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Excessive pressure and shear forces on bedridden patients can lead to pressure
injuries, particularly on those with existing ulcers. Monitoring pressure
distribution is crucial for preventing such injuries by identifying high-risk areas.
To address this challenge, we propose Attention Feature Network (ATTNFNET), a
self-attention-based deep neural network that generates pressure distribution
maps from single-depth images using Conditional Generative Adversarial
Network (cGAN) training. We introduce a mixed-domain SSIML2 loss function,
combining structural similarity and pixel-level accuracy, along with adversarial
loss, to enhance the prediction of pressure distributions for subjects lying in a
bed. Evaluation results from the benchmark dataset demonstrate that the
ATTNFNET outperforms existing methods in terms of Structural Similarity Index
Measure (SSIM) and quality analysis, providing accurate pressure distribution
estimation from a single depth image.

KEYWORDS

patient monitoring, generative network, contact pressure prediction, image
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1 Introduction

Image processing techniques have become integral to advancements in medical
diagnostics and patient care. Transformer-based model architectures, such as those
foundational in Natural Language Processing (NLP) (1) have been successfully adapted
for image classification and segmentation tasks (2, 3). However, these models typically
require large datasets and significant computational resources to learn global attention
patterns and image encodings. This limitation poses challenges in medical applications,
where data availability and computational efficiency are critical.

Alternatively, Fully Convolutional Network (FCN)-based models offer computationally
less intensive solutions and can provide superior feature representations in the context of
limited resources and datasets (4). Despite these advancements, learning image
representations using Convolutional Neural Network (CNN) remains complex when
attempting to capture global context effectively. Incorporating attention mechanisms
with CNN can address this challenge by focusing on relevant features across the entire
image (5). Inspired by the original transformer architecture (1) and conditional
adversarial training (6), we propose the Attention Feature Network (ATTNFNET), a novel
model that leverages a convolutional architecture to project image features while
employing transformer-like attention mechanisms to obtain global feature context. Our
model processes images through 12 transformer layers to generate encodings in a latent
space, followed by deconvolution with skip connections back to the image space.
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A specific use case in medical applications is studied using
ATTNFNET. Pressure ulcers pose a significant risk to bedridden
patients, often leading to severe complications if not addressed
promptly (7).
resource-intensive or lack real-time capabilities. By predicting

Conventional monitoring methods can be
pressure distributions from depth images captured by an
overhead camera, our approach offers a non-invasive, efficient
tool for continuous patient monitoring. Our experimental results
demonstrate that ATINFNET effectively predicts pressure
distributions, potentially aiding in timely interventions to
reposition patients and prevent pressure injuries.

The motivation for ATTNFNET is to capture contextual features
in depth images, particularly around pressure-sensitive areas at
risk of developing pressure ulcers. This architecture is designed
to balance computational efficiency and predictive performance,
addressing the limitations of large-scale transformer-based
sequence-to-sequence models, which are resource-intensive, and
Fully Convolutional Network (FCN)-based encoder-decoder
architectures, which often struggle with capturing long-range
dependencies. The proposed Structural Similarity Index Measure
L2 norm (SSIML2) loss function enables the model to minimize
Mean Squared Error (MSE) more effectively than standard L2
loss alone. Additionally, the inclusion of cGAN loss constrains
the network to generate contextually relevant outputs, enhancing
the fidelity of the predicted pressure maps rather than
promoting image diversity.

We evaluated our model’s performance on depth-to-pressure
image translation tasks using a publicly available benchmark
dataset (8), with the U-Net architecture (9), and previous state-
of-the-art BPBnet, and BPWnet (10) as
comparison. Our results indicate that ATTNFNET demonstrates

baselines for

promising performance in this specific medical application and
shows potential for broader image translation tasks.

This study focuses on critical medical applications, trained on
publicly available supine and lateral depth-pressure data, and
possibly pinpoint high-risk tissue-loading zones in real time,
thereby enabling early off-loading interventions in long-term-
care and home settings.

2 Related work
2.1 Image generation

Since the introduction of Generative Adversarial Network
(GAN)s by Goodfellow et al. (11), image generation has gained
significant attention in the research community. FCN have
emerged as foundational architectures for many GAN-based
generation tasks due to their ability to effectively capture spatial
hierarchies. Over the years, numerous GAN variants have been
proposed for image generation, each enhancing different aspects
of the model's capabilities. Noteable examples include
CycleGAN (12), StarGAN (13), Least Squares GAN (14),
StyleGAN (15), DCGAN (16), and cGAN (17).

These advancements

have paved the way for more

sophisticated image translation tasks. For instance, Isola et al.

Frontiers in Medical Technology

10.3389/fmedt.2025.1621922

(6) demonstrated the effectiveness of conditional GANs for
image-to-image translation tasks. Our proposed model builds
these
conditional GAN training with a mixed-domain loss function to

upon foundations by leveraging transformer-based

translate depth images into pressure distribution maps.

2.2 CNN architecture

CNNs
introduced by Lecun et al.

are foundational models for vision tasks, first
(18). Their ability to learn
hierarchical visual features established them as state-of-the-art
for a wide range of vision applications. Prominent models such
as ImageNet (19), VGGNet (20), ResNet (21), and MobileNet
(22) have employed FCN architectures to capture fine-grained
image features, becoming foundational in tasks like image
recognition and object detection. In the domain of semantic
segmentation, the work by Ronneberger et al. (9) made a
significant contribution to FCN-based architectures. The success
of U-Net in semantic segmentation and image translation has
rapidly established it as a state-of-the-art model.

Our proposed model builds upon a CNN-based architecture
and utilizes CNNs to upscale latent representations to pixel
space. It leverages the computational efficiency of CNNs in
vision tasks to provide an effective and efficient mechanism for
upscaling latent features. This study compares the performance
of the proposed method with the FCN based U-Net model.

2.3 Vision transformer

The introduction of transformers by Vaswani et al. (1) marked
a paradigm shift in Natural Language Processing (NLP). The
success of transformers in sequence-to-sequence tasks inspired
their adaptation to computer vision, leading to the development
of Vision Transformer (ViTs) (2). ViTs utilize self-attention
mechanisms to capture long-range dependencies in images,
proving particularly effective in global feature extraction (23).
Subsequent works have explored transformer architectures for
various image processing tasks, including image generation and
segmentation (24-26).

Kirillov et al. (3) and Zheng et al. (27) extended the
transformer capabilities by combining a transformer capabilities
with CNNs for segmentation tasks. The proposed model
leverages a hybrid transformer-CNN architecture, utilizing CNN
layers both in patch projection and as part of the feed-forward
network. Additionally, it incorporates skip connections between
the encoder and decoder, enhancing information flow and
feature retention across the network.

As shown by Raghu et al. (23), VITs maintain robust feature
representations through attention, and transfer learning can
significantly accelerate training. In line with these findings, our
model employs pre-trained weights from the Segment Anything
Model (SAM) (3) to initialize training and hence facilitating
efficient convergence and improved performance.
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2.4 Inferring pressure distribution

Several studies have focused on predicting pressure injuries in
hospitalized patients. These studies have utilized statistical models
and machine learning techniques to identify risk factors such as
body mass index, age, gender, and comorbidities that influence
the likelihood of developing pressure injuries (28-31). While
effective in risk stratification, these approaches do not provide
spatially resolved information on when or where a pressure injury
might occur. Hence, understanding body pressure distribution
offers deeper insights into the specific locations at risk of pressure
ulcer development. Clever et al. (10) utilized BPBnet and BPWnet
to predict body pressure distribution using a depth camera,
demonstrating the potential of non-invasive monitoring techniques.

Building upon this concept, our approach leverages a
transformer-based GAN architecture trained on real-world data
with various human poses (8) to predict pressure distributions
Unlike
incorporates attention mechanisms to improve results on

rom de images. rior methods, our mode
f; depth thod del
pressure-sensitive areas and adversarial training to enhance

prediction accuracy and spatial distribution.

3 Methods

This section provides a detailed description of the proposed
ATINFNET architecture, training objectives, training strategy, and

10.3389/fmedt.2025.1621922

evaluation metrics. We begin by outlining the structure of the
ATTNENET model, including its image encoder, bottleneck layer, and
decoder, and then explain how the model is trained using a
conditional GAN framework. We also describe the metrics used to
evaluate its performance in terms of both pixel-level accuracy and
perceptual quality.

3.1 ATTNFNET architecture

The ATTNFNET architecture is designed to translate depth into
pressure distribution maps. Figure 1 describes overall architecture
and it consist of three primary components: 1. an image encoder
that encodes the image into a latent space, 2. a bottleneck layer
that reduces computational complexity while preserving crucial
features, and 3. a decoder that reconstructs the image encodings
back the Additionally,
connections are introduced from the encoder to the decoder to

into original image space. skip

preserve contextual features during the reconstruction process.

3.1.1 Image encoder design

In the image encoder, the input image is first divided into patches,
which are then processed through convolutional projections. These
projections are followed by the addition of sinusoidal positional
embeddings to retain spatial information Vaswani et al. (1). The
patched image features are subsequently passed through 12
transformer blocks that perform self-attention and convolution
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Schematic representation of the ATTNFNET model architecture. (A) An example architecture for a 128 x 54 input image. The input image is projected to
a 712-dimensional embedding via a convolution operation. Positional embeddings are added to these projections before being processed by the
transformer block, and the output is passed through the decoder block with skip connections. (B) Transformer block, where the input undergoes
a standard multi-head self-attention mechanism followed by convolutional projections. (C) Decoder block schematic, where the output from the
transformer encoder passes through multiple up-convolution layers, progressively increasing resolution until the desired output size is reached,
with skip connections added to the deconvolution blocks. n = 6, n = 8, and n = 10 indicate the number of transformer blocks whose output is used.
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operations to encode the image, capturing both local and
global dependencies.
Formally, the self-attention is defined in Equation 1

Attention (Q, K, V) = Z + soft (QKT)V (1)
ention , K, = softmax| ——
Vi

where Z is the input patch from the previous layer, Q, K, and V'
represent the query, key, and value vectors, and di is the
dimensionality of the key vector.

The outputs of the self-attention mechanism are concatenated
(MHA) (as

to form the multi-head attention shown in

the Equation 2)

MHA (Q, K, V) = Concat (Head;, Head,, ..., Head,) (2)
where each Head; is computed as in Equation 1.

In the standard transformer block, the MHA output is
typically passed through a multi-layer perceptron (MLP) followed
by a residual connection:

ViTmp = MLP (MHA(Q, K, V)) + MHA (Q K, V) (3)

However, in ATTNFNET, we replace the MLP with convolutional
projections, allowing the encoder to refine features more quickly
while maintaining spatial hierarchies:

ViTeony = Conv(MHA(Q, K, V)) + MHA(Q, K, V) (4)

Skip connections are introduced between intermediate
transformer layers and the decoder block to help retain high-
resolution details.

Both model variants were evaluated:

o ViT-mlp: AttnFnet with an MLP feed-forward network in the
transformer block, as shown in Equation 3.

o ATINFNET: AttnFnet with convolutional projections in the
transformer block, as shown in Equation 4.

3.1.2 Image decoder

The decoder reconstructs the encoded image representations
by upsampling them through successive deconvolution layers.
These layers progressively increase the spatial resolution until
the original input size is restored. To preserve critical image
details, skip connections from the encoder are incorporated,
allowing the decoder to combine low-level feature maps with
upsampled features and enhance high-resolution reconstruction.
Unlike the encoder, the decoder is designed to be lightweight,
focusing on upsampling the encoded features.

3.2 Training objective

The training objective is inspired by the Pix2Pix framework
(6), where we employ a conditional GAN (cGAN) architecture
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with a PatchGAN discriminator. The PatchGAN discriminator
distinguishes between real and generated image pairs, ensuring
that local
maintaining global consistency in the generated pressure maps.

image details are accurately predicted while
The total training objective aims to optimize both the
discriminator and generator losses. The discriminator loss Lp is

defined in the Equation 5.

Lp = —[Exy[Ypeq - 10g (DCely)] + Exy[(1 = ypeq)) - log (1 — D(x]y))]
+ Ex[ygen - log (D(x|G(x))] + Ex[(1 — ygen) - log (1 — D(x|G(x))]]
)

where x is the input depth image, y is the ground truth pressure
distribution map, and G(x) is the generated pressure map from
the generator. The first two terms evaluate how well the
discriminator identifies real image-label pairs, while the last two
terms penalize the discriminator for misclassifying generated

pressure distribution maps as real. Here, | refers to the label

¥
for real pressure maps, and ygen refg‘:sa to the label for
generated pressure maps.

The generator loss Lz combines the adversarial loss with
perceptual loss (as shown in Equation 6), encouraging the
generated images to be both realistic and similar to the

ground truth:

L = —E[log (D(x|G(x)))] + A - Exy[Lssimro] (6)

Here, A is a regularization constant that balances the contributions
of the adversarial and perceptual losses.

The perceptual similarity L2 loss Lggpr2 combines the
Structural Similarity Index Measure (SSIM) loss with the mean
squared error (MSE) loss:

LssML2 (6 ¥) = a- (1 — SSIM(y, G(x))) + B - [ly — G5 (7)

where o and B are weighting factors for the SSIM and MSE
components, respectively.
The SSIM between two images a and b is defined as:

Quay, + C)Roup + Cy)
(u3 + 1p + C)(0% + 03 + Co)

SSIM (a, b) = (8)

where:

e M, and w, are the mean values of a and b, respectively.

« o2 and o2 are the variances of 4 and b.

o 0y represents the covariance between a and b.

e« C; and C, are constants to stabilize the division when the
denominator is small.

By combining SSIM with pixel-level MSE loss, the model is
encouraged to maintain structural similarity while optimizing
pixel-wise accuracy, which helps to produce more perceptually
faithful reconstructions.
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3.3 Training strategy

3.3.1 Dataset

The proposed model was evaluated on an open-source dataset
from Liu et al. (8). The dataset includes depth images of 102
healthy subjects (28 female) in 45 unique poses, each lying on a
hospital bed. The poses are classified into three primary
postures: supine, left-side lateral, and right-side lateral. The data
were split into training (data from n = 61 subjects), validation
(data from n =20 subjects), and test sets (data from »n =21
subjects). The training data did not include poses with blanket
covers or synthetic data.

The model used only depth information to predict pressure
distributions and did not utilize any Supplementary Material
from the dataset. However, the model uses Occlusion Free
Depth Images (OFDI), which are noise-free, cropped depth
images containing all data points from the human surface (32),
and Pre-processed Pressure Distribution (PPress). The PPrEss
involves reducing the image resolution to 27 x 64 and applying
a Gaussian filter (0 = 1.4) to diminish noise and smooth the
pressure images (33). This preprocessing step is conducted to
assess its impact on prediction accuracy and to facilitate
comparison with (10).

3.3.2 Training settings

All networks were trained using the same settings, except for
the learning rate 7. The Adam optimizer (34) was employed for
optimization, using a learning rate of 7 =2 x 107 for the
U-Net model and 17 =1 x 107* for ArrNFner. The initial decay
rates (B) for the Adam optimizer were set to B, = 0.5 and
B, =0.999. All the optimizer parameters were the same for the
discriminator and generator. All models were trained until 90
epochs with a batch size of 1.

For conditional GAN training, a regularization constant
A =100 was used in the generator loss, with weighting factors
a=300 and B=1
(Equation 7). Since image generation tasks are generally more

in the perceptual similarity L2 loss

challenging than image classification tasks, label smoothing was
applied to reduce the confidence of the discriminator, setting
the label for generated pressure distribution maps to ygen = 0.1
and the label for real distribution maps to y .| = 0.9.

3.3.3 Evaluation metrics

o Pixel Prediction Accuracy (PPA): Pixel Prediction Accuracy
(PPA) is described by the ratio of the total correctly
predicted pixels to the total number of pixels Equation 9.

PPA — Number of True Predictions ©)
" Number of Total Pixels

o Structural Similarity Index Measure (SSIM): Structural
Similarity Index Measure (SSIM) is defined in Equation 8.

o Fréchet Inception Distance (FID): Defined by Heusel et al.
(35). Fréchet Inception Distance (FID) is calculated from the
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features, extracted using the pre-trained inception-V3 model
trained on the imagenet dataset.

o MSE: Calculates the average squared difference between the
estimated values Y; and the actual values Y; across all the
data points n, Equation 10.

1< a2
MSE = ;Z(Yi 0 (10)

i=1

o Peak Signal-to-Noise Ratio (PSNR): PSNR Measures the ratio
between the maximum possible power of a signal and the
power of corrupting noise, defined in (36).

o Posture Intersection Over Union (IOU): The largest area of
pressure higher than the threshold in actual pressure
distribution is A, and the largest area of pressure exceeding
the threshold in predicted pressure distribution is A;. posture
Intersection Over Union (IOU) is defined by Equation 11.

AN A

10U (4, A;) =—2—2
(4. 45) Ay U A4

1mn

The metrics-Mean Pixel Prediction Accuracy (MPPA), Mean
Structural Similarity Index (MSSIM), Mean Fréchet Inception
Distance (MFID), MSE, Mean Peak-Peak Signal-to-Noise Ratio
(MPSNR), and Posture Mean Intersection Over Union (MIOU)
are the average values across the test data. These metrics provide
a comprehensive evaluation of the models in terms of both
pixel-level accuracy and perceptual quality.

4 Results

We evaluated the performance of the proposed AttnFnet
model and compared it with implementations of U-Net, BPBnet,
and BPWnet (9, 10). The variation of AttnFnet—ViT-mlp was
also assessed to determine the impact of the convolutional
projections in the transformer blocks.

4.1 Quantitative evaluation

Table 1 compares the MPPA, MSSIM, MFID, MSE, and
MPSNR scores calculated on test data from U-Net and AttnFnet
model predictions. The results indicate that ATTNFNET achieves

TABLE 1 MPPA, MSSIM, MFID, MSE, and MPSNR metrics comparison with
the state-of-the-art on the test data.

| Model __ MPPA__MSSIM__MFID__MSE__MPSNR_

U-Net 0.6658 0.7958 0.4615 0.000433 34.4185
ATTNFNET 0.6142 0.8291 0.3475 0.000368 35.0508
ViT-mlp 0.5112 0.7968 0.2393 0.000426 34.2621
BPBnet (10) 0.0078 0.0204 160.58 0.00567 22.5927
BPWnet (10) 0.5244 0.6331 1.6335 0.00405 24.1364

Bold values denote the best score for each metric.
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higher MSSIM and MPSNR scores, as well as lower MSE scores,
compared to U-Net, ViT-mlp, BPBnet, and BPWnet. Notably,
ATTNFNET outperforms U-Net by 15% in terms of MSE.

Figure 2 presents box plots of the FID, MSE, PPA, and SSIM metrics
for the U-Net, ATTNFNET, ViT-MLP, BPBnet, and BPWnet. ATTNENET
shows a narrower Interquartile Range (IQR) and lower median values
in MSE, indicating more U-Net
demonstrates higher median and IQR in PPA, suggesting superior

consistent  performance.
pixel-level accuracy. However, ATTNENET achieves better SSIM scores,
reflecting higher structural similarity with the actual pressure
distributions. ATTNENET version of ViT-mlp has a lower MFID score,
but ATrNENET has a narrower IQR than any other method. The
proposed methodology outperforms BPBnet and BPWnet in all metrics.

4.2 Effects of image pre-processing

The pressure distributions were converted to kPa by multiplying
calibration factors from the dataset (8) with the pressure
distributions, and the MSE was recalculated. Table 2 presents the
overall MSE across the test dataset for models trained on three
cases: 1. raw depth images as input and raw pressure images as
ground truth, 2. Occlusion Free Depth Images (OFDI) inputs, and
3. combined OFDI input with PPress ground truth.

Using Occlusion Free Depth Images (OFDI) and Pre-
processed Pressure Distribution (PPress) resulted in a 33%
greater reduction in error compared to using raw depth images.

10.3389/fmedt.2025.1621922

A visual comparison of the predicted pressure distributions
using U-Net, ATTNENET, ViT-mlp, BPBnet, and BPWnet models,
against the reference pressure images, shown in Figure 4.
ATTNFNET produced more accurate posture representations
compared to U-Net, ViT-mlp, BPBnet, and BPWnet. ATTNFNET’s
predictions were more closely aligned with the actual pressure
distribution. U-Net often struggled with pressure distribution on
the leg and head side, while ViT-mlp tended to predict higher
pressure values around the edges of the human body. BPBnet
produces blurry results due to its pixel loss reduction, while
BPBnet
pressure values and couldn’t outperform ATTNFNET.

doesn’t produce blurry results but overestimates

Notably, all models consistently overestimated pressure values
compared to the actual distribution in the facial and pelvic regions.

4.4 Weight estimation

By using the predicted pressure distributions and the

known area of each sensor, the normal force on the

TABLE 2 Overall MSE comparison of U-Net, ATTNFNET, and ViT-mlp model
predictions on test subjects, with results compared against BPWnet and
BPBnet models proposed by Clever et al. (10). Models were trained on
three different cases: 1. raw depth input with raw pressure ground
truth, 2. OFDI input with raw pressure ground truth, and 3. combined
OFDI input with PPress ground truth. MSE values are derived from
rescaled pressure distributions in kPa.

| Model _____OFDI___ PPress __MSE | (kPad)

Notably, ATTNENET achieved better results in this scenario. U-Net 2.7871
2.5694
x 0.7950
. . . ATTNFNET 2.5354
4.3 Qualitative analysis
23333
x 0.6884
Figure 3 shows the average deviations for three different ViT-mlp 2.6614
postures—supine, lateral left-side, and lateral right-side -, x 2.5023
comparing the U-Net, ATTNFNET, and ViT-mlp models. Absolute X X 0.8091
deviations were calculated by taking the absolute pressure | BPBnet (10) % % 0.772
difference between the actual and predicted pressure distribution BPWnet (10) X X 115>
and averaging it over the test dataset. Bold values denote the best score for each metric.
4 le—3 le-1 1.0 lel
8 - ' o
6 - o
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FIGURE 2

Box plot representation of FID, MSE, PPA, and SSIM metric scores obtained from test predictions.
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mattress was calculated (see Supplementary Material,
Section 1). This force provided an approximate estimate of
the test subjects’ weights. Figure 5 shows scatter plots
comparing the estimated weights of each participant based
on actual and predicted pressure distributions from the
proposed models.

that the use of OFDIs
improves the performance of ATTNFNET and ViT-mlp, leading to
and better

estimations, as evidenced by the fitted line of ATTNFNET’s

Figure 5  shows

more accurate pressure distributions weight
estimated weights.
Table 3 shows ATTNFNET performs best in Posture MIOU

while BPWnet gives better weight estimation among all models.

5 Discussion

The proposed ATTNFNET model effectively infers body
depth The
ATINENET architecture leverages self-attention mechanisms to

pressure distribution from a single image.
generate more refined features during image encoding in
latent space, offering improved performance over U-Net. The
results demonstrate that the proposed method outperforms

state-of-the-art methods.

5.1 Effectiveness of SSIML2 loss function

The use of the combined Structural Similarity Index
Measure and L2 norm loss (SSIML2 loss) provided stable
training and better performance. When the model was trained
using only the L2 norm loss with adversarial loss, it exhibited
signs of mode collapse, and the validation MSE loss started
increasing after 40 epochs when the MSE could not be
reduced further (see Supplementary Material, Section 2).
Training with the L2 norm loss resulted in a 130% increase in
MSE and a 31.17% reduction in SSIM compared to the model
trained with SSIML2 loss.

Frontiers in Medical Technology

5.2 Robustness to noisy data

As shown in Table 2, the proposed model successfully
generated pressure distributions even from noisy raw data, with
significantly reduced error when using OFDI and PPress. The
ability to handle raw depth images and generation of pressure
distribution without introducing blurring demonstrates the
robustness of the proposed method (more in Supplementary
Material, Section 2). This suggests that while the model is
capable of learning from noisy input, preprocessing steps can
enhance its predictive accuracy.

5.3 Plausibility of pressure distributions

The results from Table 3 and Figures 3-5, show that
ATTNFNET’s attention over features helps the model produce
more plausible feature distributions compared to other models.
In Figure 4, ATTNFNET outperforms other methods in terms of
posture representation and visual accuracy of the pressure
distributions. Specifically, in Figure 3 it is evident that near the
hip and head areas—where all methods tend to overestimate
pressure values—ATTNFNET tends to reduce overestimation.

Moreover, while Table 3 and Figure 5 show that weight
from U-Net
significantly with preprocessed inputs, ATTNFNET’s performance

estimation predictions does not improve
increases notably. This indicates that ATTNENET learns the
depth

distribution more effectively through its attention mechanism.

relationship  between representation and pressure
However, calculated weights from all methods exhibit some
scatter and do not outperform the BPWnet from Clever et al.
(10). This disparity is because Clever et al. (10) utilized a
separate pre-trained network “Betanet,” to estimate the mass
and height of the subject and incorporate this information into
the loss function to improve results. In contrast, our method
does not use any Supplementary Material during training and
from Occlusion Free Depth

relies solely on features

Images (OFDI).
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Depth Input Unet AttnFnet ViT-mip BPBnet BPWnet Ref. Pimg Depth Input Unet AttnFnet ViT-mlp BPBnet BPWnet Ref. PiImg

“
1

FIGURE 4
Visual representation of the predicted pressure distributions using five different models and their comparison to the reference pressure image (Ref
PImg). Occlusion Free Depth Images (OFDI)s were used as input to the models. Each row represents a different depth input to the models. In the
pressure distribution images, blue indicates low-pressure regions, and red indicates high-pressure regions. In the depth images, red indicates higher
depth and blue indicates lower depth values.

Table 3 also shows the mean posture Intersection over Union  that appears wider than the reference image. This is evident in
(IOU), with the ViT-mlp method having the lowest score. The  Figures 3, 4.
ViT-mlp variant tends to generate higher pressure values at the As shown in Figure 4, BPBnet exhibits blurred predictions due to
edges of the human posture, resulting in a visual representation its training strategy based on pixel reduction losses (L1 and L2 losses).
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FIGURE 5

Scatter plots representing the errors in estimated weights (kg) of test subjects. Comparison between calculated weights (kg) from predicted pressure
distributions, calculated weights from actual pressure distributions (kg) (Black points), and actual measured weights (kg) (red dashed line). (a)
Estimated weights using raw depth images as input. (b) Estimated weights using cleaned depth images (OFDI) as input to the proposed models.
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TABLE 3 Mean absolute weight difference between the calculated weight
from the predicted pressure profile and the actual measured weight.
Weight is computed using both raw and OFDI inputs with the U-Net,
ATTNFNET, and ViT-mlp models. The last column shows the Posture Mean
Intersection Over Union (MIOU) from predictions using each method.

Method Mean absolute weight Posture MIOU
difference (kg)
Raw input | OFDI input
U-Net 12.65 12.30 0.7346
ATTNFNET 16.50 6.71 0.7515
ViT-mlp 21.63 12.19 0.4910
BPBnet (10) - - 0.7329
BPWnet (10) - 5.64 0.6566

Bold values denote the best score for each metric.

This approach tends to average pixel values, which can result in
improved MSE performance but fails to yield better results across
other evaluation metrics. In contrast, BPWnet does not exhibit
blurring; however, it tends to overestimate pressure values compared
to the actual distributions and fails to generate postures superior to
those of the AttnFnet model, as evident in Figure 4.

5.4 Model performance and capabilities

The proposed model achieved better performance across
several evaluation metrics, including MFID, MSSIM, MSE,
and MPSNR, compared to previous methods. Among the
variants of ATTNFNET, the ViT-mlp version showed the best
MFID score. This improvement is partly due to how the FID
score is calculated, which heavily depends on the specific
of the and the
Inception-V3 model employed for feature extraction. FID

version ImageNet dataset pre-trained
measures how closely the generated images resemble real ones
by comparing high-level features, focusing on the mean and
covariance of these features in both real and generated
images. However, a lower FID score does not necessarily

indicate identical pressure distributions; it also accounts for
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the diversity of generated data (35). Therefore, it is most
reliable when evaluating realistic RGB images.

The self-attention mechanism in the ATTNFNET model captures
meaningful relationships between feature embeddings, producing
features that encompass both local and global information. Skip
connections in the architecture help the model retain high-
resolution features and improve performance by facilitating
gradient flow and feature reuse (see Supplementary Material,
Section 2). The proposed method initializes attention weights
from Segment Anything Model (SAM) (3), which aids better
weight initialization even though Segment Anything Model
(SAM) was trained on a different objective. While we did not
perform a comparative analysis of the model’s performance
without transfer learning, prior work by Raghu et al. (23)
supports the argument by comparing ViTs to ResNet models
with and without pretrained weights.

Despite the slower learning rate, ATTNFNET achieved a lower
validation loss faster than U-Net (see Supplementary Material,
Section 2). This suggests that the transformer/based architecture
of ATTNFNET is more efficient in capturing the complex
relationships in the data, even with a reduced learning rate.

Overall, the experimental results validate that the ATTNFNET
model better
distributions from depth images. The incorporation of the

gives performance in inferring pressure
SSIML2 loss function, robustness to noisy data, and effective use
of self-attention mechanisms contribute to the model’s improved
accuracy and reliability. Additional performance measures can

be found in the Supplementary Material.

6 Future work and limitations

Although the proposed method outperforms other models still
lacks clinical validation and can generate certain data dependency.
To generalize the model and reduce data dependency, future work
involves the collection of diverse datasets with patients and
healthy controls.
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Challenging errors, such as a person having a lipoma beneath
the skin tissue or a very complex human posture, may cause the
distributions. The
authors expect future work towards incorporating physical

model to predict inaccurate pressure
plausibility constraints and informed learning approaches
during training to reduce errors and ensure physically plausible
pressure distributions.

The proposed model can be adapted for generalized image
translation tasks. The authors expect future work toward the
evaluation of the proposed method compared to state-of-the-art
image translation methods.

Model employs cGAN to improve pressure prediction;
however, GANs are sensitive towards hyperparameters and
difficult to train. The authors will guide future work towards,
conditional diffusion process to improve prediction even further.

7 Conclusion

In conclusion, we have proposed a self-attention-based deep
neural network, ATTNFNET, to translate depth images into
pressure images. We evaluated two variations of the proposed
architecture—ViT-mlp and AtrINFNET—against state-of-the-art
methods. The proposed method outperforms the existing
methods, achieving 91% reduction in MSE and 30% increment
in MSSIM score compared to the state-of-the-art BPWnet. It
also outperforms existing methods in qualitative analysis of the
uncovered systematic lying postures of the real test subjects,
demonstrating its potential for accurate pressure distribution
prediction from depth images.

These findings can help detect and prevent early pressure
ulcers by identifying risk areas of a patient lying on a bed.
The current publicly available dataset is limited to supine
and lateral postures; so future works involve extending it
towards prone and sitting postures to cover diverse risk-
affected areas.
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