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The extracellular matrix (ECM) serves as a dynamic biological framework that

orchestrates cellular behavior through biomechanical and biochemical cues,

playing a pivotal role in tissue homeostasis and repair. Despite significant

advancements in biomaterial design, current regenerative strategies often fail to

fully replicate the ECM’s complexity, leading to suboptimal healing outcomes.

This review comprehensively examines ECM biology and its application in

biomaterial engineering, highlighting structural-functional relationships, integrin-

mediated signaling, and ECM remodeling mechanisms in wound healing. We

analyze diverse biomaterial classes—including ECM-based scaffolds, synthetic

polymers, natural biomaterials, bioceramics, and composites—focusing on

their design principles, fabrication techniques, degradation profiles, and

clinical applications. Key challenges such as immunogenicity, vascularization,

mechanical mismatch, and regulatory hurdles are critically evaluated. Innovations

in decellularization, biofunctionalization, and advanced manufacturing (e.g., 3D

bioprinting, electrospinning) are discussed as promising avenues to enhance

biomimicry and therapeutic efficacy. Furthermore, we explore clinically approved

ECM-derived products and underscore the need for standardized protocols to

bridge translational gaps. By integrating emerging research with clinical

perspectives, this review provides a roadmap for developing next-generation

ECM-inspired biomaterials that address unmet needs in regenerative medicine,

emphasizing interdisciplinary collaboration to optimize safety, functionality, and

patient outcomes.
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1 Introduction

The extracellular matrix (ECM) represents a highly sophisticated biological framework

that transcends its conventional role as a passive structural scaffold (1, 2). Comprising a

dynamic network of proteins, glycosaminoglycans, and signaling molecules, the ECM

actively orchestrates fundamental cellular processes—including adhesion, migration,

proliferation, and differentiation—through integrated biomechanical and biochemical

cues (3–5). This regulatory capacity arises from its tissue-specific composition and

architecture, making it indispensable for physiological homeostasis and a critical

blueprint for biomaterial design in regenerative medicine (6, 7). The rising global

burden of chronic wounds, degenerative diseases, and organ failure has intensified the
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demand for advanced therapeutic strategies that address the

limitations of conventional treatments (8). While current

biomaterials often fail to recapitulate the ECM’s dynamic

reciprocity with cells (9)—leading to suboptimal outcomes such

as fibrosis or functional deficits (10)—recent innovations have

yielded ECM-inspired platforms with enhanced biomimicry (11).

These span natural polymers (e.g., collagen, hyaluronic acid)

(12), synthetic systems (e.g., PLGA, PEG) (13), and hybrid

constructs, each offering tunable biocompatibility, mechanics,

and bioactivity (14). Concurrent advances in fabrication

technologies—such as 3D bioprinting (15), electrospinning (16),

and microfluidic patterning (17)—now enable precise replication

of the ECM’s hierarchical architecture, further augmented

by biofunctionalization with peptides (18), glycosaminoglycan

mimetics (19), and nanostructured coatings (20). Stimuli-

responsive biomaterials exemplify particular promise,

dynamically interfacing with host tissues through controlled

growth factor release (21) or adaptive mechanical properties (22).

Central to the ECM’s therapeutic relevance is its dual role in tissue

repair: as a structural scaffold and a signaling hub. Following injury, it

directs hemostasis, inflammation, proliferation, and remodeling by

spatially coordinating cellular responses (23). Key components like

fibronectin and collagen engage integrin receptors (24, 25),

activating FAK/ERK pathways to drive migration (26, 27) while

sequestered growth factors (e.g., TGF-β, PDGF) are released to

modulate proliferation (26, 28–32). This synchronized regulation of

adhesion, motility, and cell cycle progression creates an optimized

microenvironment for regeneration (33–36) (Figure 1).

Despite these advances, critical translational challenges persist.

Gaps remain in understanding how engineered ECM analogs

influence regenerative outcomes (37), particularly in mimicking

dynamic remodeling (38). Immune responses (39), mechanical

mismatches (40), and inadequate vascularization (41) further

complicate clinical implementation. This review systematically

examines ECM biology and its biomaterial applications,

analyzing: (i) structure-function relationships governing cell fate;

(ii) molecular signaling mechanisms; (iii) comparative advantages

of biomaterial classes; and (iv) strategies to overcome

immunological, manufacturing, and regulatory barriers. By

integrating these perspectives, we aim to accelerate the

development of ECM-inspired therapies that bridge the gap

between bench innovation and clinical impact.

2 Integrin-mediated signaling in tissue
repair and regeneration

Integrins serve as fundamental mediators of bidirectional

communication between cells and their ECM microenvironment,

playing indispensable roles in tissue repair and regeneration.

These transmembrane receptors, composed of α and β subunits,

recognize specific ECM components including collagen,

fibronectin, and laminin, thereby orchestrating essential cellular

processes such as adhesion, migration, proliferation, and survival

(Figure 2) (42). The dynamic interplay between integrins and

their ECM ligands forms the molecular foundation for tissue

regeneration, with distinct subunit combinations conferring

specificity to these critical interactions (43).

The activation of integrin signaling initiates with ECM ligand

binding, which induces conformational changes that promote

receptor clustering and the assembly of focal adhesion complexes

(44). These specialized structures serve as mechanical and

biochemical signaling hubs, recruiting adaptor proteins including

talin, vinculin, and paxillin to bridge the connection between integrins

and the actin cytoskeleton. The formation of focal adhesions triggers

the activation of multiple downstream signaling pathways that

collectively coordinate the cellular response to tissue injury (45).

Central to this signaling network is the focal adhesion

kinase (FAK) pathway, which, upon activation at Tyr397, recruits

Src family kinases to regulate cytoskeletal dynamics and promote

cell migration (46, 47). Parallel MAPK/ERK pathway activation

regulates gene expression for proliferation and differentiation,

while the PI3K/Akt pathway promotes cell survival in stressful,

injured tissue microenvironments (48–50). These interconnected

pathways function synergistically to ensure appropriate cellular

responses during the repair process (51).

The mechanical properties of the ECM exert a profound

influence on integrin signaling dynamics. Substrate stiffness,

topography, and ligand density collectively modulate the spatial

organization and activation state of integrin clusters (44, 52).

This mechanosensitive regulation of integrin function has

inspired innovative biomaterial design strategies aimed at

recapitulating key aspects of native ECM signaling. Engineered

matrices incorporating RGD peptide sequences demonstrate

enhanced capacity to promote cell adhesion and migration

through selective engagement of αvβ3 and α5β1 integrins (53, 54).

FIGURE 1

The ECM supports cell migration and proliferation in tissue repair by creating a structured environment and interacting with integrin receptors, while

growth factors promote cell proliferation and influence the cell cycle, enhancing tissue regeneration.
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Recent advances in regenerative medicine have yielded

sophisticated biomaterial systems capable of dynamic interaction

with integrin receptors. Mineralized scaffolds functionalized with

integrin-binding peptides promote osteogenic differentiation of

mesenchymal stem cells, while cardiac-specific matrices improve

tissue integration following myocardial injury (55, 56).

Particularly promising are stimuli-responsive platforms that

adapt their presentation of integrin ligands in response to local

mechanical or biochemical cues, thereby providing temporal

control over regenerative processes (57).

Deciphering integrin signaling pathways enables advanced

biomaterial design for regenerative medicine. Targeted

modulation of these pathways enhances cellular responses, tissue

integration, and therapeutic efficacy while reducing side effects.

Key innovations involve nanostructured materials for enhanced

integrin clustering, multi-ligand systems for simultaneous

integrin engagement, and responsive biomaterials that adapt to

physiological cues. These approaches advance regenerative

therapies beyond structural mimicry to active biological control,

enabling complex tissue restoration (58, 59).

3 Dynamic ECM remodeling in wound
healing

ECM remodeling is a dynamic, tightly regulated process

essential for wound healing, involving degradation of the

provisional matrix and deposition of new ECM components

critical for tissue restoration (60, 61). Shortly after injury, a

fibrin-rich provisional matrix forms, offering structural support

and enabling cellular infiltration that initiates repair (62, 63).

This matrix also modulates the inflammatory response by

recruiting fibroblasts and endothelial cells (64, 65). Matrix

metalloproteinases (MMPs) become pivotal during the

remodeling phase by degrading the provisional matrix and

facilitating fibroblast migration and ECM synthesis (66, 67).

MMPs ensure a balanced transition from matrix degradation to

new ECM formation, which is essential for effective healing (68).

A hallmark of this phase is the replacement of type III collagen

with type I collagen, enhancing tissue tensile strength and

restoring structural integrity (69–71); see Figure 3. Moreover,

remodeling involves upregulation of matricellular proteins like

fibronectin and tenascin-C, which modulate cell-ECM

interactions and influence cell behavior, including adhesion,

migration, and differentiation (72, 73). Precise regulation of ECM

turnover is crucial; dysregulation can lead to pathological

scarring, such as hypertrophic scars or keloids (74, 75). Overall,

ECM remodeling supports both early repair and later tissue

normalization through coordinated synthesis and degradation (61).

4 ECM-inspired biomaterials

ECM-inspired biomaterials have emerged as a significant

advancement in the field of tissue engineering, presenting

promising approaches for the repair and regeneration of

damaged tissues (76). These biomaterials are engineered to

replicate both the structural and biochemical characteristics of

the natural ECM, providing an optimal environment conducive

to cellular activities critical for healing (77). The inherent

FIGURE 2

Integrin-mediated signaling in tissue repair and regeneration: integrins, transmembrane receptors binding to ECM components, undergo

conformational changes and form focal adhesions. This activates FAK, MAPK/ERK, and PI3K/Akt pathways, regulating cell adhesion, migration,

proliferation, and survival. ECM mechanical properties and bioengineered materials modulate integrin signaling to enhance tissue regeneration.
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properties of the ECM are being investigated in efforts to develop

scaffolds that promote cell attachment and proliferation while

also enhancing the intricate processes of tissue repair and

remodeling (78). The creation of these biomaterials is

underpinned by a comprehensive understanding of the ECM’s

functions in physiological processes, thus positioning them as

essential tools within the realm of regenerative medicine (79).

4.1 Design principles and material selection
of ECM-inspired biomaterials

The design principles underlying ECM-inspired biomaterials

focus on the precise replication of the architecture, composition,

and mechanical properties characteristic of the native ECM (80).

Critical factors in material selection involve the origin of ECM

components, the techniques employed for decellularization,

and the integration of bioactive molecules enhancing cell

signaling and facilitating tissue integration (81). Commonly

utilized materials, such as collagen, gelatin, fibrin, and hyaluronic

acid, are favored not only for their inherent biocompatibility but

also for their capacity to support fundamental cellular processes,

including adhesion, migration, and proliferation (Table 1) (82).

Among these, collagen is particularly prominent due to its

abundance in mammalian ECM and its ability to impart tensile

strength and structural integrity to engineered tissues (83).

The methods of decellularization are crucial in the synthesis of

ECM-based biomaterials, as these techniques strive to eliminate

cellular components while preserving the structural integrity and

bioactive properties of the native matrix (84). Various techniques,

including chemical treatments, enzymatic digestion, and physical

approaches such as freeze-thaw cycles, can be effectively utilized

to achieve successful decellularization (85). The selection of a

specific decellularization method significantly influences the

resulting material’s properties, affecting mechanical strength,

porosity, and degradation kinetics. Furthermore, subsequent

processing steps—such as crosslinking and sterilization—are

essential to enhance the stability, durability, and overall

functionality of these biomaterials (86).

In addition to selection and processing methods, the

incorporation of spatial patterning techniques further enhances

the functionality of ECM-inspired biomaterials. These techniques

facilitate the design of scaffolds with specific microarchitectures

that accurately replicate the native tissue environment (87).

Techniques such as photolithography and electrospinning allow

for precise manipulation of ECM component distribution at

the micro- and nanoscale (88, 89). This spatial control is crucial

for promoting proper organization and alignment of cells

within the scaffold, ultimately improving tissue integration

and enhancing the overall functionality of the engineered

tissue constructs.

5 Biomaterial classes, properties,
fabrication techniques, and
degradation profiles in tissue repair
and regeneration

Biomaterials used in tissue engineering are broadly classified

into five main categories based on their composition,

FIGURE 3

The dynamic process of ECM remodeling during wound healing, highlighting its key phases and components. Following an injury, a fibrin-rich

provisional matrix is quickly established, providing structural support and facilitating cellular infiltration to initiate healing. As healing progresses,

MMPs degrade this provisional matrix, enabling fibroblast migration and the synthesis of new ECM components. A significant transition occurs

from type III to type I collagen deposition, enhancing tissue strength. The remodeling phase is characterized by increased matricellular proteins

like fibronectin and tenascin-C, which influence cell-ECM interactions. Maintaining a balance between ECM synthesis and degradation is crucial to

prevent complications such as hypertrophic scars.
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physicochemical properties, and biological functions: (1) ECM-

based biomaterials, (2) synthetic polymers, (3) natural

biomaterials, (4) bioceramics, and (5) composites. Each class

exhibits unique physical, chemical, and biological characteristics

that determine its suitability for specific regenerative

applications (99).

A pivotal factor influencing biomaterial efficacy is their

degradation profile. Effective biomaterials degrade at rates

synchronized with tissue formation, maintaining scaffold

integrity during healing. Additionally, their degradation products

must be non-toxic, readily cleared, and supportive of the

regenerative environment, ensuring optimal scaffold performance

without adverse effects (100).

A comprehensive understanding of these materials’

properties alongside their fabrication methods is essential for

designing scaffolds and devices that optimize cell–material

interactions, mechanical stability, and degradation kinetics,

all critical to successful tissue regeneration. The subsequent

sections detail the composition, functionalities, and

manufacturing techniques associated with these biomaterial

classes (Table 2).

5.1 ECM-based biomaterials

ECM-based biomaterials comprise decellularized tissue

matrices, ECM-derived hydrogels, and self-assembled scaffolds

engineered to replicate the biochemical and biophysical

TABLE 1 The diversity of ECM-inspired biomaterials, their compositions, architectures, mechanical properties, and applications.

Type of ECM-
Inspired Biomaterial

Composition Architecture Mechanical Properties Applications

Decellularized Tissues Natural ECM proteins (collagen,

elastin)

Retains native tissue structure Variable stiffness, mimics native

tissue

Tissue engineering, regenerative

medicine (90)

3D structure reflects original

organ architecture

Organ transplantation, vascular

grafts (90)

Synthetic Hydrogels Polyethylene glycol (PEG),

hyaluronic acid

3D porous networks Tunable mechanical properties,

adjustable viscosity

Drug delivery, cell culture,

wound healing (91)

Hydrophilic networks facilitate

nutrient transport

Soft tissue repair, tissue

engineering (91)

Self-Assembled Peptide

Scaffolds

Peptides designed to mimic ECM

components

Nanofibrous structures Adjustable stiffness and elasticity Tissue repair, 3D cell culture (92)

Self-assembly can be tuned for

specific applications

Bone regeneration, guided tissue

regeneration (92)

Composite Biomaterials Combination of natural and

synthetic polymers

Layered or hybrid structures Enhanced mechanical strength

and flexibility

Bone regeneration, soft tissue

repair (93)

Often include bioactive glass or

ceramics

Interconnected porosity

promotes cell infiltration

Cartilage repair, orthopedic

applications (93)

Electrospun Fibers Collagen, gelatin, or synthetic

polymers

Fibrous mats with high surface

area

High tensile strength and

flexibility

Nerve regeneration, wound

healing (94)

Can include blended polymers for

enhanced properties

Mimics the structure of native

ECM

Drug delivery vehicles, tissue

scaffolding (94)

Bio-inks for 3D Printing Natural polymers (alginate, gelatin) Customizable structures based

on design

Varies based on formulation Organ-on-chip models,

personalized tissue scaffolds (95)

Often combined with cells for

bioprinting

Controlled architecture enables

multi-layering

Custom prosthetics, tissue

mimicry (95)

Nanoparticle-Integrated

Biomaterials

Biodegradable polymers with

nanoparticles

3D or 2D structures Variable stiffness due to

integration of nanoparticles

Drug delivery, cancer therapy

(96)

Can include gold, silver, or silica

particles

Enhanced mechanical and

bioactivity properties

Imaging and diagnosis tools (96)

Conductive Biomaterials Polymers with conductive

properties (e.g., PEDOT: PSS)

Scaffold frameworks for cell

adhesion

Electrical conductivity enhances

cellular responses

Neural tissue engineering,

cardiac tissue repair (97)

Often incorporated with growth

factors

Can be made 3D-printed or

electrospun

Bioelectronics, sensors within the

body (97)

Responsive Hydrogels Stimuli-responsive polymers (e.g.,

pH or temperature-sensitive)

Swell and shrink upon

stimulus

Mechanical properties change with

environmental conditions

Drug delivery systems, smart

wound dressings (98)

Often includes additives for

responsiveness

Dynamic architecture can

enhance function

Diagnostic applications,

environmental sensing (98)

TABLE 2 Summary of physical/chemical properties and fabrication
techniques of biomaterial classes.

Biomaterial
Class

Key Properties Common Fabrication
Techniques

ECM-based Native composition, high

bioactivity, porous

Decellularization, lyophilization,

3D bioprinting (90)

Synthetic

polymers

Tunable, reproducible,

controlled degradation

Electrospinning, 3D printing,

solvent casting (101)

Natural

biomaterials

Biocompatible,

biodegradable, variable

strength

Gelation, crosslinking, freeze-

drying (102)

Bioceramics Osteoconductive, strong,

brittle

Sintering, sol-gel, 3D printing

(103)

Composites Synergistic, customizable,

multifunctional

Co-electrospinning, particulate

leaching (104)
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properties of the native ECM. These materials are inherently

bioactive, containing crucial biological cues such as growth

factors, glycosaminoglycans, and adhesive motifs (e.g., RGD

peptides), which regulate cellular behaviors including adhesion,

migration, proliferation, and differentiation via integrin-mediated

and other signaling pathways (105). Structurally, ECM scaffolds

exhibit a porous, fibrillar architecture that promotes cell

infiltration and nutrient diffusion, essential for effective tissue

regeneration. However, their mechanical properties vary with

tissue origin and decellularization methods, often necessitating

reinforcement for load-bearing applications (106, 107).

Fabrication approaches include physical, chemical, or enzymatic

decellularization, enzymatic digestion to produce hydrogels, and

lyophilization for porous constructs. Advanced techniques such as

electrospinning yield nanofibrous matrices mimicking native

microarchitecture, while 3D bioprinting allows precise spatial

deposition of ECM components, enabling complex, organ-specific

scaffold fabrication with enhanced reproducibility (101, 108).

Innovations in decellularization focus on preserving ECM

ultrastructure and bioactivity to support stem cell incorporation

and growth factor delivery, with tissue-specific hydrogels

demonstrating potential for minimally invasive therapies due to

their injectability and remodeling capacity (81, 109). Clinically,

ECM-based scaffolds are applied in cardiac repair, vascular grafts,

wound healing, and ligament reconstruction, with several products

achieving regulatory approval or undergoing clinical trials,

underscoring their translational relevance (110).

ECM biomaterials primarily degrade via enzymatic pathways

involving MMPs, collagenases, and other proteases targeting

collagen, elastin, and glycosaminoglycans. This tightly regulated

remodeling mirrors natural tissue turnover and wound healing

processes (111). Importantly, degradation by-products are

generally biocompatible and may actively enhance regeneration by

releasing bioactive peptides that stimulate cell migration,

proliferation, angiogenesis, and matrix synthesis. For example,

collagen-derived peptides can serve as chemotactic factors to guide

cell infiltration. Nonetheless, the degradation rate must be carefully

balanced: excessively rapid breakdown can undermine scaffold

integrity and tissue formation, whereas overly slow degradation

may hinder tissue remodeling and integration (112).

5.2 Synthetic polymers

Synthetic polymers, including polylactic acid (PLA),

polyglycolic acid (PGA), poly lactic-co-glycolic acid (PLGA),

and polycaprolactone (PCL), have become widely utilized

scaffolding materials in regenerative medicine due to their

tunable mechanical properties, controlled degradation rates, and

ease of processing (113, 114). These polymers offer high

reproducibility, scalability, and well-defined chemical structures,

enabling precise modulation of key physical and chemical

characteristics such as hydrophilicity, stiffness, and degradation

kinetics. Such versatility renders them suitable for diverse tissue

engineering applications spanning cartilage, bone, nerve, and soft

tissue regeneration (115).

To augment bioactivity and enhance functional integration,

extensive research has focused on modifying polymer

architecture through variations in copolymer ratios and

molecular weights, and implementing surface engineering

strategies such as plasma treatment, peptide grafting, and

biomimetic coatings. These approaches mimic biological cues

or facilitate the incorporation of growth factors, thereby

promoting cell adhesion, proliferation, and differentiation

(116). Fabrication techniques, including solvent casting, melt

extrusion, and electrospinning, allow the generation of

films, fibers, and nanofibrous matrices that replicate ECM

features, while 3D printing enables the creation of anatomically

precise scaffolds with customizable porosity and spatial

patterning (101, 117).

Degradation of synthetic polymers primarily occurs via

hydrolysis of ester bonds in the polymer backbone, with the

degradation rate modulated by factors such as copolymer

composition, molecular weight, crystallinity, and scaffold

geometry. This predictable and tunable degradation is

advantageous for synchronizing scaffold resorption with tissue

formation. However, hydrolysis generates acidic by-products—

lactic and glycolic acids—that can lower local pH, potentially

induce inflammation or cytotoxic effects if not adequately buffer

by surrounding tissues or scaffold design (118). Therefore,

balancing degradation kinetics with biocompatibility through

careful polymer selection and scaffold architecture is essential to

maintain a conducive microenvironment for cell viability and

tissue regeneration.

5.3 Natural biomaterials

Natural biomaterials—such as collagen, gelatin, chitosan,

alginate, and hyaluronic acid—are extensively utilized in tissue

engineering owing to their inherent biocompatibility,

biodegradability, and capacity to closely mimic native ECM

components (119, 120). These polymers inherently contain

bioactive motifs that facilitate cellular adhesion, proliferation, and

differentiation, making them particularly suitable for regenerative

applications across cartilage, skin, nerve, and soft tissues (121).

Despite these biological advantages, natural polymers

often exhibit mechanical limitations, including relatively low

stiffness and significant batch-to-batch variability, which can

compromise reproducibility and long-term scaffold stability

(122). To overcome these constraints, chemical and physical

modification strategies have been applied to enhance mechanical

properties and tailor biofunctional characteristics. Fabrication

methods commonly employed include ionic or covalent

crosslinking to induce gelation, freeze-drying to create porous

scaffolds, electrospinning to produce fibrous structures, and

photo-crosslinking to fine-tune mechanical stiffness and

degradation kinetics in response to cellular needs (123, 124).

These techniques enable the formation of versatile scaffold

architectures, such as hydrogels, sponges, and films, which are

frequently blended with synthetic polymers to improve

mechanical strength and control degradation profiles (125).
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Recent advances highlight the potential of crosslinked collagen

hydrogels in enhancing mechanical stability and directing stem cell

differentiation within cartilage and skin regeneration models.

Gelatin meth acryloyl (GelMA) has emerged as a prominent

biomaterial due to its tunable rheological properties and

compatibility with 3D bioprinting technologies, facilitating the

fabrication of vascularized tissue constructs (126, 127). Similarly,

chitosan derivatives with improved solubility and functionalization

have demonstrated efficacy in nerve and cartilage tissue

engineering, while RGD-modified alginate scaffolds have shown

enhanced mesenchymal stem cell adhesion and osteochondral

differentiation. Hyaluronic acid-based hydrogels with engineered

stiffness have been successfully applied in wound healing, synovial

joint repair, and neural regeneration (128, 129).

In terms of degradation, natural polymers typically undergo

enzymatic breakdown or hydrolysis at rates generally faster than

synthetic polymers. Enzymes such as collagenases and lysozymes

secreted by cells mediate scaffold resorption. The resulting

degradation products—oligosaccharides, peptides, and amino

acids—are largely non-toxic and well-integrated within cellular

metabolic pathways, often facilitating tissue remodeling and

integration. However, excessively rapid degradation can

undermine scaffold mechanical integrity prematurely, potentially

compromising support during critical phases of tissue regeneration.

5.4 Bioceramics

Bioceramics, including hydroxyapatite (HA), tricalcium

phosphate (TCP), and bioactive glasses, are pivotal materials in

bone and dental tissue engineering due to their remarkable

osteoconductivity, chemical stability, and high compressive

strength, which collectively confer suitability for load-bearing

applications (130, 131). These ceramics facilitate direct bonding

with native bone tissue, providing essential structural support

during the regenerative process. However, their inherent brittleness

and limited mechanical flexibility constrain their applicability in

soft tissue engineering, while their relatively slow degradation rates

may impede complete tissue remodeling unless carefully tailored.

To enhance their bioactivity and regenerative potential,

extensive research has focused on nanostructuring bioceramics to

increase surface area, thereby promoting improved cellular

adhesion, proliferation, and osteogenic differentiation (132). Ion-

doping approaches—such as substitution with strontium (Sr²+) or

silicon (Si⁴+) ions—have been demonstrated to stimulate

osteogenesis, angiogenesis, and exhibit anti-resorptive properties

in vivo, further augmenting the therapeutic efficacy of these

materials (133).

Composite scaffolds that integrate bioceramics with

biodegradable polymers, growth factors, or stem cells exhibit

synergistic effects, accelerating bone healing and enabling

controlled resorption, particularly advantageous for large or

complex osseous defects (134). Advances in additive

manufacturing, including 3D printing technologies, have

facilitated the fabrication of patient-specific ceramic implants

with precisely engineered porosity and mechanical properties.

These innovations optimize vascular infiltration and promote

robust integration with host tissue (135, 136).

Clinically, bioceramics are widely employed in dental implants,

craniofacial reconstruction, and orthopedic devices, where they

have demonstrated long-term biocompatibility, mechanical

durability, and effective osseointegration (137). Fabrication

techniques such as sintering, sol-gel processing, and surface

modifications—including micro topographical roughening and

bioactive coatings—are employed to enhance cellular attachment,

vascularization, and implant stability, thereby improving

functional outcomes.

Bioceramics predominantly undergo degradation via slow

dissolution in physiological fluids and active cellular resorption

by osteoclast-like cells. The rate of degradation is influenced by

parameters including material porosity, crystallinity, and surface

chemistry (138).

The gradual resorption profile of bioceramics ensures sustained

mechanical support during critical phases of bone regeneration.

As degradation proceeds, released calcium and phosphate

ions contribute to new mineralized tissue formation.

Nevertheless, incomplete resorption or accumulation of ceramic

debris may impede full tissue remodeling or elicit inflammatory

responses if degradation kinetics and scaffold design are not

properly controlled.

5.5 Composites

Composite biomaterials represent a strategic amalgamation of

diverse material classes—such as synthetic polymers, bioceramics,

and biological macromolecules—engineered to synergistically

enhance mechanical strength, bioactivity, and biodegradability to

address the complex demands of tissue regeneration (139). By

combining the advantageous properties of each component, these

hybrid systems overcome the intrinsic limitations of individual

materials, enabling the development of scaffolds with precisely

tailored physicochemical and biological characteristics.

For instance, polymer-ceramic composites like PCL blended

with HA have demonstrated improved osteogenic differentiation

and mineral deposition, making them particularly effective in bone

tissue engineering (140). The ceramic component contributes

essential mechanical reinforcement and osteoconductivity, while

the polymer matrix imparts flexibility and facilitates

manufacturability. This compositional synergy also allows fine-

tuning of degradation kinetics, thereby aligning scaffold resorption

with the temporal progression of tissue regeneration.

Advancements in fabrication techniques, especially additive

manufacturing and layer-by-layer assembly, have facilitated the

production of gradient or stratified scaffolds that closely replicate

complex tissue interfaces such as the osteochondral junction

(141, 142). The precise spatial control afforded by these

technologies supports the recreation of native tissue anisotropy

and zonal heterogeneity, which enhances structural integration

and promotes functional restoration.

Moreover, the integration of bioactive agents—including bone

morphogenetic protein-2 (BMP-2) and vascular endothelial
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growth factor (VEGF)—within composite scaffolds further

stimulates angiogenesis, stem cell recruitment, and tissue repair

in critical-sized defects (143, 144). These biofunctional constructs

are engineered for controlled, localized, and sustained release of

therapeutic factors, optimizing the regenerative microenvironment.

A critical aspect of composite biomaterials is their tailored

degradation behavior, which results from the interplay between

their constituent components. Degradable polymers typically

undergo hydrolytic or enzymatic cleavage, bioceramics degrade

via dissolution or cellular resorption, and natural ECM -derived

materials are enzymatically broken down. By combining these

components, composite scaffolds can be designed to exhibit

synergistic or sequential degradation profiles that closely match

the tissue healing timeline, ensuring mechanical support is

maintained during early regeneration and progressively replaced

by newly formed tissue (145).

The biological performance of these composites depends heavily

on the compatibility and degradation synchrony of the integrated

materials. Properly balanced degradation kinetics prevent

premature scaffold fragmentation and promote uniform cellular

infiltration and tissue ingrowth, which are essential for effective

remodeling. Conversely, mismatched degradation rates or material

incompatibility can lead to scaffold instability or heterogeneous

regeneration, ultimately compromising functional outcomes.

Composite biomaterials engineered for complex tissue

interfaces—such as tendon-to-bone entheses, vascular grafts, and

nerve conduits—illustrate the necessity of integrating mechanical

robustness with controlled bioactive delivery. Such

multifunctional systems meet the dual demands of biomechanical

support and localized biological modulation, thereby advancing

regenerative therapies toward more predictable and durable

clinical success (146, 147).

6 Advantages and limitations of
biomaterial classes in tissue
engineering

The strategic selection of biomaterials for tissue engineering

requires careful evaluation of their inherent advantages and

limitations across multiple functional parameters. As shown in

Table 3, the five principal biomaterial classes—ECM-based,

synthetic polymers, natural biomaterials, bioceramics, and

composites—each present distinct profiles of biocompatibility,

bioactivity, mechanical properties, and manufacturability that

dictate their clinical suitability.

ECM-derived and natural biomaterials excel in biological

recognition and cellular signaling but face challenges with

immunogenicity (particularly in xenogeneic formulations), batch-to-

batch variability, and insufficient mechanical strength for load-

bearing applications. Synthetic polymers offer superior

reproducibility and tunable properties, though their frequent lack of

intrinsic bioactivity and potential for cytotoxic degradation

byproducts (e.g., acidic monomers from PLGA hydrolysis) remain

significant concerns (148). Bioceramics provide exceptional

osteoconductivity and structural stability in bone regeneration, yet

their inherent brittleness and processing limitations constrain wider

application. Composite systems strategically combine material classes

to achieve synergistic performance, though this introduces

fabrication complexity and potential interfacial incompatibilities (149).

Beyond class-specific limitations, four fundamental challenges

persist across all biomaterial categories (Table 4). First, immune

compatibility remains problematic, with ECM-based and natural

materials particularly prone to provoking inflammatory responses

or rejection through residual xenogeneic antigens. Second,

cytotoxic effects may emerge from either degradation byproducts

(synthetics) or residual crosslinking agents (natural/ECM

materials). Third, physiological integration is frequently

compromised by mechanical mismatches or asynchronous

degradation kinetics, leading to fibrotic encapsulation or

incomplete tissue remodeling. Fourth, long-term safety profiles

require further validation, especially regarding late-stage

inflammatory responses, mineralization anomalies, or stress-

shielding effects from mechanical property disparities.

The risk of infection presents additional translational hurdles,

particularly for biological materials that may harbor pathogens or

support biofilm formation despite sterilization protocols.

Furthermore, the dynamic interplay between scaffold degradation

and tissue formation necessitates precise temporal control—

overly rapid resorption can compromise structural support, while

TABLE 3 Clinically approved biomaterial-based systems for tissue repair and regeneration.

Product Name Composition Clinical Indication Regulatory Status Manufacturer

Integra® Dermal Regeneration

Template

Bovine collagen + glycosaminoglycan Skin regeneration, burn

treatment

FDA approved, CE marked Integra LifeSciences (195)

AlloDerm® Decellularized human dermis Soft tissue reconstruction, burns FDA cleared (HCT/P) LifeCell Corporation (196)

Bio-Gide® Collagen membrane (porcine) Guided bone regeneration CE marked Geistlich Pharma (197)

Infuse® Bone Graft Recombinant human BMP-

2 + collagen

Spinal fusion, bone defects FDA approved Medtronic (198)

GraftJacket® Acellular human dermis Chronic wound repair FDA cleared (HCT/P) Wright Medical (199)

OsteoCel® Cellular allograft (bone matrix +MSCs) Bone regeneration FDA cleared (HCT/P) NuVasive (200)

EpiFix® Dehydrated amniotic membrane Chronic wound healing FDA cleared (HCT/P) MiMedx (201)

Actifuse® Silicate-substituted calcium phosphate Bone void filler FDA cleared, CE marked Baxter (202)

Chondro-Gide® Collagen type I/III membrane Cartilage repair (knee) CE marked Geistlich Pharma (203)

PermacolTM Porcine dermal collagen Soft tissue repair FDA cleared, CE marked Medtronic (204)

FDA, U.S. food and drug administration; CE, European conformity; HCT/P, human cells, tissues, and cellular and tissue-based products.
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excessively persistent materials may impede functional

tissue maturation.

7 Applications of biomaterials in tissue
engineering

ECM-inspired biomaterials have been extensively applied in

tissue engineering due to their ability to promote repair and

regeneration across multiple tissues (154). Notably, in vascular

grafts, these materials provide a supportive microenvironment

that enhances endothelial cell proliferation and angiogenesis.

These biomaterials mimic the mechanical properties of native

blood vessels and enhance graft patency. Examples include

decellularized vascular tissues and synthetic hydrogels (155–157).

Similarly, ECM-derived cardiac patches enhance myocardial

repair post-infarction by promoting cell survival, tissue

regeneration, and endothelial cell growth, thereby improving

angiogenesis. These patches support cardiac cell function and

integration, with key examples including decellularized cardiac

matrices and elastin-based scaffolds (158, 159). Beyond

cardiovascular applications, ECM scaffolds are employed in

regenerating skin, bone, cartilage, and nerve tissues (160).

Moreover, ECM-based materials have advanced organ-on-a-chip

technologies leverage ECM-derived microenvironments to

replicate physiological conditions for real-time monitoring of

cellular responses, with ECM-derived hydrogels and peptide-

composite biomaterials proving particularly effective and

enhancing drug testing and disease modeling (161, 162).

7.1 Bone tissue regeneration

Bone regeneration research utilizes ECM-derived materials that

enhance osteogenic differentiation of stem cells and support bone

healing by incorporating bioactive cues and mimicking natural

bone structure, such as decellularized bone matrices and HA

composites (163). Scaffold design focuses on creating

osteoconductive environments that promote osteoinduction

through stem cell differentiation and host tissue integration.

Bioactive ceramics like biphasic calcium phosphate (BCP) and

HA composites enhance osteointegration (164), while emerging

3D-printed scaffolds with bioactive nanoparticles improve in vivo

osteogenic differentiation (165, 166). Controlled bone formation

is achieved via growth factor delivery (e.g., BMP-2, BMP-7) in

biodegradable carriers (167). Composite scaffolds combining

natural polymers (collagen, chitosan) with ceramics demonstrate

superior mechanical and cellular outcomes (168), and surface

modifications (nanotopography, biofunctional peptides) further

enhance stem cell adhesion and mineralization (169). Key

challenges include vascularizing large defects, ensuring long-term

growth factor safety, and addressing regulatory and cost barriers

for clinical translation.

7.2 Cartilage tissue regeneration

Cartilage repair remains challenging due to tissue avascularity

and limited self-renewal capacity. Biomaterials designed for

cartilage regeneration aim to replicate native mechanical properties

while supporting chondrocyte function, with examples including

chitosan-based scaffolds and elastin-like polypeptides (170).

Hydrogels based on hyaluronic acid, gelatin, or alginate mimic the

native ECM to promote chondrogenesis (171), while ECM-derived

scaffolds preserve biochemical cues to enhance cell attachment and

differentiation (78). Advanced strategies employ composite systems

for sustained delivery of growth factors (TGF-β, IGF-1) to

stimulate hyaline cartilage formation (172), as well as MSC-laden

biomimetic scaffolds and 3D bioprinting to achieve precise spatial

architecture (173). Despite progress, key challenges persist in

generating durable hyaline cartilage, scaling up manufacturing, and

ensuring integration with subchondral bone.

7.3 Skin tissue regeneration

Wound healing employs natural and synthetic biomaterials

to accelerate closure, reduce scarring, and restore function,

especially in chronic wounds and burns. Decellularized dermal

matrices and collagen scaffolds improve closure and

revascularization (77) and also facilitate keratinocyte migration

and re-epithelialization in skin healing (174). Incorporation of

TABLE 4 Comparative Performance Matrix of Tissue Engineering Biomaterials.

Biomaterial
Class

Key Advantages Primary Limitations Cross-Cutting Challenges

ECM-based High bioactivity, native cell signaling, excellent

biocompatibility

Immunogenicity, source variability, low

mechanical strength

Immune responses (xenogeneic antigens), infection

risk, complex sterilization (5)

Synthetic polymers Highly tunable properties, excellent

reproducibility, scalable production

Limited bioactivity, cytotoxic degradation

products

Mechanical mismatch, acidic degradation

microenvironment (150)

Natural biomaterials Innate biocompatibility, biodegradability,

bioactive motifs

Rapid degradation, immunogenicity, weak

mechanics

Batch variability, pathogen risk, crosslinker toxicity

(151)

Bioceramics Superior osteoconductivity, high compressive

strength, stability

Brittleness, difficult processing, slow

degradation

Stress shielding, poor interfacial integration (152)

Composites Tailorable properties, synergistic performance,

multifunctionality

Complex fabrication, interfacial

incompatibility, regulatory hurdles

Phase separation, inconsistent degradation profiles

(153)
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bioactive molecules like VEGF enhances angiogenesis (175).

Electrospun synthetic polymers (e.g., PCL) support cell

infiltration tailored to wound environments (176). Advanced

templates incorporating stem cells or exosomes promote superior

regeneration (177), while antimicrobial wound dressings mitigate

infection risk (178). Balancing bioactivity, degradation, and

regulatory approval remains critical.

7.4 Nerve tissue regeneration

ECM-inspired scaffolds play a pivotal role in nerve

regeneration by providing structural support and essential

biochemical signals that enhance neuronal survival and growth

while mimicking the natural nerve environment, as demonstrated

by decellularized nerve grafts and peptide-based hydrogels (179).

Peripheral and central nerve repair strategies focus on axonal

guidance, neurogenesis, and functional restoration through

multiple approaches. Biodegradable nerve conduits made from

PCL, PLA, or ECM-mimetic materials support regeneration

(180), with electroactive polymers further enhancing

neurotrophic signaling (181). Decellularized nerve scaffolds

effectively preserve bioactive cues to facilitate Schwann cell

migration (182), while composite conduits incorporating

neurotrophic factors (NGF, BDNF) delivered via microspheres or

hydrogels show improved regenerative outcomes (183). Advanced

3D bioprinted nerve interfaces with aligned microchannels offer

promising solutions for bridging critical nerve gaps (184).

Despite these advances, key challenges remain in optimizing

scaffold design, ensuring proper vascularization, and navigating

regulatory pathways for bioactive conduit approval.

7.5 Liver tissue regeneration

Liver regeneration research focuses on replicating architecture,

metabolic function, and transplantation alternatives. Decellularized

liver matrices retain vascular and biliary structures for hepatocyte

recellularization (185). 3D bioprinted liver constructs with

multicellular components enhance hepatocyte function (186).

Bioartificial liver systems in modular bioreactors serve as

bridging therapies for acute failure (187), complemented by

microfluidic platforms for viability assessment (188). Major

obstacles include vascularization, immune compatibility, and

scalable off-the-shelf graft production.

7.6 Vascular tissue regeneration

Vascular engineering targets grafts for damaged vessels, from

small-diameter grafts to arteries. Decellularized vessels preserve

native cues promoting endothelialization (189, 190). Electrospun

polymers and elastomers enable compliant, hemocompatible

grafts (191). EPC seeding and preconditioning improve patency

and thrombogenicity (192). Incorporation of anticoagulants and

nitric oxide donors enhances durability (193). Bioprinting

vascular networks with hierarchical microchannels advances

complex vasculature engineering (194). Challenges include

ensuring long-term patency, mechanical compliance, and

evolving regulatory frameworks.

7.7 Other tissues

Emerging biomaterial applications include muscle (injectable

hydrogels), tendon (aligned nanofibers), and lung (decellularized

matrices, vascularized bioprinted constructs). Smart biomaterials

responsive to mechanical, electrical, or biochemical stimuli and

gene delivery systems show promise in enhancing regeneration.

8 Clinically approved biomaterial-
based systems for tissue repair and
regeneration

The transition from laboratory to clinical application

represents a critical step in advancing tissue engineering.

Successful clinical translation of biomaterials affirms their safety,

efficacy, and therapeutic potential. Over recent decades, multiple

biomaterial-based systems have gained regulatory approval for

various tissue regeneration applications. Table 3 summarizes

approved biomaterial products, highlighting their diverse

compositions, clinical uses, and regulatory statuses.

The progression of these biomaterials into clinical practice

reflects significant advancements in biomaterial science,

manufacturing scalability, and understanding of tissue-specific

regenerative cues. Notably, many approved systems incorporate

natural components that mimic native ECM, fostering integration

and functional tissue regeneration.

Moreover, the regulatory landscape reveals a growing acceptance

of advanced biological products, such as decellularized tissues

(AlloDerm®) and cellular allografts (OsteoCel®), which offer

superior bioactivity. The inclusion of growth factors (e.g.,

recombinant BMP-2 in Infuse®) demonstrates the increasing

reliance on bioactive molecules to stimulate regenerative processes.

9 Regulatory considerations for ECM-
based biomaterials

Regulatory considerations for ECM-based biomaterials

involve a variety of factors, including the selection of source

tissues, decellularization techniques, and subsequent processing

methods (205). The origin of the tissue—whether allogeneic

or xenogeneic—can significantly influence the immunogenicity

and biocompatibility of the resultant product (206). Regulatory

authorities mandate a thorough evaluation of these materials to

ensure compliance with stringent safety standards, which

includes assessments of potential inflammatory responses and

long-term biocompatibility (207). For example, effective

decellularization is essential for removing cellular components

that could trigger an immune response (208); however,
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existing guidelines lack standardized criteria for evaluating the

sufficiency of decellularization processes (209). This lack of

standardization can result in inconsistencies in clinical outcomes,

as some commercially available ECM scaffolds may not fully

adhere to established criteria, yet still show favorable results in

practice (210).

Furthermore, the manufacturing process of ECM-based

biomaterials is complex and typically involves multiple steps

that can modify their physical and biochemical characteristics

(211). These alterations can affect cellular behavior and tissue

integration following implantation. Consequently, regulatory

agencies must evaluate not only the final product but

also the entire manufacturing process when assessing ECM-

based biomaterials (212). This comprehensive approach is

vital to ensure that these materials achieve their intended

therapeutic objectives while minimizing associated risks. As

research in this field progresses, the establishment of clear

guidelines and standardized protocols will be essential for

streamlining the regulatory approval process for ECM-

inspired biomaterials.

10 Innovations in ECM biomaterials
research

Advancements in ECM biomaterials research are crucial for

overcoming current challenges and enhancing their functionality

in tissue engineering applications (213). Recent developments

have concentrated on enhancing the mechanical properties and

bioactivity of ECM-derived materials through various strategies

(214). Researchers are exploring innovative decellularization

methods that preserve the structural integrity and biological

functionality of ECM components while effectively removing

cellular debris (84). Furthermore, incorporating bioactive

molecules, such as growth factors or peptides, into ECM

scaffolds shows potential in promoting specific cellular responses

that aid tissue regeneration (5).

Another promising area of research involves the creation of

hybrid biomaterials that combine ECM components with

synthetic polymers or other materials, resulting in scaffolds with

customized properties (14). These hybrid systems capitalize on

the benefits of both natural and synthetic materials, providing

enhanced mechanical strength while preserving critical bioactive

characteristics necessary for cell signaling and tissue integration

(14). Furthermore, Advancements in fabrication techniques, such

as 3D bioprinting and electrospinning, allow for the creation of

complex scaffold architectures that better replicate native tissue

environments, enhancing cellular behavior and improving healing

outcomes (88).

11 Translational gaps in ECM-inspired
biomaterials

Despite significant advances in ECM-inspired biomaterials for

tissue repair and regeneration, several scientific and translational

gaps persist. Addressing these challenges is essential for the

successful clinical translation and optimization of biomaterial-

based therapies (Table 5).

Future research directions in ECM biomaterials should also

emphasize the exploration of interactions between these materials

and host tissues at the molecular level. Identifying how various

ECM compositions influence cellular responses will produce

crucial insights for optimizing scaffold design tailored for specific

applications (223). Additionally, employing advanced imaging

techniques and in vivo models will develop a deeper

comprehension of ECM remodeling processes post-implantation

and their effects on long-term tissue regeneration (224).

Innovative research methodologies can address these challenges,

advancing the development of more effective ECM-inspired

biomaterials to significantly improve patient outcomes in

regenerative medicine.

12 Conclusion

ECM-inspired biomaterials have significantly advanced

tissue repair and regeneration by mimicking native ECM’s

biochemical and biophysical properties, promoting cell migration,

TABLE 5 Key gaps and challenges.

Gap/
Challenge

Concrete Example
(s)

Ongoing Efforts/
Recent Advances

Immunogenicity Decellularized ECM from

animal sources can trigger

immune responses and

fibrosis in host tissue.

Improved decellularization

protocols; use of human-

derived ECM (215).

Integration with

Host Tissue

Synthetic scaffolds often fail

to integrate, leading to

encapsulation or poor

vascularization.

Surface modification with

bioactive peptides; co-delivery

of angiogenic factors (216).

Vascularization Large engineered constructs

lack sufficient blood vessel

ingrowth, limiting nutrient

diffusion.

Incorporation of pro-

angiogenic cues; pre-

vascularized scaffolds (217).

Batch-to-Batch

Variability

ECM-derived materials

show inconsistent

mechanical and biochemical

properties due to source

variation.

Standardized processing and

quality control protocols

(218).

Long-Term Safety

and Degradation

Unpredictable degradation

rates or toxic byproducts

(e.g., acidic degradation of

PLGA) can harm tissue.

Development of tunable,

bioresorbable polymers with

safe byproducts (219).

Distinction Between

ECM Types

Decellularized ECM and

ECM-inspired synthetics are

often conflated, obscuring

their unique properties.

Clearer classification and

reporting standards in

research (220).

Limited Mechanistic

Insight

Many studies report

outcomes without

elucidating the underlying

cell-ECM signaling

mechanisms.

Advanced imaging, omics,

and mechanobiology studies

(221).

Regulatory and

Translational

Barriers

Complex compositions and

variability complicate

regulatory approval for

clinical use.

Collaboration with regulatory

agencies; development of

standards (222).
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proliferation, and differentiation, and improving healing. However,

clinical translation faces scientific and translational challenges.

A key scientific limitation is the incomplete understanding of

how specific ECM components and their spatial arrangements

collectively regulate cell behavior. While molecules like collagen,

fibronectin, and laminin influence cell adhesion, their complex

interactions with growth factors and signaling molecules require

further elucidation to rationally design biomaterials that faithfully

recreate the native ECM microenvironment.

Immunogenicity remains a concern, with residual

immunogenic molecules in decellularized ECM or immune

reactions to synthetic materials potentially causing chronic

inflammation, fibrosis, or graft failure. Research focuses on

improving decellularization, developing immunomodulatory

biomaterials, and engineering safer degradation profiles.

Achieving effective host tissue integration and vascularization

are major translational barriers. Synthetic scaffolds often

struggle to support sufficient cell infiltration or blood vessel

formation. Strategies like incorporating pro-angiogenic factors

or creating pre-vascularized constructs are being explored,

but robust vascularization in large or complex tissues

remains challenging.

Batch-to-batch variability, especially in ECM-derived

materials, hinders reproducibility, quality assurance, and

regulatory approval. Standardizing sourcing, processing, and

characterization is crucial. Furthermore, the distinction between

decellularized ECM scaffolds and ECM-inspired synthetic

materials needs clarification for accurate interpretation and

tailored therapeutic strategies. Long-term safety and efficacy data

are limited, necessitating longitudinal investigations and well-

designed clinical trials to evaluate durability, degradation, and

biological integration in vivo.

Overcoming these hurdles requires interdisciplinary

collaboration, integrating advanced biomaterial engineering, high-

throughput screening, and systems biology. This will accelerate

the development of safe, effective, and innovative ECM-

inspired biomaterials.

In conclusion, ECM-inspired biomaterials offer a

transformative approach to regenerative therapies. Continued

interdisciplinary research is essential to overcome current

challenges and engineer intelligent, adaptable, and biocompatible

systems for personalized and highly effective regenerative solutions.
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