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Background: This study aims to develop a machine learning model to predict 

the 30-day mortality risk of hospitalized COVID-19 patients while leveraging 

federated learning to enhance data privacy and expand the model’s 

applicability. Additionally, SHapley Additive exPlanations (SHAP) values were 

utilized to assess the impact of comorbidities on mortality.

Methods: A retrospective analysis was conducted on 6,321 clinical records of 

hospitalized COVID-19 patients between January 2021 and October 2022. 

After excluding cases involving patients under 18 years of age and non- 

Omicron infections, a total of 4,081 records were analyzed. Key features 

included three demographic data, six vital signs at admission, and 79 

underlying comorbidities. Four machine learning models were compared, 

including Lasso, Random Forest, XGBoost, and TabNet, with XGBoost 

demonstrating superior performance. Federated learning was implemented to 

enable collaborative model training across multiple medical institutions while 

maintaining data security. SHAP values were applied to interpret the 

contribution of each comorbidity to the model’s predictions.

Results: A subset of 2,156 records from the Taipei branch was used to evaluate 

model performance. XGBoost achieved the highest AUC of 0.96 and a 

sensitivity of 0.94. Two versions of the XGBoost model were trained: one 

incorporating vital signs, suitable for emergency room applications where 

patients come in with unstable vital signs, and another excluding vital signs, 

optimized for outpatient settings where we encounter patients with multiple 

comorbidities. After implementing federated learning, the AUC of the Taipei 

cohort decreased to 0.90, while the performance of other cohorts improved 

to meet the required standards. SHAP analysis identified comorbidities 

including diabetes mellitus, cerebrovascular disease, and chronic lung disease 

to have a neutral or even protective association with 30-day mortality.
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Conclusion: XGBoost outperformed other models making it a viable tool for both 

emergency and outpatient settings. The study underscores the importance of 

chronic disease assessment in predicting COVID-19 mortality, revealing some 

comorbidities such as diabetes mellitus, cerebrovascular disease and chronic 

lung disease to have protective association with 30-day mortality. These 

findings suggest potential refinements in current treatment guidelines, 

particularly concerning high-risk conditions. The integration of federated 

learning further enhances the model’s clinical applicability while preserving 

patient privacy.
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1 Introduction

Coronavirus disease 2019 (COVID-19) is a contagious disease 

caused by the virus SARS-CoV-2, which has had a profound 

impact on global economies, healthcare systems, and social 

norms (1). Since the initial case was identified in Wuhan, 

China, in December 2019 (2), over 777 million individuals have 

been infected, and more than 7 million have died worldwide (as 

of 9 February 2025) (3). The average time from exposure to 

symptom onset is five days, and approximately 5% of patients 

with COVID-19 experience severe symptoms necessitating 

intensive care (4). While the diagnosis of COVID-19 is 

facilitated by the use of rapid antigen tests (RATs) (5) and 

polymerase chain reaction (PCR) (6) technology, the challenge 

lies in accurately assessing the severity of the disease based on 

clinical data and chest x-ray features (7). In 2020 WHO 

developed a Clinical Progression Scale, patients have been 

categorized as those with mild disease (ambulatory, not 

requiring supplemental oxygen), those with moderate disease 

(hospitalized, might requiring low-7ow oxygen), and those with 

severe COVID-19 (on HFNC, NIV, IMV, or ECMO) (8). 

Nevertheless, accurate prediction of the prognosis of COVID-19 

remains an elusive endeavor. Predicting COVID-19 mortality is 

important as it has significant implications for the selection of 

pharmacologic treatments, management strategies, and for 

family planning and goals of care discussions (9).

Previous clinical decision models have focused on common 

health data rather than comorbidities, which might have 

negative impact on accuracy since comorbidities and COVID-19 

mortality are correlated (10). The 4C Mortality Score, which was 

identified as the most promising risk stratification model in 

numerous systematic reviews (11, 12), is a risk stratification tool 

that predicts in-hospital mortality rate for hospitalized COVID- 

19 patients with eight parameters (age, sex, number of 

comorbidities, respiratory rate, peripheral oxygen saturation, 

level of consciousness, urea level, and C reactive protein) (13). 

Risk stratification tool is a method that predict one’s risk based 

on its clinical histories and other factors. The 4C mortality score 

sum up the scores of the eight parameters and range from 1 to 

21, each represent a certain mortality rate respectively. While 

the 4C Score trained with 35,463 patients showed moderate 

diagnostic accuracy for mortality with derivation cohort area 

under the receiver operating characteristic curve (AUC) of 0.79, 

it performs poorly on other cohorts, with AUC ranging from 

0.63 to 0.73 (13). In the present study, we sought to increase the 

accuracy by incorporating the identity of the comorbidity, not 

just the number of comorbidities, to the prediction. We 

developed the Comorbidities and Clinical Indicators on the 

Mortality Model (CCIMM), a machine learning model that can 

accurately predict a patient’s mortality rate within 30 days of 

hospitalization, using 79 comorbidities that are readily available 

at the time of admission.

2 Methods

2.1 Data collection

National Taiwan University Hospital (NTUH) operates three 

major branches in Taipei, Hsinchu, and Yu nlin, all of which 

are tertiary medical centers, with 2,600 beds, 1,500 beds, and 

900 beds, respectively. This study collected clinical data 

retrospectively on patients hospitalized with Omicron variant 

COVID-19 from April 2022 to October 2022 across the three 

hospitals. Data included demographics, admission vital signs 

[e.g., temperature, breath rate, pulse rate, systolic blood pressure 

[SBP], diastolic blood pressure [DBP]], and underlying 

comorbidities. This research project was approved by the ethics 

committee of National Taiwan University Hospital Institutional 

Review Board. The study was conducted in accordance with the 

principles of the Declaration of Helsinki and the Good Clinical 

Practice Guidelines, and all the participants were informed 

consent. We have no access to information that could identify 

individual participants during or after data collection.

2.2 Outcomes

The primary outcomes were 30-day all-cause mortality. 

Mortality outcomes were verified by linking the database with 

the national death registry, enabling accurate determination of 

survival status after discharge. Institutional review boards of 

each respective hospital approved waivers of informed consent, 

and all data were deidentified.
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2.3 Missing data

The missForest R package was used to impute missing values 

for continuous variables such as age, body mass index (BMI), 

temperature, respiratory rate, pulse rate, SBP, and DBP. This 

iterative method constructs random forest models for each 

variable with missing data, using observed values from other 

variables as predictors to estimate the missing values.

2.4 Input variables

Two sets of data were subjected to the establishment of the 

model: one comprising demographic information, vital signs 

upon admission, and underlying comorbidities; the other, 

comprising only demographic information and underlying 

comorbidities. The datasets include 79 comorbidities and 6 vital 

signs. A p-value < 0.05 in comorbidities and vital signs was 

considered to be statistically significant between COVID-19 

survivors and non-survivors. A total of 6,321 patients were 

identified across the three hospitals, with 2,240 excluded due to 

patient age under 18 or the identification of non-Omicron 

variants of SARS-CoV-2. The discovery of Omicron variants was 

in South Africa in late November 2021 (14). In Taiwan, the 

Omicron variant became predominant in April 2022, causing 

the second epidemiological surge (15). We only use data after 

April 2022 to stratified Omicron variants. The Taipei cohort, 

comprising 2,156 patients, was employed for the model 

development. The Hsinchu and Yunlin cohorts were utilized in 

federated learning.

2.5 Machine learning methods

The dataset was divided into training and validation subsets, 

with 70% allocated for training and 30% for validation. To 

address the issue of class imbalance in case outcomes, the 

Synthetic Minority Oversampling Technique (SMOTE) was 

applied, enabling the oversampling of minority-class patients 

within the training dataset. Four machine learning models, 

including Lasso (16), Random Forest (17), TabNet (18), and 

Gradient-Boosted Tree (XGBoost) (19), were utilized. The 

models were implemented using the following Python libraries: 

sklearn (LogisticRegression and RandomForestClassifier), 

pytorch-tabnet, and xgboost (version 2.3.1).

Random Forest and XgBoost are ensemble learning methods 

that combine multiple weak decision trees to generate a strong 

decision tree. Random Forest uses the “bagging” method, where 

each tree is trained on a bootstrap sample of the data, and their 

predictions are aggregated by voting in classification tasks or 

averaging in regression tasks. The trees are trained 

independently and do not update each other, making the 

method relatively fast and robust against overfitting (17). In 

contrast, XGBoost is a gradient boosting method which builds 

trees sequentially, where each new tree focuses on correcting the 

residual errors of the previous trees using gradient information. 

The final prediction is obtained by summing the weighted 

outputs of all trees. This sequential learning allows for effective 

error correction and high accuracy but may increase the risk of 

overfitting if not properly regularized (19).

Lasso regression is a type of linear regression that adds a 

penalty term to reduce the size of the model’s coefficients, 

helping to prevent overfitting. Although the model remains 

linear, the added penalty can shrink some coefficients exactly to 

zero, removing less useful features from the model. This results 

in a simpler, more interpretable model that often performs 

better on data with unrelated features (16).

Finally, TabNet is a method designed for tabular data. Its 

advantage lies in its ability to provide feature-level 

interpretability through attention masks. However, its 

performance can be sensitive to hyperparameter tuning, and 

training the model can be computationally demanding (18).

Shapley Additive Explanations (SHAP) were employed to 

enhance the interpretability of these models, allowing the 

quantification of each predictor’s contribution to the model’s 

predictions (20). Additionally, an unsupervised clustering 

approach based on Euclidean distance was used to group 

patients with similar SHAP profiles, aiding in the identification 

of phenotypic patterns within the study cohort.

2.6 Federated learning

Federated Learning (FL) was implemented to integrate the 

most effective model from the Taipei cohort with additional 

data from Hsinchu and Yunlin hospitals. FL is a decentralized 

and collaborative approach designed to address challenges 

related to data silos and sensitivity (21). Since the datasets from 

these hospitals shared identical features but varied in sample 

composition, horizontal alliance learning was employed. The 

process began with each participating hospital receiving the 

same initial model and parameters. Each hospital independently 

trained the model on its local data, computed gradient updates, 

and securely transmitted these updates to a central server. The 

server aggregated the encrypted gradients, updated the global 

model, and redistributed the improved model parameters back 

to the hospitals. This iterative process allowed the final model to 

generalize across datasets while preserving data privacy, enabling 

its application to a broader population.

2.7 Performance evaluation

The study aimed to predict 30-day mortality by employing a 

comprehensive set of evaluation metrics to assess model 

performance. The metrics included measures to capture 

predictive accuracy, precision, and reliability. Additionally, 

distinctions in vital pathogenic factors were evaluated across 

subgroups defined by gender, age, and body mass index (BMI). 

Gender was categorized into male and female groups, while age 

was segmented into elderly (≥65 years), middle-aged (40–64 

Hsieh et al.                                                                                                                                                             10.3389/fmedt.2025.1621158 

Frontiers in Medical Technology 03 frontiersin.org



years), and young (18–39 years) groups. BMI was classified into 

obese (≥30), overweight (25–29), and normal (<25) categories. 

These subgroup analyses provided insights into model 

performance variations across diverse patient demographics and 

clinical characteristics. All computational analyses were 

conducted using Python 3.10.8.

3 Results

3.1 Participants

The study included 4,081 hospitalized adult patients diagnosed 

with SARS-CoV-2 Omicron variant infections between April 2022 

and October 2022, with the diagnosis confirmed by real-time 

polymerase chain reaction (RT-PCR). The initial registry 

consisted of 6,321 patients hospitalized for COVID-19 across 

three branches of NTUH—Taipei, Hsinchu, and Yunlin—from 

January 2021 to October 2022. Figure 1 illustrates the patient 

selection 7owchart. Table 1 summarizes the demographic 

information, vital signs upon admission, and underlying 

comorbidities stratified by primary outcome. Among the final 

cohort, 2,015 patients survived, while 141 patients succumbed to 

the disease. Non-survivors were significantly older than 

survivors, with a median age of 78 years compared to 69 years 

(p < 0.001). Apart from temperature, vital signs differed 

significantly between survivors and non-survivors (p < 0.001). 

Chronic kidney disease and metastatic cancer were significantly 

associated with mortality (p < 0.001).

3.2 Mortality prediction in machine learning 
models

The Taipei cohort was used to train and validate a machine 

learning model, while the Hsinchu and Yunlin branches 

FIGURE 1 

Flowchart depicting construction of study cohort and external validation cohort from national Taiwan university hospital cohort.
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implemented federated learning to evaluate generalizability. 

Demographic information, vital signs, and comorbidities were used 

to predict 30-day mortality. Table 2 compares the performance of 

machine learning algorithms, with Xgboost achieving the highest 

area under the curve (AUC), area under the precision-recall curve 

(AUPRC), sensitivity, and negative predictive value (NPV) when 

specificity was set at 0.80. The DeLong test is a nonparametric 

statistical method used to compare AUCs of models that are tested 

on the same dataset, and it provides a p-value to determine 

whether the difference between the two AUCs is statistically 

significant (22). Table 3 uses DeLong test to compare Xgboost 

with other algorithms. P-value < 0.05 means that Xgboost and that 

algorithms has significant difference, which also indicates that 

Xgboost performs better.

The inclusion of vital signs enhanced the Xgboost model’s 

performance compared to using only demographic information 

and chronic illnesses. Table 4 shows that incorporating vital signs 

improved all performance metrics, including AUC, sensitivity, 

and NPV. The results highlight the importance of vital signs in 

achieving superior predictive accuracy. In conclusion, the Xgboost 

model was the most effective prediction tool for 30-day mortality, 

offering a robust balance between sensitivity and specificity while 

maintaining a conservative approach.

3.3 Feature importance and SHAP analysis

To provide a visual representation of the selected features, the 

SHAP approach was employed to illustrate their impact on 30-day 

mortality in the Xgboost model (23). The mean SHAP value plot 

(Figure 2) ranks the top 20 features with the highest average 

absolute SHAP values, while the bee swarm plot (Figure 3) 

presents the individual contributions of these features, offering 

insights into their stability and interpretation. In both figures, 

feature rankings indicate their importance to the predictive model, 

while SHAP values provide a unified measure of the in7uence of 

specific features. In the bee swarm plot, red dots represent high 

feature values, while blue dots indicate low values, enabling 

visualization of how each feature affects predictions.

Certain features, including age, pulse rate, and body mass 

index (BMI), are associated with an increased risk of mortality 

when their values are elevated. Conversely, lower values of 

systolic blood pressure (SBP), oxygen saturation (SpO2), 

temperature, diastolic blood pressure (DBP), and respiratory rate 

are linked to higher mortality risk. Chronic illnesses such as 

diabetes mellitus without complications, cerebrovascular disease, 

and chronic lung disease are also significant predictors, but 

some of these features, surprisingly, are associated with a lower 

TABLE 1 Characteristics of COVID patients in the Taipei cohort, stratified by 30-day survival status.

Characteristic COVID-19 survivors (n = 2,015) COVID-19 non-survivors (n = 141) Total (n = 2,156) P-value

Age, mean (SD) 69 (19) 78 (16) 70 (19) < 0.001

Male gender, n (%) 1,050 (52.1%) 75 (53.2%) 1,125 (52.2%) 0.872

BMI, mean (SD) 22.81 (4.77) 22.83 (4.09) 22.81 (4.72) 0.967

BMI >30, n (%) 121 (6%) 6 (4.3%) 127 (5.9%) 0.504

Vital sign

Temperature (SD) 36.7 (0.66) 36.5 (0.61) 36.7 (0.66) 0.001

Breath rate (SD) 19 (3.19) 21 (4.92) 19 (3.35) < 0.001

Pulse rate (SD) 88 (16.72) 94 (20.53) 88.24 (17.05) < 0.001

SBP (SD) 136 (22.56) 128 (29.21) 135 (23.03) < 0.001

DBP (SD) 77 (12.59) 73 (16.62) 76 (12.86) < 0.001

SpO2 97 (1.97) 96 (4.34) 97 (2.24) < 0.001

Underlying comorbidity

Hypertension (%) 1,115 (55.3%) 96 (68.1%) 1,211 (56%) 0.004

Chronic lung disease (%) 223 (11.1%) 9 (6.4%) 32 (10.8%) 0.111

Chronic kidney disease (%) 526 (26.1%) 63 (44.7%) 589 (27.3%) < 0.001

Cancer without metastasis (%) 559 (27.7%) 57 (40.4%) 616 (28.6%) 0.002

Metastatic cancer (%) 193 (9.6%) 31 (22%) 224 (10.4%) < 0.001

Diabetes mellitus (%) 624 (31%) 52 (36.9%) 676 (31.4%) 0.171

Peptic ulcer disease (%) 173 (8.6%) 16 (11.3%) 189 (8.8%) 0.333

Prior use of steroid (%) 436 (21.6%) 37 (26.2%) 473 (21.9%) 0.241

CNS, central nervous system; SE, standard error.

TABLE 2 Measures of model discrimination and accuracy in the validation dataset (NIS 2014)sss, including area under the curve (AUC) and its 95% 
confidence intervals, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV).

Model AUC AUPRC Sensitivity Specificity PPV NPV

Lasso 0.84 (95% CI 0.829–0.860) 0.70 0.71 0.80 0.52 0.91

Random forest 0.92 (95% CI 0.919–0.928) 0.83 0.81 0.80 0.67 0.94

Xgboost 0.96 (95% CI 0.967–0.974) 0.83 0.94 0.80 0.57 0.97

TabNet 0.78 (95% CI 0.752–0.804 0.68 0.60 0.80 0.46 0.88
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likelihood of mortality. This trend highlights different correlations 

between features(demographic information, vital signs, 

comorbidities) and mortality rate.

The mean SHAP value plot (Figure 2) confirms the 

importance of both vital signs and chronic illnesses, with 

features such as age, BMI, and sex emerging as the most critical 

contributors. In the absence of vital signs, the bee swarm plot 

(Figure 3B) shows overlapping red and blue dots, indicating 

instability, as the same feature value can exert different effects 

on prediction (23, 24). Without vital signs, the SHAP values of 

chronic illnesses, including prior steroid use, cerebrovascular 

disease, and chronic kidney disease, dominate the model. 

However, the decline in SHAP values for most features suggests 

that the model is less robust and lacks sufficient in7uential 

factors (25, 26).

The inclusion of vital signs in the model improves both 

stability and predictive accuracy, with six vital signs ranking 

among the top ten features. The absence of vital signs reduces 

model stability and precision, particularly for certain subgroups. 

For instance, stratified analysis (Table 5) reveals that predictions 

for individuals with a BMI of 30 or higher are less precise. 

Consequently, BMI ≥ 30 is considered outside the scope of the 

model. These results underscore the critical role of vital signs in 

achieving reliable and stable predictions, while also identifying 

the chronic illnesses that have the most significant impact when 

vital signs are excluded.

3.4 Model performance and federated 
learning

Federated learning is a method where individuals, such as 

hospitals, can train their data on a local end and upload the 

parameters to the head server. This can prevent data leakage 

and transmission of large quantity data. We use Federated 

learning to combine training results from three hospital 

branches- Taipei, Hsinchu and Yunlin.

The Xgboost model was initially evaluated on the Taipei 

cohort, achieving high predictive performance with an area 

under the curve (AUC) of 0.96 (Figure 4 and Table 6). 

However, when the pre-federated learning model was applied to 

other cohorts, its performance declined. After implementing 

federated learning, the AUC of the Taipei cohort decreased to 

0.90, while the performance of other cohorts improved to meet 

the required standards. The decrease in Taipei cohort result 

from combining training results from three cohort making the 

model less specific to individual cohort. Whereas the increase in 

Hsinchu and Yunlin cohorts is because after federated learning 

the model has more understanding of Hsinchu and Yunlin 

cohorts. These results (Figure 4 and Table 6) indicate that 

federated learning helps to enhance the generalizability of the 

model across diverse cohorts, while also protecting patient 

privacy by ensuring data is not centralized.

The inclusion of vital signs in conjunction with chronic 

illnesses improved overall model performance compared to 

models relying solely on chronic illness data. This demonstrates 

the significance of integrating diverse data types to achieve 

robust predictive capabilities in different patient populations.

4 Discussion

Our findings demonstrate that XGBoost outperformed other 

algorithms tested in this study for predicting 30-day mortality 

among hospitalized COVID-19 patients. The inclusion of vital 

signs significantly enhanced model performance, achieving an 

AUC of 0.96 (Table 3). While the results confirmed the 

importance of dynamic predictors such as pulse rate, oxygen 

saturation, blood pressure, and respiratory rate, further 

discussion is warranted to explore broader implications and 

contextualize these findings within existing clinical and 

research frameworks.

Machine learning has increasingly been recognized as a 

transformative tool in addressing complex interactions in high- 

dimensional clinical datasets. Traditional statistical methods, 

such as logistic regression and LASSO, often lack the capacity to 

capture nonlinear relationships and interdependencies, limiting 

their predictive accuracy (27, 28). Ensemble learning methods, 

including random forest and gradient-boosted decision trees 

(GBDT), have demonstrated superior performance in such 

scenarios (29). XGBoost, as a leading GBDT algorithm, leverages 

an iterative approach to optimize predictions and effectively 

handle missing or sparse data (30). This capability, combined 

with its robustness in incorporating both static and dynamic 

clinical variables, underscores its relevance for healthcare 

applications, particularly during a global health crisis like 

COVID-19.

A key strength of this study lies in its use of SHAP analysis to 

enhance model interpretability. One of the significant barriers to 

adopting machine learning in healthcare is the “black-box” 

TABLE 3 Delong test results comparing the AUC of XGBoost against 
Lasso, Random Forest, and TabNet models.

Model 1 Model 2 ΔAUC p-value

XGBoost Lasso 0.12 < 0.001

XGBoost Random Forest 0.04 < 0.001

XGBoost TabNet 0.18 < 0.001

ΔAUC represents the difference in AUC (XGBoost−other model), and p-values indicate the 

statistical significance of the difference.

TABLE 4 Xgboost model using different sets of features.

Model AUC AUPRC Sensitivity Specificity PPV NPV

Vital signs and chronic illness 0.96 0.83 0.94 0.80 0.57 0.97

Chronic illness alone 0.93 0.72 0.88 0.80 0.54 0.96
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FIGURE 2 

Variables of importance (20 most important variables) from xgboost, ranked by mean SHAP values. (A) Model using both vital and chronic illness. (B) 

Model using only chronic illness.

FIGURE 3 

Bee swarm plot valuing feature impact on predictions, where red and blue dots represent high and low feature values, respectively. Overlapping dots 

indicate instability without vital signs, highlighting their importance for stable and accurate predictions. (A) Model using both vital and chronic illness. 

(B) Model using only chronic illness.
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nature of many algorithms. By quantifying the contributions of 

individual features to model predictions, SHAP analysis provides 

a transparent framework that bridges the gap between advanced 

computational methods and clinical decision-making. 

Identifying predictors such as chronic kidney disease, diabetes 

without complications, and hypertension allows clinicians to 

better understand the rationale behind predictions. This 

transparency not only fosters trust but also facilitates the 

integration of machine learning tools into routine clinical 

work7ows, ensuring that decisions are informed and actionable.

In the early days, clinical diagnosis was purely based on 

physician’s experiences with x-ray images and check-up data, 

lacking precision and efficiency (8). With the rise of ML, more 

models have been produced to estimate mortality and severity. 

According to systematic reviews in recent years (11, 12), the 4C 

mortality score was identified as the most promising model. The 

4C Mortality Score is a risk stratification tool that predicts in- 

hospital mortality rate for hospitalized COVID-19 patients with 

eight parameters routinely available at hospital admission: age, 

sex, number of comorbidities, respiratory rate, peripheral oxygen 

saturation, level of consciousness, urea level, and C reactive 

protein (13). Its dataset was stratified from 260 hospitals across 

England, Scotland, and Wales. The 4C Score showed moderate 

diagnostic accuracy for mortality with derivation cohort area 

under the receiver operating characteristic curve (AUC) 0.79. 

However, it performs poorly on other cohorts, with AUC ranging 

0.63∼0.73. Therefore, it cannot be implemented worldwide.

Previous clinical decision models, such as the 4C Mortality 

Score, have focused on common health data rather than 

comorbidities, lacking accuracy in assessing severity and 

mortality. Our research bridges this gap by adding 79 

comorbidities to the prediction. We developed the 

Comorbidities and Clinical Indicators on the Mortality Model 

(CCIMM), a machine learning model that can accurately predict 

a patient’s mortality rate within 30 days of hospitalization. We 

came up with two models: one comprising demographic 

information, vital signs upon admission, and underlying 

comorbidities; the other, comprising only demographic 

information and underlying comorbidities. The former one, with 

vital signs, has the highest AUC of 0.96. It can be used in the 

emergency room, where patients have unstable vital signs. The 

latter, without vital signs, has an AUC of 0.93. It can be used in 

outpatient conditions, where vital signs are rather stable and 

patients often have chronic illnesses. This model is also helpful 

at understanding the association between comorbidities and 

30-day mortality rate. In addition, both models used federated 

learning to integrate data from three hospitals, resulting in 

models suitable for broader population needs.

This research has allowed us to gain insight into the impact of 

comorbidities and clinical indicators on mortality in COVID-19. 

This is in contrast to the 4C score, which assesses comorbidities 

not by the identities of the comorbidities, but by the number of 

comorbidities, in a categorical fashion separated into three 

groups- 0, 1 or ≥2. We use machine learning to deal with large 

amounts of data, testing different algorithms in hopes of getting 

the best results. CCIMrM can speed up the diagnostic agenda 

by being an accurate indicator of whether the patient needs 

antiviral medication. It can prevent hospitals from running out 

of medical supplies or isolation wards in devastating situations, 

and serve as an indicator of disease severity for patients and 

families. The model can also be applied to future epidemics, 

providing physicians with a quick and easy prediction. 

Furthermore, the best performing model was trained through 

federated learning. Our study extends the current understanding 

of mortality prediction for hospitalized COVID-19 patients by 

developing an accurate and explainable federated learning model 

based on comorbidities and clinical indicators.

Interestingly, the findings challenge certain assumptions in 

current clinical guidelines, particularly in the context of 

prescribing Paxlovid, which is an oral antiviral medication 

TABLE 5 The area under the curve (AUC) in different subgroups gender 
(male), Age (elderly >= 65 y/o., middle age 40–64 y/o, young 18–39 y/o), 
BMI (obese >=30, overweight 25–29, normal <25).

Groupings Subgroups AUC

All patients All patients 0.96

Sex Male 0.98

Female 0.97

Age Age ≥65 0.97

65> Age ≥40 1.00

39 > Age ≥18 1.00

BMI BMI ≥30 0.87

30 > BMI ≥25 0.97

BMI <25 0.98

FIGURE 4 

Comparison of AUC of local and federated model in three hospitals, 

with xgboost model using both vital sign and chronic illness. Bold 

line represents AUC before FL and transparent line represents 

AUC after FL. Taipei, Hsinchu and Yunlin are in red, blue and 

orange respectively.

TABLE 6 Comparison of AUC before and after the application of 
federated learning, with xgboost model using both vital sign and 
chronic illness.

Models Taipei Hsinchu Yunlin

AUC before FL 0.96 0.82 0.81

AUC of FL 0.90 0.93 0.90
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prescribe to patients with mild to moderate COVID-19. It can 

decrease the rate of severe COVID-19 or mortality with adjusted 

hazard ratios of 0.54 (31). While existing guidelines in Taiwan 

recommend Paxlovid for patients with conditions like diabetes 

mellitus, cerebrovascular disease, and chronic lung disease (12, 

32), our study found these comorbidities to have a neutral or 

even protective association with 30-day mortality. This 

discrepancy underscores the need for continuous refinement of 

evidence-based guidelines using real-world data and advanced 

analytical techniques. For instance, while chronic kidney disease 

and BMI ≥30 remain high-priority risk factors, conditions like 

dementia and rheumatic diseases may warrant reevaluation 

based on the observed data trends. Additionally, the 

inconclusive findings regarding cancer highlight the necessity of 

individualized treatment plans rather than a one-size-fits-all 

approach to antiviral therapy.

Federated learning emerged as a critical tool in this study, 

addressing one of the main challenges in collaborative medical 

research—data privacy. By enabling the training of machine 

learning models across decentralized datasets, federated learning 

ensures that patient data remains localized while still contributing 

to a robust, generalizable model. This approach proved 

particularly effective in improving performance across external 

cohorts, even though it led to a slight decline in the AUC for the 

Taipei cohort. Such trade-offs underscore the potential of 

federated learning to enhance the scalability and applicability of 

AI solutions in diverse healthcare settings, where data-sharing 

restrictions often impede collaborative advancements.

5 Limitations

Despite its promising outcomes, the study has limitations that 

merit further discussion. First, the model’s reliance on readily 

available clinical features, while advantageous for 

implementation, excludes other potentially valuable data sources, 

such as imaging and laboratory results. For example, chest x- 

rays and CT scans are often pivotal in assessing COVID-19 

severity, and their integration into future models could 

significantly enhance predictive accuracy. Multimodal models 

that combine clinical, imaging, and laboratory data, as well as 

nuances about the severity of disease, would likely provide a 

more comprehensive understanding of patient risk profiles.

Second, the relatively small dataset focused exclusively on the 

Taiwanese population limits the generalizability of the findings. 

While federated learning mitigated some of these limitations by 

improving model performance in external cohorts, the 

demographic and clinical characteristics of the original dataset 

may still introduce biases. Expanding the dataset to include 

diverse populations from different geographic regions and 

healthcare systems would provide a more representative basis for 

training and validation. Additionally, the observed protective 

effects of certain comorbidities, such as diabetes and chronic 

lung disease, may re7ect unique population-level characteristics 

rather than universal trends. Further studies are needed to 

validate these findings and investigate their 

underlying mechanisms.

6 Future directions

The potential of integrating time-series data into predictive 

models represents another avenue for future research. COVID- 

19 is characterized by rapid disease progression, making real- 

time monitoring of vital signs crucial for early intervention. 

Incorporating continuous data streams from wearable devices or 

bedside monitors could enable dynamic risk assessment, 

allowing clinicians to adjust treatment plans in real time. In 

addition, as COVID variants evolve and clinical practices change 

with time, a real-world implementation would require frequent 

updates to maintain satisfactory performance, especially in a 

federated setting. Such advancements would move machine 

learning from static prediction models to dynamic, context- 

sensitive tools that align closely with the realities of patient care.

Another critical area for exploration is the role of 

interpretability in enhancing clinician adoption of machine 

learning tools. While SHAP analysis offers valuable insights into 

feature importance, further efforts are needed to ensure that 

these explanations are presented in a manner that is intuitive 

and clinically relevant. For example, integrating visualizations of 

SHAP values into electronic health record systems could provide 

clinicians with real-time feedback on patient risk factors, 

enabling more informed decision-making. Additionally, user- 

centered design principles should guide the development of 

interfaces that present machine learning outputs in ways that 

align with clinicians’ work7ows and information needs.

The discrepancies observed between this study’s findings and 

existing clinical guidelines also raise broader questions about 

how evidence is generated and translated into practice. Machine 

learning models offer the advantage of being data-driven, 

allowing for the identification of patterns that may not align 

with traditional clinical assumptions. However, these insights 

must be contextualized within the broader framework of clinical 

expertise and patient care priorities. For instance, while certain 

comorbidities may show a protective association with mortality 

in the study population, this does not necessarily negate their 

significance in other aspects of disease management. 

Collaborative efforts between data scientists, clinicians, and 

policymakers are essential to ensure that machine learning 

insights are translated into guidelines that are both evidence- 

based and clinically meaningful.

7 Conclusions

In conclusion, this study highlights the transformative 

potential of machine learning, particularly XGBoost, in 

predicting 30-day mortality among hospitalized COVID-19 

patients. While the inclusion of vital signs significantly 

enhanced predictive accuracy, federated learning demonstrated 

its value in improving generalizability across diverse cohorts. 
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The integration of SHAP analysis provided a transparent 

framework for understanding model predictions, fostering 

clinician trust and facilitating practical application. Future 

research should focus on addressing the limitations of current 

models by incorporating multimodal data, expanding population 

diversity, and enhancing real-time monitoring capabilities. 

By aligning advanced computational techniques with clinical 

expertise, machine learning has the potential to revolutionize 

risk stratification and treatment optimization in COVID-19 

care, paving the way for more personalized and effective 

healthcare solutions.
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