
EDITED BY  

Seung Kwan Kang,  

Seoul National University, Republic of Korea

REVIEWED BY  

Hariharan Shanmugasundaram,  

Vel Tech Rangarajan Dr. Sagunthala R&D 

Institute of Science and Technology, India  

Joanna Przybek-Mita,  

University of Rzeszow, Poland

*CORRESPONDENCE  

Neevkumar Manavar  

neevkumar_hareshbhai.manavar@hsbi.de

RECEIVED 02 May 2025 

ACCEPTED 26 August 2025 

PUBLISHED 16 September 2025

CITATION 

Manavar N, Meyer HG, Waßmuth J, Hammer B 

and Schneider A (2025) ATTNFNET: feature 

aware depth-to-pressure translation with 

cGAN training.  

Front. Med. Technol. 7:1621922. 

doi: 10.3389/fmedt.2025.1621922

COPYRIGHT 

© 2025 Manavar, Meyer, Waßmuth, Hammer 

and Schneider. This is an open-access article 

distributed under the terms of the Creative 

Commons Attribution License (CC BY). The 

use, distribution or reproduction in other 

forums is permitted, provided the original 

author(s) and the copyright owner(s) are 

credited and that the original publication in 

this journal is cited, in accordance with 

accepted academic practice. No use, 

distribution or reproduction is permitted 

which does not comply with these terms.

ATTNFNET: feature aware 
depth-to-pressure translation 
with cGAN training

Neevkumar Manavar
1*, Hanno Gerd Meyer

1
, Joachim Waßmuth

1
,  

Barbara Hammer
2 

and Axel Schneider
1

1Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, Bielefeld, Germany, 
2Faculty of Technology, CITEC, Bielefeld University, Bielefeld, Germany

Excessive pressure and shear forces on bedridden patients can lead to pressure 

injuries, particularly on those with existing ulcers. Monitoring pressure 

distribution is crucial for preventing such injuries by identifying high-risk areas. 

To address this challenge, we propose Attention Feature Network (ATTNFNET), a 

self-attention-based deep neural network that generates pressure distribution 

maps from single-depth images using Conditional Generative Adversarial 

Network (CGAN) training. We introduce a mixed-domain SSIML2 loss function, 

combining structural similarity and pixel-level accuracy, along with adversarial 

loss, to enhance the prediction of pressure distributions for subjects lying in a 

bed. Evaluation results from the benchmark dataset demonstrate that the 

ATTNFNET outperforms existing methods in terms of Structural Similarity Index 

Measure (SSIM) and quality analysis, providing accurate pressure distribution 

estimation from a single depth image.
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1 Introduction

Image processing techniques have become integral to advancements in medical 

diagnostics and patient care. Transformer-based model architectures, such as those 

foundational in Natural Language Processing (NLP) (1) have been successfully adapted 

for image classification and segmentation tasks (2, 3). However, these models typically 

require large datasets and significant computational resources to learn global attention 

patterns and image encodings. This limitation poses challenges in medical applications, 

where data availability and computational efficiency are critical.

Alternatively, Fully Convolutional Network (FCN)-based models offer computationally 

less intensive solutions and can provide superior feature representations in the context of 

limited resources and datasets (4). Despite these advancements, learning image 

representations using Convolutional Neural Network (CNN) remains complex when 

attempting to capture global context effectively. Incorporating attention mechanisms 

with CNN can address this challenge by focusing on relevant features across the entire 

image (5). Inspired by the original transformer architecture (1) and conditional 

adversarial training (6), we propose the Attention Feature Network (ATTNFNET), a novel 

model that leverages a convolutional architecture to project image features while 

employing transformer-like attention mechanisms to obtain global feature context. Our 

model processes images through 12 transformer layers to generate encodings in a latent 

space, followed by deconvolution with skip connections back to the image space.
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A specific use case in medical applications is studied using 

ATTNFNET. Pressure ulcers pose a significant risk to bedridden 

patients, often leading to severe complications if not addressed 

promptly (7). Conventional monitoring methods can be 

resource-intensive or lack real-time capabilities. By predicting 

pressure distributions from depth images captured by an 

overhead camera, our approach offers a non-invasive, efficient 

tool for continuous patient monitoring. Our experimental results 

demonstrate that ATTNFNET effectively predicts pressure 

distributions, potentially aiding in timely interventions to 

reposition patients and prevent pressure injuries.

The motivation for ATTNFNET is to capture contextual features 

in depth images, particularly around pressure-sensitive areas at 

risk of developing pressure ulcers. This architecture is designed 

to balance computational efficiency and predictive performance, 

addressing the limitations of large-scale transformer-based 

sequence-to-sequence models, which are resource-intensive, and 

Fully Convolutional Network (FCN)-based encoder-decoder 

architectures, which often struggle with capturing long-range 

dependencies. The proposed Structural Similarity Index Measure 

L2 norm (SSIML2) loss function enables the model to minimize 

Mean Squared Error (MSE) more effectively than standard L2 

loss alone. Additionally, the inclusion of cGAN loss constrains 

the network to generate contextually relevant outputs, enhancing 

the fidelity of the predicted pressure maps rather than 

promoting image diversity.

We evaluated our model’s performance on depth-to-pressure 

image translation tasks using a publicly available benchmark 

dataset (8), with the U-Net architecture (9), and previous state- 

of-the-art BPBnet, and BPWnet (10) as baselines for 

comparison. Our results indicate that ATTNFNET demonstrates 

promising performance in this specific medical application and 

shows potential for broader image translation tasks.

This study focuses on critical medical applications, trained on 

publicly available supine and lateral depth-pressure data, and 

possibly pinpoint high-risk tissue-loading zones in real time, 

thereby enabling early off-loading interventions in long-term- 

care and home settings.

2 Related work

2.1 Image generation

Since the introduction of Generative Adversarial Network 

(GAN)s by Goodfellow et al. (11), image generation has gained 

significant attention in the research community. FCN have 

emerged as foundational architectures for many GAN-based 

generation tasks due to their ability to effectively capture spatial 

hierarchies. Over the years, numerous GAN variants have been 

proposed for image generation, each enhancing different aspects 

of the model’s capabilities. Noteable examples include 

CycleGAN (12), StarGAN (13), Least Squares GAN (14), 

StyleGAN (15), DCGAN (16), and cGAN (17).

These advancements have paved the way for more 

sophisticated image translation tasks. For instance, Isola et al. 

(6) demonstrated the effectiveness of conditional GANs for 

image-to-image translation tasks. Our proposed model builds 

upon these foundations by leveraging transformer-based 

conditional GAN training with a mixed-domain loss function to 

translate depth images into pressure distribution maps.

2.2 CNN architecture

CNNs are foundational models for vision tasks, first 

introduced by Lecun et al. (18). Their ability to learn 

hierarchical visual features established them as state-of-the-art 

for a wide range of vision applications. Prominent models such 

as ImageNet (19), VGGNet (20), ResNet (21), and MobileNet 

(22) have employed FCN architectures to capture fine-grained 

image features, becoming foundational in tasks like image 

recognition and object detection. In the domain of semantic 

segmentation, the work by Ronneberger et al. (9) made a 

significant contribution to FCN-based architectures. The success 

of U-Net in semantic segmentation and image translation has 

rapidly established it as a state-of-the-art model.

Our proposed model builds upon a CNN-based architecture 

and utilizes CNNs to upscale latent representations to pixel 

space. It leverages the computational efficiency of CNNs in 

vision tasks to provide an effective and efficient mechanism for 

upscaling latent features. This study compares the performance 

of the proposed method with the FCN based U-Net model.

2.3 Vision transformer

The introduction of transformers by Vaswani et al. (1) marked 

a paradigm shift in Natural Language Processing (NLP). The 

success of transformers in sequence-to-sequence tasks inspired 

their adaptation to computer vision, leading to the development 

of Vision Transformer (VITs) (2). ViTs utilize self-attention 

mechanisms to capture long-range dependencies in images, 

proving particularly effective in global feature extraction (23). 

Subsequent works have explored transformer architectures for 

various image processing tasks, including image generation and 

segmentation (24–26).

Kirillov et al. (3) and Zheng et al. (27) extended the 

transformer capabilities by combining a transformer capabilities 

with CNNs for segmentation tasks. The proposed model 

leverages a hybrid transformer-CNN architecture, utilizing CNN 

layers both in patch projection and as part of the feed-forward 

network. Additionally, it incorporates skip connections between 

the encoder and decoder, enhancing information Dow and 

feature retention across the network.

As shown by Raghu et al. (23), VITs maintain robust feature 

representations through attention, and transfer learning can 

significantly accelerate training. In line with these findings, our 

model employs pre-trained weights from the Segment Anything 

Model (SAM) (3) to initialize training and hence facilitating 

efficient convergence and improved performance.
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2.4 Inferring pressure distribution

Several studies have focused on predicting pressure injuries in 

hospitalized patients. These studies have utilized statistical models 

and machine learning techniques to identify risk factors such as 

body mass index, age, gender, and comorbidities that inDuence 

the likelihood of developing pressure injuries (28–31). While 

effective in risk stratification, these approaches do not provide 

spatially resolved information on when or where a pressure injury 

might occur. Hence, understanding body pressure distribution 

offers deeper insights into the specific locations at risk of pressure 

ulcer development. Clever et al. (10) utilized BPBnet and BPWnet 

to predict body pressure distribution using a depth camera, 

demonstrating the potential of non-invasive monitoring techniques.

Building upon this concept, our approach leverages a 

transformer-based GAN architecture trained on real-world data 

with various human poses (8) to predict pressure distributions 

from depth images. Unlike prior methods, our model 

incorporates attention mechanisms to improve results on 

pressure-sensitive areas and adversarial training to enhance 

prediction accuracy and spatial distribution.

3 Methods

This section provides a detailed description of the proposed 

ATTNFNET architecture, training objectives, training strategy, and 

evaluation metrics. We begin by outlining the structure of the 

ATTNFNET model, including its image encoder, bottleneck layer, and 

decoder, and then explain how the model is trained using a 

conditional GAN framework. We also describe the metrics used to 

evaluate its performance in terms of both pixel-level accuracy and 

perceptual quality.

3.1 ATTNFNET architecture

The ATTNFNET architecture is designed to translate depth into 

pressure distribution maps. Figure 1 describes overall architecture 

and it consist of three primary components: 1. an image encoder 

that encodes the image into a latent space, 2. a bottleneck layer 

that reduces computational complexity while preserving crucial 

features, and 3. a decoder that reconstructs the image encodings 

back into the original image space. Additionally, skip 

connections are introduced from the encoder to the decoder to 

preserve contextual features during the reconstruction process.

3.1.1 Image encoder design

In the image encoder, the input image is first divided into patches, 

which are then processed through convolutional projections. These 

projections are followed by the addition of sinusoidal positional 

embeddings to retain spatial information Vaswani et al. (1). The 

patched image features are subsequently passed through 12 

transformer blocks that perform self-attention and convolution 

FIGURE 1 

Schematic representation of the ATTNFNET model architecture. (A) An example architecture for a 128 � 54 input image. The input image is projected to 

a 712-dimensional embedding via a convolution operation. Positional embeddings are added to these projections before being processed by the 

transformer block, and the output is passed through the decoder block with skip connections. (B) Transformer block, where the input undergoes 

a standard multi-head self-attention mechanism followed by convolutional projections. (C) Decoder block schematic, where the output from the 

transformer encoder passes through multiple up-convolution layers, progressively increasing resolution until the desired output size is reached, 

with skip connections added to the deconvolution blocks. n ¼ 6, n ¼ 8, and n ¼ 10 indicate the number of transformer blocks whose output is used.
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operations to encode the image, capturing both local and 

global dependencies.

Formally, the self-attention is defined in Equation 1

Attention (Q, K, V) ¼ Z þ softmax
QKT

ffiffiffiffiffi

dk

p
� �

V (1) 

where Z is the input patch from the previous layer, Q, K, and V 

represent the query, key, and value vectors, and dk is the 

dimensionality of the key vector.

The outputs of the self-attention mechanism are concatenated 

to form the multi-head attention (MHA) (as shown in 

the Equation 2)

MHA (Q, K, V) ¼ Concat (Head1, Head2, . . . , Headn) (2) 

where each Headi is computed as in Equation 1.

In the standard transformer block, the MHA output is 

typically passed through a multi-layer perceptron (MLP) followed 

by a residual connection:

ViTmlp ¼ MLP (MHA(Q, K, V)) þ MHA (Q, K, V) (3) 

However, in ATTNFNET, we replace the MLP with convolutional 

projections, allowing the encoder to refine features more quickly 

while maintaining spatial hierarchies:

ViTconv ¼ Conv(MHA(Q, K, V)) þ MHA(Q, K, V) (4) 

Skip connections are introduced between intermediate 

transformer layers and the decoder block to help retain high- 

resolution details.

Both model variants were evaluated:

• ViT-mlp: AttnFnet with an MLP feed-forward network in the 

transformer block, as shown in Equation 3.

• ATTNFNET: AttnFnet with convolutional projections in the 

transformer block, as shown in Equation 4.

3.1.2 Image decoder

The decoder reconstructs the encoded image representations 

by upsampling them through successive deconvolution layers. 

These layers progressively increase the spatial resolution until 

the original input size is restored. To preserve critical image 

details, skip connections from the encoder are incorporated, 

allowing the decoder to combine low-level feature maps with 

upsampled features and enhance high-resolution reconstruction. 

Unlike the encoder, the decoder is designed to be lightweight, 

focusing on upsampling the encoded features.

3.2 Training objective

The training objective is inspired by the Pix2Pix framework 

(6), where we employ a conditional GAN (cGAN) architecture 

with a PatchGAN discriminator. The PatchGAN discriminator 

distinguishes between real and generated image pairs, ensuring 

that local image details are accurately predicted while 

maintaining global consistency in the generated pressure maps.

The total training objective aims to optimize both the 

discriminator and generator losses. The discriminator loss LD is 

defined in the Equation 5.

LD ¼ �[Ex,y[yreal � log (D(xjy)))] þ Ex,y[(1 � yreal) � log (1 � D(xjy))]

þ Ex[ygen � log (D(xjG(x))))] þ Ex[(1 � ygen) � log (1 � D(xjG(x)))]]

(5) 

where x is the input depth image, y is the ground truth pressure 

distribution map, and G(x) is the generated pressure map from 

the generator. The first two terms evaluate how well the 

discriminator identifies real image-label pairs, while the last two 

terms penalize the discriminator for misclassifying generated 

pressure distribution maps as real. Here, yreal refers to the label 

for real pressure maps, and ygen refers to the label for 

generated pressure maps.

The generator loss LG combines the adversarial loss with 

perceptual loss (as shown in Equation 6), encouraging the 

generated images to be both realistic and similar to the 

ground truth:

LG ¼ �Ex[ log (D(xjG(x))))] þ l � Ex,y[LSSIML2] (6) 

Here, l is a regularization constant that balances the contributions 

of the adversarial and perceptual losses.

The perceptual similarity L2 loss LSSIML2 combines the 

Structural Similarity Index Measure (SSIM) loss with the mean 

squared error (MSE) loss:

LSSIML2 (x, y) ¼ a � (1 � SSIM(y, G(x))) þ b � ky � G(x)k2
2 (7) 

where a and b are weighting factors for the SSIM and MSE 

components, respectively.

The SSIM between two images a and b is defined as:

SSIM (a, b) ¼ (2mamb þ C1)(2sab þ C2)

(m2
a þ m2

b þ C1)(s2
a þ s2

b þ C2)
(8) 

where: 

• ma and mb are the mean values of a and b, respectively.

• s2
a and s2

a are the variances of a and b.

• sab represents the covariance between a and b.

• C1 and C2 are constants to stabilize the division when the 

denominator is small.

By combining SSIM with pixel-level MSE loss, the model is 

encouraged to maintain structural similarity while optimizing 

pixel-wise accuracy, which helps to produce more perceptually 

faithful reconstructions.
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3.3 Training strategy

3.3.1 Dataset
The proposed model was evaluated on an open-source dataset 

from Liu et al. (8). The dataset includes depth images of 102 

healthy subjects (28 female) in 45 unique poses, each lying on a 

hospital bed. The poses are classified into three primary 

postures: supine, left-side lateral, and right-side lateral. The data 

were split into training (data from n ¼ 61 subjects), validation 

(data from n ¼ 20 subjects), and test sets (data from n ¼ 21 

subjects). The training data did not include poses with blanket 

covers or synthetic data.

The model used only depth information to predict pressure 

distributions and did not utilize any Supplementary Material

from the dataset. However, the model uses Occlusion Free 

Depth Images (OFDI), which are noise-free, cropped depth 

images containing all data points from the human surface (32), 

and Pre-processed Pressure Distribution (PPRESS). The PPRESS 

involves reducing the image resolution to 27 � 64 and applying 

a Gaussian filter (s ¼ 1:4) to diminish noise and smooth the 

pressure images (33). This preprocessing step is conducted to 

assess its impact on prediction accuracy and to facilitate 

comparison with (10).

3.3.2 Training settings

All networks were trained using the same settings, except for 

the learning rate h. The Adam optimizer (34) was employed for 

optimization, using a learning rate of h ¼ 2 � 10�4 for the 

U-Net model and h ¼ 1 � 10�4 for ATTNFNET. The initial decay 

rates (b) for the Adam optimizer were set to b1 ¼ 0:5 and 

b2 ¼ 0:999. All the optimizer parameters were the same for the 

discriminator and generator. All models were trained until 90 

epochs with a batch size of 1.

For conditional GAN training, a regularization constant 

l ¼ 100 was used in the generator loss, with weighting factors 

a ¼ 300 and b ¼ 1 in the perceptual similarity L2 loss 

(Equation 7). Since image generation tasks are generally more 

challenging than image classification tasks, label smoothing was 

applied to reduce the confidence of the discriminator, setting 

the label for generated pressure distribution maps to ygen ¼ 0:1 

and the label for real distribution maps to yreal ¼ 0:9.

3.3.3 Evaluation metrics

• Pixel Prediction Accuracy (PPA): Pixel Prediction Accuracy 

(PPA) is described by the ratio of the total correctly 

predicted pixels to the total number of pixels Equation 9.

PPA ¼ Number of True Predictions

Number of Total Pixels
(9) 

• Structural Similarity Index Measure (SSIM): Structural 

Similarity Index Measure (SSIM) is defined in Equation 8.

• Fréchet Inception Distance (FID): Defined by Heusel et al. 

(35). Fréchet Inception Distance (FID) is calculated from the 

features, extracted using the pre-trained inception-V3 model 

trained on the imagenet dataset.

• MSE: Calculates the average squared difference between the 

estimated values Ŷi and the actual values Yi across all the 

data points n, Equation 10.

MSE ¼ 1

n

X

n

i¼1

Yi � Ŷi

� �2
(10) 

• Peak Signal-to-Noise Ratio (PSNR): PSNR Measures the ratio 

between the maximum possible power of a signal and the 

power of corrupting noise, defined in (36).

• Posture Intersection Over Union (IOU): The largest area of 

pressure higher than the threshold in actual pressure 

distribution is Ay and the largest area of pressure exceeding 

the threshold in predicted pressure distribution is Aŷ. posture 

Intersection Over Union (IOU) is defined by Equation 11.

IOU (Ay, Aŷ) ¼ Ay > Aŷ

Ay < Aŷ
(11) 

The metrics–Mean Pixel Prediction Accuracy (MPPA), Mean 

Structural Similarity Index (MSSIM), Mean Fréchet Inception 

Distance (MFID), MSE, Mean Peak-Peak Signal-to-Noise Ratio 

(MPSNR), and Posture Mean Intersection Over Union (MIOU) 

are the average values across the test data. These metrics provide 

a comprehensive evaluation of the models in terms of both 

pixel-level accuracy and perceptual quality.

4 Results

We evaluated the performance of the proposed AttnFnet 

model and compared it with implementations of U-Net, BPBnet, 

and BPWnet (9, 10). The variation of AttnFnet—ViT-mlp was 

also assessed to determine the impact of the convolutional 

projections in the transformer blocks.

4.1 Quantitative evaluation

Table 1 compares the MPPA, MSSIM, MFID, MSE, and 

MPSNR scores calculated on test data from U-Net and AttnFnet 

model predictions. The results indicate that ATTNFNET achieves 

TABLE 1 MPPA, MSSIM, MFID, MSE, and MPSNR metrics comparison with 
the state-of-the-art on the test data.

Model MPPA MSSIM MFID MSE MPSNR

U-Net 0.6658 0.7958 0.4615 0.000433 34.4185

ATTNFNET 0.6142 0.8291 0.3475 0.000368 35.0508

ViT-mlp 0.5112 0.7968 0.2393 0.000426 34.2621

BPBnet (10) 0.0078 0.0204 160.58 0.00567 22.5927

BPWnet (10) 0.5244 0.6331 1.6335 0.00405 24.1364

Bold values denote the best score for each metric.
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higher MSSIM and MPSNR scores, as well as lower MSE scores, 

compared to U-Net, ViT-mlp, BPBnet, and BPWnet. Notably, 

ATTNFNET outperforms U-Net by 15% in terms of MSE.

Figure 2 presents box plots of the FID, MSE, PPA, and SSIM metrics 

for the U-Net, ATTNFNET, ViT-MLP, BPBnet, and BPWnet. ATTNFNET 

shows a narrower Interquartile Range (IQR) and lower median values 

in MSE, indicating more consistent performance. U-Net 

demonstrates higher median and IQR in PPA, suggesting superior 

pixel-level accuracy. However, ATTNFNET achieves better SSIM scores, 

reDecting higher structural similarity with the actual pressure 

distributions. ATTNFNET version of ViT-mlp has a lower MFID score, 

but ATTNFNET has a narrower IQR than any other method. The 

proposed methodology outperforms BPBnet and BPWnet in all metrics.

4.2 Effects of image pre-processing

The pressure distributions were converted to kPa by multiplying 

calibration factors from the dataset (8) with the pressure 

distributions, and the MSE was recalculated. Table 2 presents the 

overall MSE across the test dataset for models trained on three 

cases: 1. raw depth images as input and raw pressure images as 

ground truth, 2. Occlusion Free Depth Images (OFDI) inputs, and 

3. combined OFDI input with PPRESS ground truth.

Using Occlusion Free Depth Images (OFDI) and Pre- 

processed Pressure Distribution (PPRESS) resulted in a 33% 

greater reduction in error compared to using raw depth images. 

Notably, ATTNFNET achieved better results in this scenario.

4.3 Qualitative analysis

Figure 3 shows the average deviations for three different 

postures—supine, lateral left-side, and lateral right-side -, 

comparing the U-Net, ATTNFNET, and ViT-mlp models. Absolute 

deviations were calculated by taking the absolute pressure 

difference between the actual and predicted pressure distribution 

and averaging it over the test dataset.

A visual comparison of the predicted pressure distributions 

using U-Net, ATTNFNET, ViT-mlp, BPBnet, and BPWnet models, 

against the reference pressure images, shown in Figure 4. 

ATTNFNET produced more accurate posture representations 

compared to U-Net, ViT-mlp, BPBnet, and BPWnet. ATTNFNET’s 

predictions were more closely aligned with the actual pressure 

distribution. U-Net often struggled with pressure distribution on 

the leg and head side, while ViT-mlp tended to predict higher 

pressure values around the edges of the human body. BPBnet 

produces blurry results due to its pixel loss reduction, while 

BPBnet doesn’t produce blurry results but overestimates 

pressure values and couldn’t outperform ATTNFNET.

Notably, all models consistently overestimated pressure values 

compared to the actual distribution in the facial and pelvic regions.

4.4 Weight estimation

By using the predicted pressure distributions and the 

known area of each sensor, the normal force on the 

FIGURE 2 

Box plot representation of FID, MSE, PPA, and SSIM metric scores obtained from test predictions.

TABLE 2 Overall MSE comparison of U-Net, ATTNFNET, and ViT-mlp model 
predictions on test subjects, with results compared against BPWnet and 
BPBnet models proposed by Clever et al. (10). Models were trained on 
three different cases: 1. raw depth input with raw pressure ground 
truth, 2. OFDI input with raw pressure ground truth, and 3. combined 
OFDI input with PPRESS ground truth. MSE values are derived from 
rescaled pressure distributions in kPa.

Model OFDI PPress MSE # (kPa2)

U-Net 2.7871

� 2.5694

� � 0.7950

ATTNFNET 2.5354

� 2.3333

� � 0.6884

ViT-mlp 2.6614

� 2.5023

� � 0.8091

BPBnet (10) � � 0.772

BPWnet (10) � � 1.155

Bold values denote the best score for each metric.
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mattress was calculated (see Supplementary Material, 

Section 1). This force provided an approximate estimate of 

the test subjects’ weights. Figure 5 shows scatter plots 

comparing the estimated weights of each participant based 

on actual and predicted pressure distributions from the 

proposed models.

Figure 5 shows that the use of OFDIs 

improves the performance of ATTNFNET and ViT-mlp, leading to 

more accurate pressure distributions and better weight 

estimations, as evidenced by the fitted line of ATTNFNET’s 

estimated weights.

Table 3 shows ATTNFNET performs best in Posture MIOU 

while BPWnet gives better weight estimation among all models.

5 Discussion

The proposed ATTNFNET model effectively infers body 

pressure distribution from a single depth image. The 

ATTNFNET architecture leverages self-attention mechanisms to 

generate more refined features during image encoding in 

latent space, offering improved performance over U-Net. The 

results demonstrate that the proposed method outperforms 

state-of-the-art methods.

5.1 Effectiveness of SSIML2 loss function

The use of the combined Structural Similarity Index 

Measure and L2 norm loss (SSIML2 loss) provided stable 

training and better performance. When the model was trained 

using only the L2 norm loss with adversarial loss, it exhibited 

signs of mode collapse, and the validation MSE loss started 

increasing after 40 epochs when the MSE could not be 

reduced further (see Supplementary Material, Section 2). 

Training with the L2 norm loss resulted in a 130% increase in 

MSE and a 31.17% reduction in SSIM compared to the model 

trained with SSIML2 loss.

5.2 Robustness to noisy data

As shown in Table 2, the proposed model successfully 

generated pressure distributions even from noisy raw data, with 

significantly reduced error when using OFDI and PPRESS. The 

ability to handle raw depth images and generation of pressure 

distribution without introducing blurring demonstrates the 

robustness of the proposed method (more in Supplementary 

Material, Section 2). This suggests that while the model is 

capable of learning from noisy input, preprocessing steps can 

enhance its predictive accuracy.

5.3 Plausibility of pressure distributions

The results from Table 3 and Figures 3–5, show that 

ATTNFNET’s attention over features helps the model produce 

more plausible feature distributions compared to other models. 

In Figure 4, ATTNFNET outperforms other methods in terms of 

posture representation and visual accuracy of the pressure 

distributions. Specifically, in Figure 3 it is evident that near the 

hip and head areas—where all methods tend to overestimate 

pressure values—ATTNFNET tends to reduce overestimation.

Moreover, while Table 3 and Figure 5 show that weight 

estimation from U-Net predictions does not improve 

significantly with preprocessed inputs, ATTNFNET’s performance 

increases notably. This indicates that ATTNFNET learns the 

relationship between depth representation and pressure 

distribution more effectively through its attention mechanism. 

However, calculated weights from all methods exhibit some 

scatter and do not outperform the BPWnet from Clever et al. 

(10). This disparity is because Clever et al. (10) utilized a 

separate pre-trained network “Betanet,” to estimate the mass 

and height of the subject and incorporate this information into 

the loss function to improve results. In contrast, our method 

does not use any Supplementary Material during training and 

relies solely on features from Occlusion Free Depth 

Images (OFDI).

FIGURE 3 

Visual representation of the pressure deviations in supine, left-side lateral, and right-side lateral postures. The heat map is constrained between 

pressure deviation values of 0 and 1.5 kPa.
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Table 3 also shows the mean posture Intersection over Union 

(IOU), with the ViT-mlp method having the lowest score. The 

ViT-mlp variant tends to generate higher pressure values at the 

edges of the human posture, resulting in a visual representation 

that appears wider than the reference image. This is evident in 

Figures 3, 4.

As shown in Figure 4, BPBnet exhibits blurred predictions due to 

its training strategy based on pixel reduction losses (L1 and L2 losses). 

FIGURE 4 

Visual representation of the predicted pressure distributions using five different models and their comparison to the reference pressure image (Ref. 

PImg). Occlusion Free Depth Images (OFDI)s were used as input to the models. Each row represents a different depth input to the models. In the 

pressure distribution images, blue indicates low-pressure regions, and red indicates high-pressure regions. In the depth images, red indicates higher 

depth and blue indicates lower depth values.
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This approach tends to average pixel values, which can result in 

improved MSE performance but fails to yield better results across 

other evaluation metrics. In contrast, BPWnet does not exhibit 

blurring; however, it tends to overestimate pressure values compared 

to the actual distributions and fails to generate postures superior to 

those of the AttnFnet model, as evident in Figure 4.

5.4 Model performance and capabilities

The proposed model achieved better performance across 

several evaluation metrics, including MFID, MSSIM, MSE, 

and MPSNR, compared to previous methods. Among the 

variants of ATTNFNET, the ViT-mlp version showed the best 

MFID score. This improvement is partly due to how the FID 

score is calculated, which heavily depends on the specific 

version of the ImageNet dataset and the pre-trained 

Inception-V3 model employed for feature extraction. FID 

measures how closely the generated images resemble real ones 

by comparing high-level features, focusing on the mean and 

covariance of these features in both real and generated 

images. However, a lower FID score does not necessarily 

indicate identical pressure distributions; it also accounts for 

the diversity of generated data (35). Therefore, it is most 

reliable when evaluating realistic RGB images.

The self-attention mechanism in the ATTNFNET model captures 

meaningful relationships between feature embeddings, producing 

features that encompass both local and global information. Skip 

connections in the architecture help the model retain high- 

resolution features and improve performance by facilitating 

gradient Dow and feature reuse (see Supplementary Material, 

Section 2). The proposed method initializes attention weights 

from Segment Anything Model (SAM) (3), which aids better 

weight initialization even though Segment Anything Model 

(SAM) was trained on a different objective. While we did not 

perform a comparative analysis of the model’s performance 

without transfer learning, prior work by Raghu et al. (23) 

supports the argument by comparing VITs to ResNet models 

with and without pretrained weights.

Despite the slower learning rate, ATTNFNET achieved a lower 

validation loss faster than U-Net (see Supplementary Material, 

Section 2). This suggests that the transformer/based architecture 

of ATTNFNET is more efficient in capturing the complex 

relationships in the data, even with a reduced learning rate.

Overall, the experimental results validate that the ATTNFNET 

model gives better performance in inferring pressure 

distributions from depth images. The incorporation of the 

SSIML2 loss function, robustness to noisy data, and effective use 

of self-attention mechanisms contribute to the model’s improved 

accuracy and reliability. Additional performance measures can 

be found in the Supplementary Material.

6 Future work and limitations

Although the proposed method outperforms other models still 

lacks clinical validation and can generate certain data dependency. 

To generalize the model and reduce data dependency, future work 

involves the collection of diverse datasets with patients and 

healthy controls.

FIGURE 5 

Scatter plots representing the errors in estimated weights (kg) of test subjects. Comparison between calculated weights (kg) from predicted pressure 

distributions, calculated weights from actual pressure distributions (kg) (Black points), and actual measured weights (kg) (red dashed line). (a) 

Estimated weights using raw depth images as input. (b) Estimated weights using cleaned depth images (OFDI) as input to the proposed models.

TABLE 3 Mean absolute weight difference between the calculated weight 
from the predicted pressure profile and the actual measured weight. 
Weight is computed using both raw and OFDI inputs with the U-Net, 
ATTNFNET, and ViT-mlp models. The last column shows the Posture Mean 
Intersection Over Union (MIOU) from predictions using each method.

Method Mean absolute weight 
difference (kg)

Posture MIOU

Raw input OFDI input

U-Net 12.65 12.30 0.7346

ATTNFNET 16.50 6.71 0.7515

ViT-mlp 21.63 12.19 0.4910

BPBnet (10) – – 0.7329

BPWnet (10) – 5.64 0.6566

Bold values denote the best score for each metric.

Manavar et al.                                                                                                                                                        10.3389/fmedt.2025.1621922 

Frontiers in Medical Technology 09 frontiersin.org



Challenging errors, such as a person having a lipoma beneath 

the skin tissue or a very complex human posture, may cause the 

model to predict inaccurate pressure distributions. The 

authors expect future work towards incorporating physical 

plausibility constraints and informed learning approaches 

during training to reduce errors and ensure physically plausible 

pressure distributions.

The proposed model can be adapted for generalized image 

translation tasks. The authors expect future work toward the 

evaluation of the proposed method compared to state-of-the-art 

image translation methods.

Model employs CGAN to improve pressure prediction; 

however, GANs are sensitive towards hyperparameters and 

difficult to train. The authors will guide future work towards, 

conditional diffusion process to improve prediction even further.

7 Conclusion

In conclusion, we have proposed a self-attention-based deep 

neural network, ATTNFNET, to translate depth images into 

pressure images. We evaluated two variations of the proposed 

architecture—ViT-mlp and ATTNFNET—against state-of-the-art 

methods. The proposed method outperforms the existing 

methods, achieving 91% reduction in MSE and 30% increment 

in MSSIM score compared to the state-of-the-art BPWnet. It 

also outperforms existing methods in qualitative analysis of the 

uncovered systematic lying postures of the real test subjects, 

demonstrating its potential for accurate pressure distribution 

prediction from depth images.

These findings can help detect and prevent early pressure 

ulcers by identifying risk areas of a patient lying on a bed. 

The current publicly available dataset is limited to supine 

and lateral postures; so future works involve extending it 

towards prone and sitting postures to cover diverse risk- 

affected areas.
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