning algorithms, which leverage

pre-trained architectures that are subsequently fine-tuned on

custom datasets. In the context of cervical cytologic analysis,

Wang et al. achieved accuracies exceeding 98% for two-class

classification on a custom dataset (29), while Khamparia et al.

reported accuracies above 99% for two-class classification using

the Herlev dataset (30). Despite these promising results,

significant challenges remain, including recognition of additional

relevant classes, generalization across populations, and

integration into clinical workflows. Addressing these issues will

be essential for transitioning DL-based solutions from research to

real-world deployment, particularly in LMICs where cost-

effective automation could have the greatest impact.

To our knowledge, the only study proposing a non-

commercial, fully integrated approach—combining an automated
Frontiers in Medical Technology 03
imaging system with DL algorithms for cervical cancer screening

—is that of Holmström et al. (31). Holmström and colleagues

used the commercial Grundium Ocus slide scanner to digitize

whole Pap smear slides. They trained and tested a DL algorithm

to detect slides with low-grade and high-grade lesions. The

model achieved sensitivities and specificities of 84.2%, 86.0% for

low-grade lesions, and 85.7%, 98.5% for high-grade lesions.

These results are promising for potential implementation in low-

resource settings, particularly if the approach is expanded to

include classification to additional relevant cancer stages.

However, large-scale adoption in low-resource settings may

require more affordable slide-scanning solutions.

Finally, conventional Papanicolaou tests must be considered

within the broader context of modern cervical cancer elimination

strategies. HPV vaccines are expected to significantly reduce

cervical cancer incidence, as they provide exceptional protection

against high-risk HPV infection (32). However, even with the

most effective vaccination programs, these will take decades to be

fully realized (33), and in the meanwhile millions of women

remain at risk. Additionally, HPV vaccines remain expensive,

which can be prohibitive in low-resource settings. Concerns also

exist regarding vaccine-induced strain replacement, which may

affect long-term efficacy (34). At the same time, high-income

countries are shifting their screening focus toward molecular

HPV testing due to its high sensitivity and specificity (35). While

these tests may offer advantages in early detection, they are

costly and require specialized infrastructure, making their

implementation challenging in rural and underserved areas.

Given these challenges, conventional Pap tests remain essential

for cervical cancer prevention, but innovative point-of-care

(POC) diagnostic solutions are needed (36). In this context, this

research paper describes the development of a low-cost platform

for automated cervical cytology, using a novel approach that

combines a custom made low-cost automated microscope with

deep learning algorithms.
2 Materials and methods

2.1 Device overview

In this section, we describe the general characteristics of the

developed microscopy platform, which is shown in Figure 2A.

The design and development of the platform were executed with

a focus on a couple of key aspects essential for its successful

implementation in resource-constrained settings. It is important

to highlight that this project was developed in Chiapas, the

poorest state in Mexico (37). Visits and interviews conducted at

rural health centers provided valuable insights into the challenges

faced for effective cervical cancer screening in rural communities

with low resources. In the first place, the platform was

engineered using non-sophisticated and low-cost components

that are increasingly becoming more available in LMICs (38),

ensuring accessibility and affordability. On the other hand, ease

of operation was an important consideration, enabling

straightforward usage by health personnel with limited technical
frontiersin.org
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FIGURE 2

(A) Picture of the platform. (B) Scheme of the optical setup.
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expertise. Additionally, a focus on ease of construction and

repairment was paramount during the development phase,

enabling reproducibility by people with little tinkering abilities as

well as quick and cost-effective maintenance. The design and

detailed instructions for building the platform will be made

available under an Open source license here, in order for anyone

to be able to replicate it.
2.1.1 Optics
The optical setup, shown in Figure 2B, was designed for

brightfield microscopy and high-quality digital image capture,

utilizing the simplest possible configuration to ensure ease of

construction and repair. In the first place, we have a LED-based

illumination system which utilizes a 5W high power LED and a

condenser polymethylmethacrylate (PMMA) lens with a focal

length of 5 mm for collimating light. Following, we use a

Newport MVC-20X finite conjugate objective with a numerical

aperture of 0.4, for high-quality magnification. Cheaper generic

versions were also tested and sufficient acceptable qualities were

achieved. Finally, for image capture, we use a Raspberry Pi HQ

camera which comprises a 12.3 megapixels Sony IMX477R

sensor. All parts are attached and kept aligned by an optical cage

built with 3D printed parts and 6 mm steel rods. This

configuration allows us for an optical resolution of 0.63 µm.

Cytological analysis involves examining features of the

cytoplasm and nucleus of cervical cells (39). The smallest
Frontiers in Medical Technology 04
structures under examination are the nuclei and the chromatin

spots within them. Typically, the nuclei of intermediate cells

measure around 8 µm in diameter, while those of superficial cells

are approximately 4 µm (40). Chromatin spots within these

nuclei can range from 1 to 2.5 µm in size. Given that our optical

system has a resolution of 0.63 µm, we can confidently ensure

that it meets the necessary imaging specifications for accurate

cytological analysis.
2.1.2 Mechanics and electronics
The core electronics of the system consist of a Raspberry

Pi 4 B+ with 8 GB of RAM, which controls all other electronic

components. The movement system is powered by NEMA 11

and NEMA 17 stepper motors, combined with TMC2208 drivers

and leadscrew mechanisms, achieving a mechanical resolution of

0.3 µm and enabling automated scanning across a

50� 25� 40mm3 volume along the XYZ axes. After applying

backlash correction by adding extra steps when changing

direction, a positional repeatability accuracy of 10–20 µm in one

dimension was achieved. Other electronic components include a

5W LED with a 1 K potentiometer for light intensity control,

joysticks for intuitive XYZ movement, limit switches for edge

detection, and cooling fans. A custom-designed printed circuit

board (PCB) simplifies connections between these components,

ensuring integration and reliable operation.
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The key mechanical components include aluminum T-slot

profiles, steel rods, linear bearings, and trapezoidal leadscrews, all

of which ensure precise alignment and smooth linear movement

along the XYZ axes. Additional structural and mechanical parts

were designed and 3D printed using PLA material on a Prusa

MINI+ 3D printer.

2.1.3 Software
A cross-platform software for operating the device was designed

with user-friendliness in mind, recognizing the lack of specialized

technicians in the intended deployment environment. Both the

front-end and back-end were developed using Python and will be

made available under an Open Source license. The front-end, a

graphical user interface (GUI), provides control for basic

microscope functions, like: real-time visualization of microscopy

images, autofocusing, full slide scanning capturing images of all

fields of view (FoVs), and video capturing, and illumination

control. Additionally, there are dedicated sections, see Figure 3, for

medical history storage and for executing the image analysis module.

The software runs on a Raspberry Pi which allows the use of

other resources of the operating system (OS). Particularly, the

platform can be connected to the internet and upload data and

images to the cloud, allowing for telemedicine practices.

Additionally, the platform integrates a touch-screen which allows

it to operate all functions without the need of an external

computer. The software incorporates a trained CNN for
FIGURE 3

Image captures of the different sections of the software of the platform. (A
panel. (D) Image analysis panel.
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automated analysis and classification of Pap smears images.

A detailed description and discussion of the CNN algorithms will

be provided in the following section.
2.2 Image analysis algorithms

CNNs stand out as a powerful approach for image analysis

tasks due to their ability to automatically extract intricate features

from visual data. These neural networks excel at capturing spatial

hierarchies within images, making them well-suited for tasks like

medical image classification where subtle details play a crucial

role in accurate diagnosis (41). Consequently, in recent years,

there has been an increase in the amount of researches using

CNNs for medical image analysis, including automated assisted

screening methods for cervical cancer (42). In the context of

cervical cytology, two of the most common approaches based on

CNNs are: image classification and object detection (25). Image

classification models categorize an entire image into a predefined

class, while object detection models search relevant objects in an

image and simultaneously locate them and predict their

categories. In this work we perform image classification, but not

on single cell images as most works do (25), but on whole field

of view (FoV) images, which may contain several cells,

undertaking an approach similar to the one followed by Hussain

et al. (43) and Alsalatie et al. (44).
) User login panel. (B) Medical record panel. (C) Real-time visualization
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TABLE 1 Correspondence between categories in our custom dataset and
the Bethesda system, along with the number of images per class.

Custom dataset Bethesda system
equivalent

# of
images

Normal class 655
1. Normal superficial
squamous

Negative for intraepithelial lesion or
malignancy (for squamous cells)

359

2. Normal intermediate
squamous

Negative for intraepithelial lesion or
malignancy (for squamous cells)

296

Lesion class 655
3. Low grade lesion Low-grade squamous intraepithelial

lesion
376

4. High grade lesion High-grade squamous intraepithelial
lesion

279

Cancer class 655
5. In Situ cancer Squamous cell carcinoma 85

6. Invasive cancer Endocervical adenocarcinoma 276

7. Adenocarcinoma Endometrial adenocarcinoma 294

Total: 1965

Ocampo-López-Escalera et al. 10.3389/fmedt.2025.1531817
Training a CNN which may contain millions of parameters

from scratch, using only our reduced dataset can bring several

issues, like overfitting and poor generalization performance.

Transfer learning, a technique that attempts to transfer

learned knowledge from a large public dataset to a specific

task, has proved to be effective in these cases (45). Training

first with a large general dataset allows to benefit from learned

representations of generic features like edges, textures, shapes,

etc. and further continue training making fine adjustments

with a custom dataset. In this work, we tested several widely

used architectures, pretrained on the ImageNet set. The

selection of architectures was based on previous studies

demonstrating their effectiveness, or that of related

architectures within the same family, in the context of cervical

cytology classification (46, 47). The tested architectures

include: MobileNet, MobileNetV2, MobileNetV3Small,

MobileNetV3Large, InceptionV3, DenseNet201, ResNet50,

VGG16, VGG19, EfficientNetB0, and EfficientNetV2S.

In order to adjust these pre-trained models to our cervical

cells images classification task, we performed a fine-tuning

using a custom dataset, which will be described in the

following section.
2.3 Data acquisition

The image dataset used in this study was curated by expert

cytotechnologist Guillermo Domínguez under the supervision

of pathologist Saúl Tobar, both full time employees at the

Hospital General de Zona No. 2 under the Instituto Mexicano

del Seguro Social, IMSS (Mexican Institute of Social Security)

in Tuxtla Gutiérrez, Chiapas, México. More than 350 cytology

slides, borrowed from the hospital and from Dr. Tobar’s

private practice, were used. Complete identity privacy was

maintained, since we only had access to the cytologic diagnosis

of each slide. Cytology slides were manually scanned to find

fields of view (FoV) containing cells representative of the most

common cell types relevant for CC detection. Digital photos

were captured using the microscope described in Section 2.1

and classified as a whole, according to one of the seven

subclasses shown in Table 1. These subclasses can be

associated with the Bethesda system, the most commonly used

framework for reporting cervical cytologic diagnoses (39), as

shown in Table 1. Additionally, it is important to mention that

each image may comprise multiple cells and various cellular

types, however, the definitive classification was based on the

presence of the more advanced lesion identified in each image.

Examples of the different subclasses are shown in Figure 4.

Finally, from the seven subclasses, three major classes were

defined: (1) Normal class, (2) Lesion class, and (3) Cancer

class. This major classification was proposed in order to

maintain a high and balanced number of images per class and

taking into consideration the similarities of cell types grouped

in each class.
Frontiers in Medical Technology 06
2.4 Model training and evaluation workflow

To implement and evaluate the models described earlier, the

dataset is usually divided into training, validation, and testing

sets, each set being completely independent from the others. The

training set serves as the primary data used to train the CNN

model. During training, the model learns to recognize patterns

and features by adjusting its weights and biases to minimize the

loss function. The validation set is used to monitor the model’s

performance during training, enabling hyperparameter tuning and

the selection of the best model checkpoint. Finally, the test set is

reserved for evaluating the final model’s performance on completely

unseen data. Both the validation and testing sets are critical for

ensuring the model’s ability to generalize to new, unseen data.

In order to achieve a robust set of hyperparameters, we

performed a 5-fold cross-validation for hyperparameter tuning,

as follows. The full dataset, previously described, was divided

into five groups, each containing three directories corresponding

to the three major classes: Normal, Lesion, and Cancer, with 131

images per class. In each fold, images from four of the five

groups (80% of the dataset) were combined to form the training

set. This training set was then augmented (as described below),

resulting in 9,432 training images. The remaining group (20% of

the dataset) was further split randomly, with 70% of its images

(275 images) assigned to the validation set and the remaining

30% (118 images) to the test set, while maintaining a

homogeneous class distribution. Once the training, validation,

and test sets were defined, a training and evaluation process was

performed on the validation set. This process was repeated five

times, each time rotating the group used for validation. Average

accuracy values across the five folds were used to determine the

best set of hyperparameters. The best-performing model from

each fold was saved and later used to evaluate model

performance on its corresponding test set, thereby assessing the

models’ generalization capability. It is important to note that

hyperparameter tuning was performed only on the MobileNet
frontiersin.org
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FIGURE 4

Examples of the different cell types subclasses comprising our custom dataset. (A) Normal superficial. (B) Normal intermediate. (C) Low grade lesion.
(D) High grade lesion. (E) In situ cancer. (F) Invasive cancer. (G) Adenocarcinoma.

FIGURE 5

Training-testing workflow.
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architecture and the resulting hyperparameters were reused for

other architectures. This decision was made due to limited

computational resources and preliminary tests that identified

MobileNet as the best-performing architecture. The reuse of

these hyperparameters across other architectures was further

justified by their satisfactory performance during validation and

testing, as well as the transferability of hyperparameters across

similar models trained on the same dataset and task.

As shown in Figure 5, it is important to note that the high-

quality images captured were resized to either 244� 244 or
Frontiers in Medical Technology 07
299� 299 pixels to match the input requirements of the different

CNN architectures. This reduction in resolution was necessary to

ensure compatibility with the pretrained models. After resizing,

and as previously mentioned, the training set was augmented to

enhance the model’s generalization capabilities. The

augmentation techniques applied included random rotations,

horizontal and vertical flips, and width and height shifts. Other

common augmentation techniques, such as zoom and brightness

adjustments, were intentionally excluded to maintain the

standardized magnification and illumination conditions achieved
frontiersin.org
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by capturing all images with the developed microscope.

Importantly, no augmentation was applied to the validation or

test sets, as their purpose is to evaluate the model’s performance

on realistic, unmodified data. Augmenting these sets would

artificially inflate performance metrics, making it difficult to

assess the model’s true generalization ability. Although the

validation and test sets may appear small, the 5-fold cross-

validation approach provides robust results by increasing the

number of images evaluated across folds.

The best set of hyperparameters and other tunable

considerations were found by iterating over varying

configurations of the following: (1) number of trainable layers of

the base model (0, 20, 40, 60), (2) activation functions of the

classification head (ReLU, LeakyReLU), (3) optimizers (Adam,

SGD), (4) learning rate (10�5, 10�4, 10�3, and 10�2), (5) batch

size (16, 32, 64), (6) number of epochs (10, 20, 50, 100), (7)

classification head dimensions (number of layers: 1–3, units per

layer: 128, 256, 512 and droput: 0.1, 0.25, 0.4).

The general workflow for training and testing the models is

illustrated in Figure 5, and the best-performing hyperparameters,

along with the model’s head architecture, are summarized in

Table 2. All algorithms were implemented in Python 3.10 using

TensorFlow 2.13.1 on a desktop computer equipped with an

AMD Ryzen 5 PRO 5,650 G CPU, Radeon graphics, and

16 GB of RAM.
2.5 Exploring CNN classification
mechanisms with SVM and Ablation-CAM

Even with their proven efficiency for image classification,

CNNs have been criticized for operating as black boxes (48).

They receive an input image and output a corresponding class,

but the specific characteristics they use for classification are not

available. This may sometimes represent a limitation, because it

is difficult to know if the algorithm is using valid information for

the given context. To further investigate whether our image

classification model is focusing on relevant cytological features,

we conducted two parallel tests: a Support Vector Machine

(SVM) applied to color histograms and the Ablation-

CAM technique.

SVM algorithms have been effective in image classification

tasks where color is a dominant feature (49). Therefore, in order
TABLE 2 Best-performing hyperparameters and model head architecture.

Hyperparameter Optimal value
BM trainable layers 40

Head activation
functions

LeakyReLU

Optimizer Adam

Learning rate 0.001

Batch size 32

Number of epochs 50

Head architecture Flatten – Dense (512) – Dropout (0.25) – Dense (512) –
Dense (128) – Dense (3 – Softmax) – Output (3 Classes)
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to inspect the importance of color in classification, we trained

and tested an SVM algorithm using color histograms from the

dataset, assessing various bin sizes.

On the other hand, ablation-CAM is a technique used to

visually recognize which parts of an image are most important

for a CNN’s classification decision (50). It generates a heatmap

that highlights parts of the images that contributed the most to

the network’s prediction. In general terms, Ablation-CAM works

by systematically ablating different parts of the feature map in

the last convolutional layer and observing how the network’s

confidence in its prediction changes. If removing a specific area

causes the network to change its prediction significantly, the

associated area is likely important for the decision. We applied

the Ablation-CAM algorithm to a sample of abnormal images

from our dataset, ensuring diversity in coloration and

morphology within each class.
3 Results

For assessing the optical capabilities of the developed

microscopy platform for cervical cytology analysis, Figure 6,

presents a comparison between two images of the same FoV: one

captured using a 40X objective of an Olympus CX31 (A)

(a widely used brightfield microscope in cytological analysis

laboratories within Mexican health institutions), and the other

captured using our custom-developed microscope (B). It is

important to note that, due to the differences in the optical

setup, the FoV of the developed microscope differs from that of

common brightfield microscopes. The FoV of the Olympus CX31

with a 40X objective is a circular area of approximately 615 µm

in diameter, covering an area of approximately 0.3 mm2. In

contrast, the FoV of our custom microscope with a 20X objective

is limited by the sensor which is placed at the plane where the

image is formed by the objective. The sensor captures a

rectangular area of 378� 274mm2, covering around 0.1 mm2. In

fact, the image in Figure 6A was cropped to match the FoV

captured by our device, shown in Figure 6B.

An experienced pathologist evaluated both images and exerted

the following comments. Firstly, he considered the quality of the

image captured with the custom microscope as slightly superior,

based on sharpness. Secondly, he commented that he is able to

see sufficient details for cytological analysis, identifying two

abnormal cells in the image: a koilocyte and an abnormal cell

that might be representative of a high-grade lesion.

To supplement the qualitative assessment conducted by the

pathologist and obtain a quantitative comparison of the two

images, we conducted a BRISQUE (Blind/Referenceless Image

Spatial Quality Evaluator) test (51). Although the BRISQUE

algorithm is not specifically trained for evaluating cellular

images, it extracts features that can be used to assess quality

characteristics for arbitrary images. The resulting scores were

26.2 for the custom microscope and 46.7 for the Olympus

microscope. Since lower BRISQUE scores indicate better image

quality, these results further support the conclusion that the

images obtained with our custom microscope are of acceptable
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FIGURE 6

Image comparison of the same FoV captured using: (A) an Olympus CX31 and (B) our custom-developed microscope.

TABLE 3 Evaluation metrics for the top-3 evaluated models for validation
and test sets.

Base model Set Sens Spec F1 Acc

(%) (%) (%) (%)
MobileNet V 98.26 88.91 96.42 87.32

T 97.95 88.72 96.23 86.15

DenseNet201 V 96.19 91.96 96.09 88.98

T 96.67 90.26 95.93 85.82

InceptionV3 V 95.87 91.30 95.76 87.02

T 93.08 91.79 94.29 84.95
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quality compared to those captured using a commercial

microscope used for cytologic analysis.

To evaluate the performance of our pre-trained models listed

above, we have chosen four metrics: sensitivity (Sens), specificity

(Spec), F1-score (F1), and accuracy (Acc). Sensitivity tells us the

proportion of actual positive cases (abnormal cells) correctly

identified by the test. This is a crucial criterion since, in the

context of CC screening, the consequences of a false negative can

have substantial critical health risks and economic burdens.

Specificity represents the proportion of actual negative cases

(normal cells) correctly identified by the test. Specificity,

although not as critical as sensitivity, is also a relevant criterion

since it can trigger unnecessary stress to the patient and give

additional work to the specialist. F1-score is a measure of

predictive performance often used in medical image analysis

research. Finally, the accuracy represents the overall proportion

of correct results. Given the rationale of our proposal, which will

be further discussed in the following section, some of the

computed metrics allow for confusion between the two

considered abnormal classes.

Sensitivity ¼ TP0lesþTP0can
TotlesþTotcan

Specificity ¼ TN
Totnor

F1 ¼ 2(TP0lesþTP0can)
2(TP0lesþTP0can)þFP0lesþFP0canþFN

Accuracy ¼ TPnorþTPlesþTPcan
TotnorþTotlesþTotcan

(1)

In Equation 1, we can see the mathematical definitions of the used

evaluation metrics. TP0
les and TP0

can are true positives of the lesion

and cancer classes respectively, allowing for confusion with the

other positive class. F1-score is computed under the same

flexibility. On the other hand, specificity and accuracy are

defined in the conventional way. Additionally, a 5-fold cross-

validation was performed in all tests in order to assess

generalization performance. Therefore, all reported values

correspond to the average across the five different runs.
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The results for the chosen evaluation metrics are presented in

Table 3 for the three best-performing models: MobileNet,

DenseNet201 and InceptionV3. All three models exhibited

consistently high sensitivity values. MobileNet achieved the

highest scores, with 98.26% sensitivity on the validation set and

97.95% on the test set. DenseNet201 followed with 96.19% and

96.67% for the validation and test sets, respectively, while

InceptionV3 showed sensitivity values of 95.87% on the

validation set and 93.08% on the test set. These results suggest

that MobileNet may be more robust in detecting subtle

abnormalities in cervical cell images.

From Table 3, we can also notice that, contrary to the high

sensitivity values, specificity was relatively lower for all models.

This indicates a higher likelihood of false positives, meaning

normal cells were more often misclassified as abnormal. Among

the models, MobileNet performed the worst in terms of

specificity, while InceptionV3 showed the best performance. The

F1-score for all three models were consistently high, indicating a

good balance between precision and sensitivity. Notably,

MobileNet achieved a slightly higher F1score, further reinforcing

its effectiveness in identifying abnormal cells. Finally, we can

notice that accuracy values are considerably lower which, in

conjunction with the sensitivity values, can be explained as

misclassifications between the two abnormal classes.

Table 4 displays the precision values for each cellular type

across the three models. Notably, MobileNet achieves excellent
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identification for all cancer subcategories and high-grade lesions,

which are the most critical abnormal classes. However, its

performance on the low grade lesion and normal subclasses is

relatively weaker. In contrast, DenseNet201 presents optimal

performance only on adenocarcinoma subclass, while

InceptionV3 presents excellent performance only on

adenocarcinoma and in situ classes.

Regarding the SVM test for understanding the classifying

mechanisms of CNNs, the best performance was achieved with 50

bins per color band. Yielding a sensitivity of 84.78%–84.62%,

specificity of 76.52%–73.33%, and an overall accuracy of 67.25%–

65.47% for the validation and test sets, respectively. While these
TABLE 4 Breakdown of precision for identification with MobileNet base
model for each cellular type contained in the custom dataset.

C.T. Set MobileN DenseN Inception

(%) (%) (%)
Sup V 90.44 93.99 92.25

T 92.88 92.38 92.65

Int V 87.33 89.31 89.94

T 83.78 87.98 91.91

L.G. V 95.96 93.63 92.07

T 93.04 93.11 88.87

H.G. V 98.87 95.66 97.15

T 100.00 97.32 91.77

In Situ V 98.00 96.53 98.18

T 100.00 89.33 100.0

Inv V 99.00 96.61 95.27

T 100.00 98.95 93.45

Adeno V 100.00 100.00 99.0

T 100.00 100.00 99.05

FIGURE 7

Comparison of Ablation-CAM results alongside their corresponding original
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results were significant, they were notably lower than those of the

CNN models, indicating that while color contributes to classification,

the CNNs are recognizing more complex, higher-order features

beyond color alone. As for the Ablation-CAM results, in Figure 7, we

present a comparison of the Ablation-CAM outcomes alongside their

corresponding original images. The “hot” areas on the heatmaps

indicate the regions of the images that are most relevant for the

achieved classification. The first two, Figure 7A are images classified

by the specialists as low grade lesions, while the last two, Figure 7B,

were identified as cancerous. We can observe that the heatmaps

effectively highlight regions containing abnormal cells while avoiding

empty regions or those with normal cells. These qualitative results

support the conclusion that MobileNet is extracting meaningful

information from cellular patterns.

In addition to classification performance, another important

aspect to consider when deploying a device like the one

proposed in this paper, is computing time. As mentioned earlier,

the core of the platform’s software and control is a Raspberry Pi

4, which, while offering some computing power, may not be

sufficient for real-time AI applications. To evaluate the

computational efficiency, we conducted timing tests for the

models that performed the best on the classification task.

Different batches of 1, 10, 20, 25, and 50 images were classified

by the trained models in order to check classification times as a

function of the number of images running on a Raspberry Pi.

Results shown in Figure 8, also point to MobileNet as the best-

performing model based on this criterion. It runs considerably

faster, up to six times faster than DenseNet201, which was

ranked as the second best model. MobileNet took about 10 s to

classify 50 FoV images, which translates to approximately 200 ms

per FoV image.
images for: (A) low grade lesions, and (B) cancerous stage.
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FIGURE 8

Computation times in seconds on a Raspberry Pi4 8 Gb for the top-3 models for classifying different number of images.
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4 Discussion

The contribution of this research can be divided into two main

aspects: (1) the development of an automated, low-cost microscopy

device, and (2) its application in creating an algorithm to identify

abnormal cell types relevant to cervical cytological analysis.

Regarding the first aspect, the previously described device was

designed to perform automated scanning of Pap smears in

resource-constrained settings. In contrast to other published

automated microscopes, our prototype supports automated

scanning of a 50� 25mm2 surface, which is required for

conventional Pap smears reading. It is constructed using 3D-

printed parts and simple mechanical components, which allows

to maintain a production cost below 500 USD, making it a cost-

effective proposal. Additionally, it incorporates a software that is

designed for intuitive use by non-specialists. These characteristics

highlight the described platform as a valuable asset for reading

Pap smears in low-resource settings.

In the second aspect, we used our microscopy device for

developing a CNN-based classification system that identifies the

most important abnormal cell types relevant to a cervical cytological

analysis. The results presented in the previous section identify

MobileNet as the best-performing model for detecting the five kind

of abnormal cells considered in this work. Compared to other

models, it shows the highest sensitivity and F1 scores. Table 3 details

how well each model classifies individual subclasses. From this data,

we can conclude that the main area for improvement with

MobileNet lies in distinguishing between normal cells and low-grade
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lesions. This challenge is understandable due to the subtle and often

variable morphological changes associated with low-grade lesions.

Expanding the training dataset with more examples of these cases is

expected to improve classification accuracy. Furthermore, the SVM

and Ablation-CAM tests results suggest that MobileNet architecture

is accurately using cellular features for performing the classification

of full FoV images. This is an important validation component, that

to our knowledge, had not been performed on classification

researches that work with full FoVs. However, since a full dataset-

wide analysis was beyond the scope of this study, we did not apply

Ablation-CAM to all images in our dataset and further investigation

in this regard is left for future work.

On the other hand, it is important to acknowledge the relatively

low specificity achieved by the tested models, particularly

MobileNet, which exhibited the highest sensitivity values.

A specificity of 90% implies that approximately 10% of fields

containing only normal cells would be misclassified as abnormal.

Given that each slide consists of approximately 12,500 fields of

view (FoVs), a hypothetical normal sample would result in

several hundreds of mistakenly flagged images. This would

require manual review of all these fields, effectively defeating the

purpose of the device. To mitigate these challenges, there are a

number of possibilities that should be explored. First, enriching

the training dataset with more images is essential. It has been

extensively documented that CNNs improve their accuracy when

trained on sufficiently large and diverse datasets (52, 53). In this

study, we curated a relatively modest dataset of 1,600 images,

which is small considering the complexity of cytological samples.
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Second, an alternative approach would be to develop an

asymmetrical classifier that treats false positives and false

negatives differently (14). While allowing a model to misclassify

a substantial fraction of malignant cells as normal may seem

counterintuitive, it could still be effective. Theoretically, if we

have dozens of abnormal cells in an abnormal slide, which is

typically the case, even with a high false negative rate, the system

would detect a percentage of malignant cells, allowing the sample

to be properly classified as positive. Similarly, another approach

is to count the number of detected abnormal cells and classify

the specimen as suspicious if it exceeds a certain threshold.

Finally, a commonly proposed solution is to integrate the system

with parallel human screening. However, this increases workload

and costs, undermining the system’s intended purpose. It is

worth noting that ThinPrep, one of the commercially available

system, is primarily marketed for use in this manner. To

conclude, we would like to state that regardless of the best

approach to address the challenge of low specificity, an

important idea behind our proposal is that images acquired in

rural or underserved areas—where trained technicians and

specialists for Pap smear analysis may be unavailable—could be

uploaded to the cloud. This would enable remote specialists to

review digitized images of suspicious FoVs, facilitating

assessment without the need to transport personnel or

physical samples.

Next, to contextualize the results obtained in this research within

the existing literature, it is important to note that, unlike most

classification studies that focus on single-cell images, our results are

based on full FoV images, which may contain several cells.

Therefore, direct comparison with other studies is not always

straightforward. However, we can compare our work with a few

studies that take a similar approach. Hussain et al. (43) reported a

four-class classification of full FoV images, achieving an accuracy of

98.9% and a sensitivity of 97.8%, using a combination of

proprietary and public datasets. Similarly, Alsalatie et al. (44)

worked with full FoV images from liquid-based cytology slides,

achieving an accuracy of 99.6% for a four-class classification. In

contrast, our study integrates more classes, including three cancer

categories, two lesion classes, and two normal classes, which we

group into three major classes to balance the dataset and group cell

types with similar characteristics. Furthermore, our dataset consists

on pictures taken from conventional Pap smears, which is the

more common technique used in LMICs. For real-life applications,

distinguishing between normal and abnormal cell types is more

critical than achieving extreme precision across multiple

subcategories. It is also worth mentioning that we also conducted a

two-class classification, but the results were slightly inferior to the

three-class approach. This could be due to the unbalanced number

of images between the two classes or the grouping of cell types

with less similar characteristics. In this context, it is important to

highlight that most recent researches in the field focus on

developing sophisticated algorithms for tasks such as object

detection, segmentation, image classification, or combinations of

these (25, 54). For example, Zhu et al. (55) developed a system for

automated cervical cytology screening that integrates five complex

AI models and classifies samples according to The Bethesda
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System. While this system achieved impressive results, it requires

significant computing resources, which may not be feasible in low-

resource settings.

While our study uses simpler classification algorithms, one of the

core strengths in this proposal is to compensate for algorithmic

complexity with the development of a robust, standardized dataset.

There is evidence that changes in some of these factors might

affect performance (56, 57). In this context, it is relevant to

highlight some noteworthy advantages of our custom dataset when

compared with other publicly available datasets. Firstly, all images

were captured using our custom microscope which is translated

into standardized magnification, aspect ratio, illumination

conditions, and camera settings. Secondly, the inclusion of a

diverse set of more than 350 conventional cytology slides, borrowed

from IMSS, and from Dr. Tobar private practice, enables us to

account for variations in sample preparations. Additionally,

although staining technique is standardized to the conventional

Papanicolaou protocol, slight variations are present due to

differences in chemical brands and personal preferences. These

considerations make our database a robust foundation for

generalization and model performance. Additionally, the utilization

of a Raspberry HQ camera allowed it to have high resolution

images of 4056� 3040 pixels. This standardized dataset and

meticulous collection methodology lay a solid groundwork for

effective image classification within our study.

Despite the benefits of this dataset and the use of simpler

classification algorithms, there remain challenges for real-life

implementation. One critical consideration is the time required to

process a slide. Given that Papanicolaou slides cover an area of

approximately 50� 25mm2, and considering that the platform’s

FoV is 378� 274mm2, the device would need to capture and

classify roughly 12,500 images to fully scan a slide. The key factors

determining time estimation include travel between FoVs, image

capture at each FoV, and all steps involved in image classification.

Based on the characteristics of our electromechanical setup, the

full slide could theoretically be scanned in under five minutes. On

the other hand, considering the exposure times required for

optimal image quality with our illumination setup, capturing all

images should take no more than 15 s. However, in practice, we

have not achieved scanning speeds below 60min, primarily due to

the SD card’s writing speed. This limitation could be approached

by using a faster SD card or capturing lower-resolution images,

especially since we already downsample images for classification.

An additional factor that significantly impacts processing time and

viability, yet has not been addressed in this work, is the need for

autofocus. As the system moves across different FoVs, variations

in the focal plane are inevitable. This underscores the importance

of implementing an autofocus function to maintain image clarity.

While we have not yet incorporated autofocus, the microscope’s

mechanical and electronic design fully supports its integration in

future iterations. Furthermore, using MobileNet for the

classification task alone would take approximately 45min, not

accounting for the additional time required for image capture and

resizing. Taking these additional steps into account, the total

processing time could increase significantly, potentially limiting

the device’s practicality in real-world settings. To address this
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limitation, increasing the system’s computing power appears to be a

promising solution. Options such as a Coral accelerator or a

Raspberry Pi AI kit module, each costing around 70USD, could

considerably reduce the classification time. With this increased

computing power, it might also be feasible to implement more

sophisticated computer vision algorithms, thereby improving both

the precision and efficiency of the classifier.

Another important consideration for real-life use is the huge

diversity of elements that appear when reading a full slide. While

our algorithm has been trained to recognize seven specific cellular

types, the device will inevitably encounter additional scenarios it

has not been trained for, such as images containing no cells, overly

saturated images with no visibility, or fields containing blood,

mucus, immune cells, or other types of artifacts. Additionally,

including normal endocervical and metaplastic cells is crucial, as

their presence is a requirement for slide adequacy according to the

Bethesda system. However, we believe that being an open-source,

reproducible device could foster the development of a collaborative,

standardized dataset that includes all potential cellular types

encountered in cervical cytological analysis. This would not only

improve the model’s accuracy but also enhance its applicability in

diverse clinical environments.

While our study shows promising results towards developing

an integrated automated system for cervical cytologic analysis,

real-world implementation requires solving several additional

challenges. At the same time, the cost of achieving full coverage

of cervical cytology screening under the traditional framework

remains prohibitive in LMICs. As highlighted earlier, countries

with significant rural populations or complex geographies find

that the traditional screening process is far from cost-effective.

The low-cost, automated microscopy device we propose,

combined with deep learning algorithms, offers a potential

solution to these obstacles. While this prototype is only a first

step, it demonstrates how new technologies can begin to alleviate

the burden on resource-constrained settings, extending access to

vital screening services and ultimately improving health

outcomes for underserved populations.
5 Conclusion

In this study, we developed a low-cost microscopy platform

equipped with AI-based computer vision capabilities for cervical

cytology screening. The microscopy platform, costing below

500USD per unit, has sufficient optical capabilities for analyzing

cervical cells in Pap smears and it is capable of scanning a chosen

area inside a 50� 25mm2 area. The platform was used for

building a dataset of 1,965 images spanning seven different cellular

types relevant in cervical cytology analysis. Furthermore, this

dataset was used to train and test several CNN algorithms for

automated classification of the different seven cellular types within

three major classes. Through the comparative evaluation of various

models, MobileNet emerged as the most effective choice, achieving

high sensitivity and competitive F1 scores, which are critical for

minimizing false negatives. Additionally, timing tests demonstrated

that MobileNet significantly outperformed other models in
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computational speed, making it a viable candidate for real-time

applications, particularly when paired with computing accelerators

like the Coral and Raspberry Pi AI modules.

In conclusion, our platform presents a promising step toward

automating cervical cytology analysis in low-resource settings,

where traditional methods may be limited. By optimizing both

the hardware and the AI models, it has the potential to

significantly reduce the time, costs and effort required for initial

screening, while ensuring accurate detection of abnormal cells.

Future work will focus on refining the system for full-slide

analysis, increasing model robustness, and performing field

testing to ensure that the platform meets the demands of real-

world clinical applications in real settings.
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