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Background: This study aims to develop a machine learning model to predict
the 30-day mortality risk of hospitalized COVID-19 patients while leveraging
federated learning to enhance data privacy and expand the model's
applicability. Additionally, SHapley Additive exPlanations (SHAP) values were
utilized to assess the impact of comorbidities on mortality.

Methods: A retrospective analysis was conducted on 6,321 clinical records of
hospitalized COVID-19 patients between January 2021 and October 2022.
After excluding cases involving patients under 18 years of age and non-
Omicron infections, a total of 4,081 records were analyzed. Key features
included three demographic data, six vital signs at admission, and 79
underlying comorbidities. Four machine learning models were compared,
including Lasso, Random Forest, XGBoost, and TabNet, with XGBoost
demonstrating superior performance. Federated learning was implemented to
enable collaborative model training across multiple medical institutions while
maintaining data security. SHAP values were applied to interpret the
contribution of each comorbidity to the model's predictions.

Results: A subset of 2,156 records from the Taipei branch was used to evaluate
model performance. XGBoost achieved the highest AUC of 0.96 and a
sensitivity of 0.94. Two versions of the XGBoost model were trained: one
incorporating vital signs, suitable for emergency room applications where
patients come in with unstable vital signs, and another excluding vital signs,
optimized for outpatient settings where we encounter patients with multiple
comorbidities. After implementing federated learning, the AUC of the Taipei
cohort decreased to 0.90, while the performance of other cohorts improved
to meet the required standards. SHAP analysis identified comorbidities
including diabetes mellitus, cerebrovascular disease, and chronic lung disease
to have a neutral or even protective association with 30-day mortality.
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Conclusion: XGBoost outperformed other models making it a viable tool for both
emergency and outpatient settings. The study underscores the importance of
chronic disease assessment in predicting COVID-19 mortality, revealing some
comorbidities such as diabetes mellitus, cerebrovascular disease and chronic
lung disease to have protective association with 30-day mortality. These
findings suggest potential refinements in current treatment guidelines,
particularly concerning high-risk conditions. The integration of federated
learning further enhances the model's clinical applicability while preserving

patient privacy.
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1 Introduction

Coronavirus disease 2019 (COVID-19) is a contagious disease
caused by the virus SARS-CoV-2, which has had a profound
impact on global economies, healthcare systems, and social
norms (1). Since the initial case was identified in Wuhan,
China, in December 2019 (2), over 777 million individuals have
been infected, and more than 7 million have died worldwide (as
of 9 February 2025) (3). The average time from exposure to
symptom onset is five days, and approximately 5% of patients
with COVID-19 experience severe symptoms necessitating
intensive care (4). While the diagnosis of COVID-19 is
facilitated by the use of rapid antigen tests (RATs) (5) and
polymerase chain reaction (PCR) (6) technology, the challenge
lies in accurately assessing the severity of the disease based on
clinical data and chest x-ray features (7). In 2020 WHO
developed a Clinical Progression Scale, patients have been
categorized as those with mild disease (ambulatory, not
requiring supplemental oxygen), those with moderate disease
(hospitalized, might requiring low-flow oxygen), and those with
severe COVID-19 (on HFNC, NIV, IMV, or ECMO) (8).
Nevertheless, accurate prediction of the prognosis of COVID-19
remains an elusive endeavor. Predicting COVID-19 mortality is
important as it has significant implications for the selection of
pharmacologic treatments, management strategies, and for
family planning and goals of care discussions (9).

Previous clinical decision models have focused on common
health data rather than comorbidities, which might have
negative impact on accuracy since comorbidities and COVID-19
mortality are correlated (10). The 4C Mortality Score, which was
identified as the most promising risk stratification model in
numerous systematic reviews (11, 12), is a risk stratification tool
that predicts in-hospital mortality rate for hospitalized COVID-
19 patients with eight parameters (age, sex, number of
comorbidities, respiratory rate, peripheral oxygen saturation,
level of consciousness, urea level, and C reactive protein) (13).
Risk stratification tool is a method that predict one’s risk based
on its clinical histories and other factors. The 4C mortality score
sum up the scores of the eight parameters and range from 1 to
21, each represent a certain mortality rate respectively. While
the 4C Score trained with 35,463 patients showed moderate
diagnostic accuracy for mortality with derivation cohort area
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under the receiver operating characteristic curve (AUC) of 0.79,
it performs poorly on other cohorts, with AUC ranging from
0.63 to 0.73 (13). In the present study, we sought to increase the
accuracy by incorporating the identity of the comorbidity, not
just the number of comorbidities, to the prediction. We
developed the Comorbidities and Clinical Indicators on the
Mortality Model (CCIMM), a machine learning model that can
accurately predict a patient’s mortality rate within 30 days of
hospitalization, using 79 comorbidities that are readily available
at the time of admission.

2 Methods
2.1 Data collection

National Taiwan University Hospital (NTUH) operates three
major branches in Taipei, Hsinchu, and Yu nlin, all of which
are tertiary medical centers, with 2,600 beds, 1,500 beds, and
900 beds, respectively. This study collected clinical data
retrospectively on patients hospitalized with Omicron variant
COVID-19 from April 2022 to October 2022 across the three
hospitals. Data included demographics, admission vital signs
[e.g., temperature, breath rate, pulse rate, systolic blood pressure
[SBP], diastolic blood pressure [DBP]], and underlying
comorbidities. This research project was approved by the ethics
committee of National Taiwan University Hospital Institutional
Review Board. The study was conducted in accordance with the
principles of the Declaration of Helsinki and the Good Clinical
Practice Guidelines, and all the participants were informed
consent. We have no access to information that could identify
individual participants during or after data collection.

2.2 Outcomes

The primary outcomes were 30-day all-cause mortality.
Mortality outcomes were verified by linking the database with
the national death registry, enabling accurate determination of
survival status after discharge. Institutional review boards of
each respective hospital approved waivers of informed consent,
and all data were deidentified.
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2.3 Missing data

The missForest R package was used to impute missing values
for continuous variables such as age, body mass index (BMI),
temperature, respiratory rate, pulse rate, SBP, and DBP. This
iterative method constructs random forest models for each
variable with missing data, using observed values from other
variables as predictors to estimate the missing values.

2.4 Input variables

Two sets of data were subjected to the establishment of the
model: one comprising demographic information, vital signs
upon admission, and underlying comorbidities; the other,
comprising only demographic information and underlying
comorbidities. The datasets include 79 comorbidities and 6 vital
signs. A p-value<0.05 in comorbidities and vital signs was
considered to be statistically significant between COVID-19
survivors and non-survivors. A total of 6,321 patients were
identified across the three hospitals, with 2,240 excluded due to
patient age under 18 or the identification of non-Omicron
variants of SARS-CoV-2. The discovery of Omicron variants was
in South Africa in late November 2021 (14). In Taiwan, the
Omicron variant became predominant in April 2022, causing
the second epidemiological surge (15). We only use data after
April 2022 to stratified Omicron variants. The Taipei cohort,
comprising 2,156 patients, was employed for the model
development. The Hsinchu and Yunlin cohorts were utilized in
federated learning.

2.5 Machine learning methods

The dataset was divided into training and validation subsets,
with 70% allocated for training and 30% for validation. To
address the issue of class imbalance in case outcomes, the
Synthetic Minority Oversampling Technique (SMOTE) was
applied, enabling the oversampling of minority-class patients
within the training dataset. Four machine learning models,
including Lasso (16), Random Forest (17), TabNet (18), and
Gradient-Boosted Tree (XGBoost) (19), were utilized. The
models were implemented using the following Python libraries:
sklearn  (LogisticRegression ~and  RandomForestClassifier),
pytorch-tabnet, and xgboost (version 2.3.1).

Random Forest and XgBoost are ensemble learning methods
that combine multiple weak decision trees to generate a strong
decision tree. Random Forest uses the “bagging” method, where
each tree is trained on a bootstrap sample of the data, and their
predictions are aggregated by voting in classification tasks or
tasks. The

independently and do not update each other, making the

averaging in regression trees are trained
method relatively fast and robust against overfitting (17). In
contrast, XGBoost is a gradient boosting method which builds

trees sequentially, where each new tree focuses on correcting the
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residual errors of the previous trees using gradient information.
The final prediction is obtained by summing the weighted
outputs of all trees. This sequential learning allows for effective
error correction and high accuracy but may increase the risk of
overfitting if not properly regularized (19).

Lasso regression is a type of linear regression that adds a
penalty term to reduce the size of the model’s coefficients,
helping to prevent overfitting. Although the model remains
linear, the added penalty can shrink some coefficients exactly to
zero, removing less useful features from the model. This results
in a simpler, more interpretable model that often performs
better on data with unrelated features (16).

Finally, TabNet is a method designed for tabular data. Its
advantage lies in its
through
performance can be sensitive to hyperparameter tuning, and

ability to provide feature-level

interpretability attention masks. However, its
training the model can be computationally demanding (18).
Shapley Additive Explanations (SHAP) were employed to
enhance the interpretability of these models, allowing the
quantification of each predictor’s contribution to the model’s
(20). Additionally,

approach based on Euclidean distance was used to group

predictions an unsupervised clustering
patients with similar SHAP profiles, aiding in the identification

of phenotypic patterns within the study cohort.

2.6 Federated learning

Federated Learning (FL) was implemented to integrate the
most effective model from the Taipei cohort with additional
data from Hsinchu and Yunlin hospitals. FL is a decentralized
and collaborative approach designed to address challenges
related to data silos and sensitivity (21). Since the datasets from
these hospitals shared identical features but varied in sample
composition, horizontal alliance learning was employed. The
process began with each participating hospital receiving the
same initial model and parameters. Each hospital independently
trained the model on its local data, computed gradient updates,
and securely transmitted these updates to a central server. The
server aggregated the encrypted gradients, updated the global
model, and redistributed the improved model parameters back
to the hospitals. This iterative process allowed the final model to
generalize across datasets while preserving data privacy, enabling
its application to a broader population.

2.7 Performance evaluation

The study aimed to predict 30-day mortality by employing a
comprehensive set of evaluation metrics to assess model
performance. The metrics included measures to capture
predictive accuracy, precision, and reliability. Additionally,
distinctions in vital pathogenic factors were evaluated across
subgroups defined by gender, age, and body mass index (BMI).
Gender was categorized into male and female groups, while age

was segmented into elderly (>65 years), middle-aged (40-64
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years), and young (18-39 years) groups. BMI was classified into
obese (>30), overweight (25-29), and normal (<25) categories.
These subgroup
performance variations across diverse patient demographics and
clinical ~ characteristics. ~ All

conducted using Python 3.10.8.

analyses provided insights into model

computational analyses were

3 Results
3.1 Participants

The study included 4,081 hospitalized adult patients diagnosed
with SARS-CoV-2 Omicron variant infections between April 2022
and October 2022, with the diagnosis confirmed by real-time
polymerase chain reaction (RT-PCR). The initial registry
consisted of 6,321 patients hospitalized for COVID-19 across
three branches of NTUH—Taipei, Hsinchu, and Yunlin—from

10.3389/fmedt.2025.1621158

January 2021 to October 2022. Figure 1 illustrates the patient
Table 1
information, vital signs upon admission, and underlying

selection flowchart. summarizes the demographic
comorbidities stratified by primary outcome. Among the final
cohort, 2,015 patients survived, while 141 patients succumbed to
the than
survivors, with a median age of 78 years compared to 69 years
(p <0.001). differed
significantly between survivors and non-survivors (p <0.001).
Chronic kidney disease and metastatic cancer were significantly
associated with mortality (p <0.001).

disease. Non-survivors were significantly older

Apart from temperature, vital signs

3.2 Mortality prediction in machine learning
models

The Taipei cohort was used to train and validate a machine
learning model, while the Hsinchu and Yunlin branches

Hospitalized patients of National Taiwan University
Hospital from 2021.01~ 2022.10

Patients hospitalized with

N= 6,321

Exclusion
: Age < 18 (n = 975)
2. Delta cohort (n =1,340)
n=2,240

COVID-19
n=4,081

Taipei cohort (Training: Validation =7 : 3)
n=2156

Hsinchu and Yunlin cohort (Testing Set)
n=1925

[

Random
Forest

(
|
|
|
l

\
|
|
|
|

-

Performance assessment

FIGURE 1

m m

Flowchart depicting construction of study cohort and external validation cohort from national Taiwan university hospital cohort.
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TABLE 1 Characteristics of COVID patients in the Taipei cohort, stratified by 30-day survival status.

Characteristic

COVID-19 survivors (n=2,015) COVID-19 non-survivors (n = 141)

Total (n = 2,156)  P-value

Age, mean (SD) 69 (19) 78 (16) 70 (19) < 0.001
Male gender, n (%) 1,050 (52.1%) 75 (53.2%) 1,125 (52.2%) 0.872

BMI, mean (SD) 22.81 (4.77) 22.83 (4.09) 22.81 (4.72) 0.967
BMI >30, 1 (%) 121 (6%) 6 (4.3%) 127 (5.9%) 0.504
Vital sign

Temperature (SD) 36.7 (0.66) 36.5 (0.61) 36.7 (0.66) 0.001

Breath rate (SD) 19 (3.19) 21 (4.92) 19 (3.35) < 0.001
Pulse rate (SD) 88 (16.72) 94 (20.53) 88.24 (17.05) < 0.001
SBP (SD) 136 (22.56) 128 (29.21) 135 (23.03) < 0.001
DBP (SD) 77 (12.59) 73 (16.62) 76 (12.86) < 0.001
SpO2 97 (1.97) 96 (4.34) 97 (2.24) < 0.001
Underlying comorbidity

Hypertension (%) 1,115 (55.3%) 96 (68.1%) 1,211 (56%) 0.004

Chronic lung disease (%) 223 (11.1%) 9 (6.4%) 32 (10.8%) 0.111

Chronic kidney disease (%) 526 (26.1%) 63 (44.7%) 589 (27.3%) < 0.001
Cancer without metastasis (%) 559 (27.7%) 57 (40.4%) 616 (28.6%) 0.002

Metastatic cancer (%) 193 (9.6%) 31 (22%) 224 (10.4%) < 0.001
Diabetes mellitus (%) 624 (31%) 52 (36.9%) 676 (31.4%) 0.171

Peptic ulcer disease (%) 173 (8.6%) 16 (11.3%) 189 (8.8%) 0.333

Prior use of steroid (%) 436 (21.6%) 37 (26.2%) 473 (21.9%) 0.241

CNS, central nervous system; SE, standard error.

implemented federated learning to evaluate generalizability.
Demographic information, vital signs, and comorbidities were used
to predict 30-day mortality. Table 2 compares the performance of
machine learning algorithms, with Xgboost achieving the highest
area under the curve (AUC), area under the precision-recall curve
(AUPRC), sensitivity, and negative predictive value (NPV) when
specificity was set at 0.80. The DeLong test is a nonparametric
statistical method used to compare AUCs of models that are tested
on the same dataset, and it provides a p-value to determine
whether the difference between the two AUCs is statistically
significant (22). Table 3 uses DeLong test to compare Xgboost
with other algorithms. P-value < 0.05 means that Xgboost and that
algorithms has significant difference, which also indicates that
Xgboost performs better.

The inclusion of vital signs enhanced the Xgboost model’s
performance compared to using only demographic information
and chronic illnesses. Table 4 shows that incorporating vital signs
improved all performance metrics, including AUC, sensitivity,
and NPV. The results highlight the importance of vital signs in
achieving superior predictive accuracy. In conclusion, the Xgboost
model was the most effective prediction tool for 30-day mortality,
offering a robust balance between sensitivity and specificity while
maintaining a conservative approach.

3.3 Feature importance and SHAP analysis

To provide a visual representation of the selected features, the
SHAP approach was employed to illustrate their impact on 30-day
mortality in the Xgboost model (23). The mean SHAP value plot
(Figure 2) ranks the top 20 features with the highest average
absolute SHAP values, while the bee swarm plot (Figure 3)
presents the individual contributions of these features, offering
insights into their stability and interpretation. In both figures,
feature rankings indicate their importance to the predictive model,
while SHAP values provide a unified measure of the influence of
specific features. In the bee swarm plot, red dots represent high
feature values, while blue dots indicate low values, enabling
visualization of how each feature affects predictions.

Certain features, including age, pulse rate, and body mass
index (BMI), are associated with an increased risk of mortality
when their values are elevated. Conversely, lower values of
systolic blood pressure (SBP), oxygen saturation (SpO,),
temperature, diastolic blood pressure (DBP), and respiratory rate
are linked to higher mortality risk. Chronic illnesses such as
diabetes mellitus without complications, cerebrovascular disease,
and chronic lung disease are also significant predictors, but
some of these features, surprisingly, are associated with a lower

TABLE 2 Measures of model discrimination and accuracy in the validation dataset (NIS 2014)sss, including area under the curve (AUC) and its 95%
confidence intervals, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV).

Model AUC AUPRC Sensitivity Specificity PPV NPV
Lasso 0.84 (95% CI 0.829-0.860) 0.70 0.71 0.80 0.52 0.91
Random forest 0.92 (95% CI 0.919-0.928) 0.83 0.81 0.80 0.67 0.94
Xgboost 0.96 (95% CI 0.967-0.974) 0.83 0.94 0.80 0.57 0.97
TabNet 0.78 (95% CI 0.752-0.804 0.68 0.60 0.80 0.46 0.88
Frontiers in Medical Technology 05 frontiersin.org
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TABLE 3 Delong test results comparing the AUC of XGBoost against
Lasso, Random Forest, and TabNet models.

Model 1 Model 2 AAUC p-value
XGBoost Lasso 0.12 < 0.001
XGBoost Random Forest 0.04 < 0.001
XGBoost TabNet 0.18 < 0.001

AAUC represents the difference in AUC (XGBoost—other model), and p-values indicate the
statistical significance of the difference.

likelihood of mortality. This trend highlights different correlations

between features(demographic  information, vital signs,
comorbidities) and mortality rate.

The mean SHAP value plot (Figure 2) confirms the
importance of both vital signs and chronic illnesses, with
features such as age, BMI, and sex emerging as the most critical
contributors. In the absence of vital signs, the bee swarm plot
(Figure 3B) shows overlapping red and blue dots, indicating
instability, as the same feature value can exert different effects
on prediction (23, 24). Without vital signs, the SHAP values of
chronic illnesses, including prior steroid use, cerebrovascular
disease, and chronic kidney disease, dominate the model.
However, the decline in SHAP values for most features suggests
that the model is less robust and lacks sufficient influential
factors (25, 26).

The inclusion of vital signs in the model improves both
stability and predictive accuracy, with six vital signs ranking
among the top ten features. The absence of vital signs reduces
model stability and precision, particularly for certain subgroups.
For instance, stratified analysis (Table 5) reveals that predictions
for individuals with a BMI of 30 or higher are less precise.
Consequently, BMI > 30 is considered outside the scope of the
model. These results underscore the critical role of vital signs in
achieving reliable and stable predictions, while also identifying
the chronic illnesses that have the most significant impact when

vital signs are excluded.

3.4 Model performance and federated
learning

Federated learning is a method where individuals, such as
hospitals, can train their data on a local end and upload the
parameters to the head server. This can prevent data leakage
and transmission of large quantity data. We use Federated
learning to combine training results from three hospital
branches- Taipei, Hsinchu and Yunlin.

The Xgboost model was initially evaluated on the Taipei
cohort, achieving high predictive performance with an area
under the curve (AUC) of 0.96 (Figure 4 and Table 6).
However, when the pre-federated learning model was applied to

TABLE 4 Xgboost model using different sets of features.

Sensitivity

10.3389/fmedt.2025.1621158

other cohorts, its performance declined. After implementing
federated learning, the AUC of the Taipei cohort decreased to
0.90, while the performance of other cohorts improved to meet
the required standards. The decrease in Taipei cohort result
from combining training results from three cohort making the
model less specific to individual cohort. Whereas the increase in
Hsinchu and Yunlin cohorts is because after federated learning
the model has more understanding of Hsinchu and Yunlin
cohorts. These results (Figure 4 and Table 6) indicate that
federated learning helps to enhance the generalizability of the
model across diverse cohorts, while also protecting patient
privacy by ensuring data is not centralized.

The inclusion of vital signs in conjunction with chronic
illnesses improved overall model performance compared to
models relying solely on chronic illness data. This demonstrates
the significance of integrating diverse data types to achieve
robust predictive capabilities in different patient populations.

4 Discussion

Our findings demonstrate that XGBoost outperformed other
algorithms tested in this study for predicting 30-day mortality
among hospitalized COVID-19 patients. The inclusion of vital
signs significantly enhanced model performance, achieving an
AUC of 096 (Table 3). While the results confirmed the
importance of dynamic predictors such as pulse rate, oxygen
further
discussion is warranted to explore broader implications and
these
research frameworks.

saturation, blood pressure, and respiratory rate,

contextualize findings within existing clinical and

Machine learning has increasingly been recognized as a
transformative tool in addressing complex interactions in high-
dimensional clinical datasets. Traditional statistical methods,
such as logistic regression and LASSO, often lack the capacity to
capture nonlinear relationships and interdependencies, limiting
their predictive accuracy (27, 28). Ensemble learning methods,
including random forest and gradient-boosted decision trees
(GBDT), have demonstrated superior performance in such
scenarios (29). XGBoost, as a leading GBDT algorithm, leverages
an iterative approach to optimize predictions and effectively
handle missing or sparse data (30). This capability, combined
with its robustness in incorporating both static and dynamic
clinical variables, underscores its relevance for healthcare
applications, particularly during a global health crisis like
COVID-19.

A key strength of this study lies in its use of SHAP analysis to

enhance model interpretability. One of the significant barriers to

adopting machine learning in healthcare is the “black-box”

AUPRC Specificity
Vital signs and chronic illness 0.96 0.83 0.94 0.80 0.57 0.97
Chronic illness alone 0.93 0.72 0.88 0.80 0.54 0.96
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Variables of importance (20 most important variables) from xgboost, ranked by mean SHAP values. (A) Model using both vital and chronic illness. (B)
Model using only chronic illness.
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TABLE 5 The area under the curve (AUC) in different subgroups gender
(male), Age (elderly >= 65 y/o., middle age 40-64 y/o, young 18-39 y/o),
BMI (obese >=30, overweight 25-29, normal <25).

Groupings Subgroups AUC
All patients All patients 0.96
Sex Male 0.98
Female 0.97
Age Age 265 0.97
65> Age >40 1.00
39 > Age >18 1.00
BMI BMI >30 0.87
30 > BMI >25 0.97
BMI <25 0.98

1
—_—

AUC
O 000000000
HFORFRNWRARUIONOOORKRH

5 0 5 10 15 20 25 30 35 40 45 50

Epoch

FIGURE 4

Comparison of AUC of local and federated model in three hospitals,
with xgboost model using both vital sign and chronic illness. Bold
line represents AUC before FL and transparent line represents
AUC after FL. Taipei, Hsinchu and Yunlin are in red, blue and
orange respectively.

TABLE 6 Comparison of AUC before and after the application of
federated learning, with xgboost model using both vital sign and
chronic illness.

Models Taipei Hsinchu Yunlin
AUC before FL 0.96 0.82 0.81
AUC of FL 0.90 0.93 0.90

nature of many algorithms. By quantifying the contributions of
individual features to model predictions, SHAP analysis provides
a transparent framework that bridges the gap between advanced
computational ~methods and  clinical  decision-making.
Identifying predictors such as chronic kidney disease, diabetes
without complications, and hypertension allows clinicians to
better This

transparency not only fosters trust but also facilitates the

understand the rationale behind predictions.
integration of machine learning tools into routine clinical
workflows, ensuring that decisions are informed and actionable.

In the early days, clinical diagnosis was purely based on
physician’s experiences with x-ray images and check-up data,
lacking precision and efficiency (8). With the rise of ML, more

models have been produced to estimate mortality and severity.
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According to systematic reviews in recent years (11, 12), the 4C
mortality score was identified as the most promising model. The
4C Mortality Score is a risk stratification tool that predicts in-
hospital mortality rate for hospitalized COVID-19 patients with
eight parameters routinely available at hospital admission: age,
sex, number of comorbidities, respiratory rate, peripheral oxygen
saturation, level of consciousness, urea level, and C reactive
protein (13). Its dataset was stratified from 260 hospitals across
England, Scotland, and Wales. The 4C Score showed moderate
diagnostic accuracy for mortality with derivation cohort area
under the receiver operating characteristic curve (AUC) 0.79.
However, it performs poorly on other cohorts, with AUC ranging
0.63~0.73. Therefore, it cannot be implemented worldwide.
Previous clinical decision models, such as the 4C Mortality
Score, have focused on common health data rather than
comorbidities, lacking accuracy in assessing severity and
mortality. Our research bridges this gap by adding 79
comorbidities to the prediction. We developed the
Comorbidities and Clinical Indicators on the Mortality Model
(CCIMM), a machine learning model that can accurately predict
a patient’s mortality rate within 30 days of hospitalization. We
came up with two models: one comprising demographic
information, vital signs upon admission,

and underlying
comorbidities; the other, comprising only demographic
information and underlying comorbidities. The former one, with
vital signs, has the highest AUC of 0.96. It can be used in the
emergency room, where patients have unstable vital signs. The
latter, without vital signs, has an AUC of 0.93. It can be used in
outpatient conditions, where vital signs are rather stable and
patients often have chronic illnesses. This model is also helpful
at understanding the association between comorbidities and
30-day mortality rate. In addition, both models used federated
learning to integrate data from three hospitals, resulting in
models suitable for broader population needs.

This research has allowed us to gain insight into the impact of
comorbidities and clinical indicators on mortality in COVID-19.
This is in contrast to the 4C score, which assesses comorbidities
not by the identities of the comorbidities, but by the number of
comorbidities, in a categorical fashion separated into three
groups- 0, 1 or >2. We use machine learning to deal with large
amounts of data, testing different algorithms in hopes of getting
the best results. CCIMrM can speed up the diagnostic agenda
by being an accurate indicator of whether the patient needs
antiviral medication. It can prevent hospitals from running out
of medical supplies or isolation wards in devastating situations,
and serve as an indicator of disease severity for patients and
families. The model can also be applied to future epidemics,
providing physicians with a quick and easy prediction.
Furthermore, the best performing model was trained through
federated learning. Our study extends the current understanding
of mortality prediction for hospitalized COVID-19 patients by
developing an accurate and explainable federated learning model
based on comorbidities and clinical indicators.

Interestingly, the findings challenge certain assumptions in
current clinical guidelines, particularly in the context of
prescribing Paxlovid, which is an oral antiviral medication
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prescribe to patients with mild to moderate COVID-19. It can
decrease the rate of severe COVID-19 or mortality with adjusted
hazard ratios of 0.54 (31). While existing guidelines in Taiwan
recommend Paxlovid for patients with conditions like diabetes
mellitus, cerebrovascular disease, and chronic lung disease (12,
32), our study found these comorbidities to have a neutral or
even protective association with 30-day mortality. This
discrepancy underscores the need for continuous refinement of
evidence-based guidelines using real-world data and advanced
analytical techniques. For instance, while chronic kidney disease
and BMI >30 remain high-priority risk factors, conditions like
dementia and rheumatic diseases may warrant reevaluation
based on the Additionally, the
inconclusive findings regarding cancer highlight the necessity of

observed data trends.
individualized treatment plans rather than a one-size-fits-all
approach to antiviral therapy.

Federated learning emerged as a critical tool in this study,
addressing one of the main challenges in collaborative medical
research—data privacy. By enabling the training of machine
learning models across decentralized datasets, federated learning
ensures that patient data remains localized while still contributing
This
particularly effective in improving performance across external
cohorts, even though it led to a slight decline in the AUC for the
Taipei cohort. Such trade-offs underscore the potential of

to a robust, generalizable model approach proved

federated learning to enhance the scalability and applicability of
Al solutions in diverse healthcare settings, where data-sharing
restrictions often impede collaborative advancements.

5 Limitations

Despite its promising outcomes, the study has limitations that
merit further discussion. First, the model’s reliance on readily
available clinical features, while advantageous for
implementation, excludes other potentially valuable data sources,
such as imaging and laboratory results. For example, chest x-
rays and CT scans are often pivotal in assessing COVID-19
and their

significantly enhance predictive accuracy. Multimodal models

severity, integration into future models could
that combine clinical, imaging, and laboratory data, as well as
nuances about the severity of disease, would likely provide a
more comprehensive understanding of patient risk profiles.
Second, the relatively small dataset focused exclusively on the
Taiwanese population limits the generalizability of the findings.
While federated learning mitigated some of these limitations by
improving model performance in external cohorts, the
demographic and clinical characteristics of the original dataset
may still introduce biases. Expanding the dataset to include
diverse populations from different geographic regions and
healthcare systems would provide a more representative basis for
training and validation. Additionally, the observed protective
effects of certain comorbidities, such as diabetes and chronic
lung disease, may reflect unique population-level characteristics

rather than universal trends. Further studies are needed to
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these and their

underlying mechanisms.

validate findings investigate

6 Future directions

The potential of integrating time-series data into predictive
models represents another avenue for future research. COVID-
19 is characterized by rapid disease progression, making real-
time monitoring of vital signs crucial for early intervention.
Incorporating continuous data streams from wearable devices or
bedside monitors could enable dynamic risk assessment,
allowing clinicians to adjust treatment plans in real time. In
addition, as COVID variants evolve and clinical practices change
with time, a real-world implementation would require frequent
updates to maintain satisfactory performance, especially in a
federated setting. Such advancements would move machine
learning from static prediction models to dynamic, context-
sensitive tools that align closely with the realities of patient care.

Another

interpretability in enhancing clinician adoption of machine

critical area for exploration is the role of
learning tools. While SHAP analysis offers valuable insights into
feature importance, further efforts are needed to ensure that
these explanations are presented in a manner that is intuitive
and clinically relevant. For example, integrating visualizations of
SHAP values into electronic health record systems could provide
clinicians with real-time feedback on patient risk factors,
enabling more informed decision-making. Additionally, user-
centered design principles should guide the development of
interfaces that present machine learning outputs in ways that
align with clinicians’ workflows and information needs.

The discrepancies observed between this study’s findings and
existing clinical guidelines also raise broader questions about
how evidence is generated and translated into practice. Machine
learning models offer the advantage of being data-driven,
allowing for the identification of patterns that may not align
with traditional clinical assumptions. However, these insights
must be contextualized within the broader framework of clinical
expertise and patient care priorities. For instance, while certain
comorbidities may show a protective association with mortality
in the study population, this does not necessarily negate their
other of disease

significance  in aspects

Collaborative efforts between data scientists, clinicians, and

management.

policymakers are essential to ensure that machine learning
insights are translated into guidelines that are both evidence-
based and clinically meaningful.

7 Conclusions

In conclusion, this study highlights the transformative

potential of machine learning, particularly XGBoost, in
predicting 30-day mortality among hospitalized COVID-19
patients. While the inclusion of vital signs significantly
enhanced predictive accuracy, federated learning demonstrated

its value in improving generalizability across diverse cohorts.
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The integration of SHAP analysis provided a transparent
framework for understanding model predictions, fostering
clinician trust and facilitating practical application. Future
research should focus on addressing the limitations of current
models by incorporating multimodal data, expanding population
diversity, and enhancing real-time monitoring capabilities.
By aligning advanced computational techniques with clinical
expertise, machine learning has the potential to revolutionize
risk stratification and treatment optimization in COVID-19
care, paving the way for more personalized and -effective
healthcare solutions.
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