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Introduction: Early and accurate detection of diabetes-related foot ulcers 

(DFU) that may become chronic is essential to prevent long-term disability, 

amputation, and mortality. Various non-invasive imaging techniques have 

been developed to detect and monitor DFU progression, but none have yet 

been widely adopted in clinical practice. This review summarizes current 

advancements in non-invasive image techniques for DFU wound healing 

prediction and identifies research directions to support clinical translation.

Methods: A systematic, multi-disciplinary review was conducted focusing on 

three imaging methods: photographic, hyperspectral, and thermal imaging. 

Articles published between July 2014 and July 2024 were searched across 

five databases: PubMed, Scopus, CINAHL, Embase, and Web of Science. The 

search was limited to English-language, peer-reviewed journal articles. The 

review followed PRISMA guidelines and applied the CASP quality appraisal tool.

Results: The initial search identified 2,937 articles, of which 22 studies met the 

inclusion criteria, including 17 original studies (9 medical and 8 engineering) on 

DFU healing prediction using imaging techniques and 5 relevant review articles.

Discussion: Each imaging method offers specific benefits and faces unique 

limitations: photographic imaging is user-friendly but lighting-sensitive; 

thermal imaging reflects inflammation but requires multimodal integration; 

hyperspectral imaging provides biochemical insight but is costly and less 

portable. Visual and thermal imaging, in particular, demonstrate strong 

potential for early and real-time prediction when combined with machine 

learning/deep learning. These methods offer portability, ease of use, and 

potential for automated analysis on a single device, making them suitable for 

clinical and community settings. However, challenges such as standardization 

and integration complexity remain. Continued research with larger datasets 

and improved validation is needed to enhance clinical readiness.
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1 Introduction

Diabetes mellitus is a chronic metabolic disorder characterized 

by elevated blood glucose levels, which can lead to several 

complications if not optimally managed. Among these, diabetes- 

related neuropathic foot ulcers pose a substantial public health 

concern (1–3). Recent reports show that the lifetime risk of 

developing a diabetes-related foot ulcer (DFU) among 

individuals with diabetes ranges from 19% to 34% (4). This 

number highlights the importance of preventive care and regular 

monitoring of DFUs as an integrative treatment in diabetes care. 

DFUs are a leading cause of non-traumatic lower limb 

amputation and significantly increase the risk of infection, 

reduce quality of life, and impose a substantial economic burden 

on both healthcare systems and people living with diabetes (5, 6).

The most common cause of foot ulcers in people living with 

diabetes is trauma in an insensate foot due to peripheral 

neuropathy (7). Currently, an estimated 20% of DFUs do not 

heal in the expected trajectory, increasing the risk of 

complications such as limb amputations (4). The current best 

clinical practice to identify whether a wound will become 

chronic, i.e., a wound that will not heal within 12 weeks, is 

based on the area of the wound being reduced by half in the 

first four weeks. However, there are several issues with this 

method. It requires waiting 4 weeks to ascertain wound healing 

ability, thereby delaying intervention and increasing the risk of 

complications developing. Further, wound area measurement is 

generally undertaken by tracing the wound using acetate, 

necessitating physical contact with the wound and increasing the 

risk of infection. In addition, a recent review of the literature 

has suggested that this approach has little evidence to support 

it (8).

Conventional imaging methods like Magnetic Resonance 

Imaging (MRI), Computed Tomography (CT), and Positron 

Emission Tomography (PET) are still used to check for 

infection or bone damage in DFU, but they are impractical for 

routine outpatient use or for predicting DFU healing trajectories 

(9). The limitations of these images include radiation exposure 

(in CT and PET), long scan times, and limited availability 

(10–13). Recent advancements in non-invasive imaging 

technologies have increased options to predict wound healing, 

with researchers reporting on various imaging techniques for 

assessing and monitoring DFUs. These include visual [Red 

Green Blue (RGB)] imaging, thermal imaging, and hyperspectral 

imaging modalities. While the focus of these technologies may 

vary, the main aim is to enable clinicians to accurately assess 

DFUs, including predicting the ability to heal in the normal 

trajectory. The results reported show that these imaging 

techniques, when used with analysis algorithms and software, 

were more accurate when compared to traditional paper-based 

documentation of wound assessment methods, which are based 

on measuring change in the area of the wound, and thus have 

the potential to enhance clinical care (14). While the research 

outcomes are very positive, none have yet been integrated into 

standard clinical practice. It is also not evident which of the 

imaging modalities are most suitable to be used in clinical, 

community, and home care services, and what the limitations 

are reported in the literature.

In clinical studies, advancements in nanoparticles and drug 

delivery systems (15–17) have been developed in chronic wound 

care. Raghunanth et al. (18), demonstrated a promising oral 

delivery system for insulin using chitosan-coated solid lipid 

nanoparticles (Ch-Ln-SLNs) with piperine, which significantly 

improved glycemic control and could potentially inBuence DFU 

healing. Sarma et al. (19) reviewed the use of electrospun 

nanofibers for wound dressing that supports controlled drug 

release and tissue regeneration for chronic wound therapy. 

Ahikiriza et al. (20) highlighted the therapeutic potential of 

Ugandan natural products for managing diabetes. Additionally, 

imaging techniques, such as thermal and hyperspectral imaging 

can non-invasively monitor the local wound response to such 

therapies by detecting changes in perfusion, oxygenation, and 

inBammation. The integration of advanced nanoparticles and 

imaging technologies like thermal and hyperspectral imaging 

could enhance diagnostic accuracy and therapeutic monitoring 

in chronic wounds, including diabetic foot ulcers.

Existing studies primarily focus on broad imaging techniques 

but lack a targeted exploration of the potential to predict DFU 

wound healing outcomes in those technologies where this could 

be an effective application. A systematic review and meta- 

analysis of tools for predicting wound healing in DFUs by 

Wang et al. (21) reported that most studies up to October 2011 

relied on transcutaneous oxygen measurement (TcPO2) and 

ankle-brachial index (ABI) as prognostic tools from 

hyperspectral imaging analysis. In 2015, Paul et al. (22) reviewed 

optical imaging technologies for wound assessment and 

highlighted the potential areas for future exploration. More 

recently, Chan et al. (14) brieBy reviewed progress in wound 

assessment, imaging, and monitoring systems but did not 

specifically address DFU healing prediction. Another recent 

review by Saiko et al. (23) investigated 32 years of research on 

the use of Hyperspectral Imaging (HSI) in wound care, 

including DFU applications, but did not compare different 

imaging modalities for predictive effectiveness. Similarly, a 

recent narrative review by Godavarty et al. (9) provided an 

extensive overview of conventional and optical imaging 

techniques for DFU, including a novel spatiotemporal near- 

infrared (NIR) based approach. However, the review was not 

systematic and did not identify the most suitable imaging 

modality for DFU wound healing prediction. Overall, none of 

these reviews offer a comparative framework to identify a 

suitable path that will result in the adoption of imaging 

technologies to predict wound healing of DFU. Table 1 presents 

a comparative summary of our systematic review against 

previous literature.

This systematic, multi-disciplinary review aims to identify 

what is the most feasible imaging technique that can be used for 

predicting the healing status of DFU in clinical, community, and 

home care settings with a focus on three primary imaging 

methods: visual imaging (RGB), hyperspectral imaging, and 

thermal imaging. The review will address the following research 

questions: 
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• What are the strengths and weaknesses of the imaging 

techniques for predicting the healing status of diabetes- 

related foot ulcers?

• How do different wound characteristics captured by non- 

invasive imaging compare for developing healing prediction 

models?

• Is research in this field mature for the into clinical practice?

2 Methodology

The process for evaluating DFU wound healing prediction 

using non-invasive image techniques followed a structured 

approach, divided into four main stages: searching strategy, 

determining literature, data derivation, and summarizing results, 

as can be seen in Figure 1. A list of acronyms used in this paper 

is given in Table 2.

2.1 Searching strategy

In this stage, the primary objective was to identify relevant 

studies on DFU wound healing prediction using imaging 

techniques. PRISMA guidelines were used to identify journal 

articles published in the last decade, (July 2014 to July 2024) 

that reported wound healing prediction algorithms utilizing 

imaging techniques. Publications were obtained from five online 

databases that included engineering and clinical journals (Web 

of Science, Scopus, CINAHL, Embase, and PubMed) using an 

advanced search process. The following search terms, developed 

in consultation with the university librarian, were used; 

(“diabetic foot” OR “diabetic foot ulcers” OR “diabetic-related 

foot ulcers” OR “neuropathic diabetic foot ulcer”) AND 

(“imaging technique” OR “imaging system” OR “hyperspectral 

imaging” OR “thermal imaging” OR “photographic imaging”) 

AND (“prediction” OR “predicting” OR “predict”) AND 

(“healing status” OR “healing time” OR “healing”). Only 

English-language journal articles were included; non-English 

studies were excluded due to resource limitations for accurate 

translation. Preprints and unpublished data were not considered, 

as filters were applied during the initial database search to 

include only peer-reviewed, published journal articles. This 

approach ensured that all included studies went through formal 

scientific review, reduced the risk of bias associated with 

unverified or incomplete findings.

2.2 Determining literature

After collecting the studies, the next stage involved screening 

the articles. A PRISMA Bowchart is shown in Figure 2, which 

was used to identify the articles. EndNote (Clarivate, UK) was 

used to identify and remove duplicates. After the removal of 104 

duplicates, the searching process identified 2,833 publications to 

be considered for the screening step.

The screening process was conducted in two steps. In the first 

step, the title and abstract of each study were reviewed by two 

TABLE 1 Comparison of this review with previous reviews.

Reference Year Focus Area Healing 
progression/ 

prediction 
Analysis 

Techniques

Non-invasive 
imaging modalities

Features Machine 
Learning/ 

Deep 
Learning

Limitation Future 
Direction

Paul et al. (22) 2015 Optical imaging 

for wound 

assessment

☑ Laser doppler imaging, 

thermal imaging, near- 

infrared spectroscopy, spectral 

imaging, ultrasonography

☑ � ≈ ≈

Wang et al. 

(21)

2016 Screening test to 

predict wound 

healing

☑ Hyperspectral imaging ☑ � ☑ ≈

Chan et al. 

(23)

2020 Imaging technique 

wound assessment

☑ Hyperspectral imaging, 

spectroscopy imaging, 

Buorescence imaging

☑ ≈ ☑ ☑

Saiko et al. 

(14)

2020 Hyperspectral 

imaging in wound 

care

☑ Hyperspectral imaging ☑ � ☑ ☑

Godavarty (9) 2023 Future directions 

of DFU imaging

☑ Hyperspectral imaging (HIS), 

Multispectral imaging (MSI), 

Near-infrared spectroscopy 

(NIRS), Diffuse reBectance 

spectroscopy (DRS), Laser 

Doppler Bowmetry/imaging 

(LDF/LDI)

☑ � ☑ ☑

This paper 2025 Non-invasive 

Image Techniques 

Wound Healing 

Prediction

☑ Photograph imaging, 

Thermal imaging, 

Hyperspectral imaging

☑ ☑ ☑ ☑

☑, discussed; ≈, partially discussed; �, not discussed.

Sari et al.                                                                                                                                                               10.3389/fmedt.2025.1648973 

Frontiers in Medical Technology 03 frontiersin.org



reviewers (NNS, NDP) to generate a list of relevant studies based 

on the inclusion and exclusion criteria. Grey literature, including 

posters, clinical notes, meeting reports, case reports, and news 

articles (n = 457), was excluded to maintain consistency in 

quality assessment and ensure inclusion of studies that went 

through the peer review process. The exclusion criteria included; 

studies that did not involve human subjects (n = 213); studies 

that not related to DFU healing prediction review articles 

(n = 76); studies not relevant to DFU (n = 1,309); those focused 

on diabetic foot infections or osteomyelitis (n = 66); studies that 

did not utilize imaging techniques (n = 626); those unrelated to 

DFU wound healing or healing prediction (n = 40); that focused 

on wound area segmentation or localization only (n = 11).

If the information from the title and abstract is insufficient to 

decide on the inclusion or exclusion of a study, the full text was 

reviewed. The second step involved a full-text review by the two 

reviewers (NNS, NDP) to obtain the final list of studies for data 

extraction. The inclusion criteria were: (1) original articles 

focused on predicting the healing status of diabetic foot ulcers 

(DFU) using imaging techniques (n = 17) and (2) review articles 

discussing imaging methods relevant to DFU wound healing 

(n = 5). Studies with insufficient information on outcomes or 

FIGURE 1 

Flow chart of systematic review.
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imaging methodology were excluded (n = 13). Any conBicts 

between the two reviewers were resolved by input from a third 

reviewer (QN).

After the two-stage screening process, as shown in Figure 2, 22 

publications (17 journal articles and 5 systematic reviews) were 

identified. Nine articles were from clinical journals, eight were 

from engineering journals, and five were review articles, all of 

which were from the clinical domain. The CASP (Critical 

Appraisal Skills Programme) checklist for appraising quantitative 

studies was used for a quality checklist of included articles as 

shown in Table 3. Fifteen articles met the criteria for high- 

quality studies, while two met fewer criteria. No studies were 

removed based on quality because all were regarded as giving 

valuable insight.

While only 17 studies were included out of 2,937 screened, this 

targeted selection allowed for a more in-depth evaluation of 

advanced image modalities. This focused inclusion ensured that 

each selected study contributed valuable insights into the 

prediction of DFU wound healing using non-invasive imaging 

techniques. This approach aligns with the PRISMA guidelines, 

which emphasize the importance of methodological rigor in 

systematic reviews, thus enhancing the reliability and depth of 

our findings.

From the review, we identified four main categories of wound 

healing prediction using non-invasive imaging techniques: (a) 3D 

imaging (25, 26), (b) visual (RGB) imaging (27–32), (c) 

hyperspectral imaging (33–38), and (d) thermal imaging 

(39–41). While 3D imaging was not included in the search 

keywords, it appeared in the results and hence has been 

included in this study due to the visibility of this device for use 

in clinical, community, and home care services.

2.3 Data Derivation

In this stage, valuable data were extracted from the selected 

articles. The prediction algorithms used in each non-invasive 

imaging technique were identified in Section 3, the 

characteristics for wound healing were assessed in Section 4, and 

the prediction models were described in Section 5. Additionally, 

the strengths, weaknesses, and technological readiness levels of 

each imaging technique were evaluated in Section 6.

2.4 Summarizing Results

The final stage involved summarizing the findings from the 

data derivation process. Key insights were drawn, including 

future directions for research, open research issues, and the 

barriers that were faced in clinical practice (Sections 7 and 8). 

This stage provided a comprehensive summary of findings and 

future investigations of DFU wound healing management, 

especially for wound healing prediction using non-invasive 

imaging techniques.

3 Prediction algorithms

Wound healing prediction algorithm based on image 

technique can be considered according to each different 

image modality.

3.1 Healing prediction using 3D imaging

Measuring the volume of the wound, which includes the depth 

of the wound has been proposed for better evaluation of the 

wounds. Two studies reported the use of 3D imaging techniques 

in DFUs (25, 26). This prediction technique typically follows a 

series of steps to evaluate wound healing, beginning with 

capturing the wound image using a specialized 3D camera 

system. One study involved an adhesive optical target for 

calibration (26).

Multiple images were captured from multiple angles after 

wound debridement, and these images were then combined into 

TABLE 2 List of acronyms.

Acronyms Definition

ABI ankle-brachial index

ANN Artificial Neural Network

ANOVA Analysis of Variance

AUROC Area Under the Receiver Operating Characteristic

CT Computer Tomography

DeoxyHb Deoxyhemoglobin

DFU Diabetes Related Foot Ulcers

GA Granulation area

GI Granulation Index

HBOT Hyperbaric Oxygen Therapy

HIS Hyperspectral Imaging

HUI Healing Ulcer Index

MRI Magnetic Resonance Imaging

NIR Near-Infrared Perfusion

O2Sat Oxygen Saturation

OxyHb Oxyhemoglobin

PCA Principle component analysis

PET Positron Emission Tomography

RF Random Forest

RGB Red, Green, Blue

R-CNN Region-Based Convolutional Neural Network

ROC Receiver Operating Characteristic

ROI Region of Interest

RPN Region Proposal Network

RYB Red Yellow Blue

SNN Siamese Neural Network

SpO2 Oxygen saturation

SPSS Statistical Package for the Social Sciences

StO2 Tissue oxygen saturation

SVM Super Vactor Machine

TBI Toe-brachial index

TcPo2 Transcutaneous Oxygen Measurement

THI Tissue Hemoglobin Index

TWI Tissue Water Index

WA Wound Area

WMA Wound Margin Advance
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a single 3D model by the software. The clinicians then manually 

traced the wound area on the monitor for precise measurements 

to calculate various parameters such as wound area, volume, 

and depth. The wound measurements were compared from 

baseline to predict wound healing progression.

These measurements were analyzed using statistical models 

such as linear regression, which correlates the changes in wound 

dimensions with time to healing. Prognostic indicators, such as 

the healing slope and regression analysis, determined whether 

the wound was healing as expected or stagnating. One study 

(25) used measurement from 2D imaging as a comparison, 

while another (26) used the complete closure of the wound 

(100% skin regrowth) as a reference.

3.2 Healing prediction using visible light 
imaging

Visible light photographic imaging, generally performed using 

RGB (Red, Green, Blue) imaging, is one of the imaging techniques 

that closely resembles traditional assessment in clinical practice 

due to its focus on measuring physical appearance such as 

length, width, depth, edge, and peri-wound skin to monitor the 

wound healing progression (42, 43).

In the list of included articles, six studies focused on using 

photographic imaging techniques to predict wound healing 

progression in DFU patients (27–32). The algorithms for 

predicting healing in DFUs mostly involve four main processes: 

image acquisition, preprocessing, segmentation, and 

classification. The algorithm steps used for predicting the 

healing progression are described below.

3.2.1 Image acquisition

The first step requires capturing the visual light images of the 

DFU with a controlled image acquisition protocol (31); for 

example, the wounds were taken at baseline and on days 3, 7, 

and 14 (29), with the distance between the camera and the 

wound, camera properties, and the ambient light conditions well 

described. While the use of smartphone cameras (27, 28) 

provides ease of data capture, one study proposed a specialized 

image capture box designed to ensure the consistency of lighting 

and angles in pictures captured at different time (27).

FIGURE 2 

List of inclusion and exclusion criteria using PRISMA guideline.
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3.2.2 Pre-processing

After capturing the image, it is necessary to pre-process the 

images to improve the quality, handle missing pixels or reduce 

the size, as required for the application. In the reviewed papers, 

images were pre-processed by decompressing into 24-bit bitmap 

files, down-sampled to reduce resolution and processing time, 

and then applied Gaussian smoothing to remove noise (27, 31). 

In a multi-step approach study (30) that combined clinical data 

with image processing techniques, the k-nearest neighbor 

algorithm was used to handle missing data collection, while 

non-numeric features were discretized using methods such as 

one-hot encoding (30).

3.2.3 Segmentation
Image segmentation is the process of separating the image into 

separate segments, often to identify objects or regions of interest. 

In the segmentation process reported by Wang et al. (27), a mean- 

shift segmentation algorithm was used to divide the image into 

homogeneous regions, followed by region fusion to address 

over-segmentation. The foot outline was detected using skin 

color thresholds in the CIELAB color space, the guidelines for 

color representation based on human perception. The wound 

boundary was identified through connected component analysis 

(27). In another study, the wound area (WA), granulation area 

(GA) based color, and the calculation of the granulation index 

(GI) as the percentage of GA relative to the total wound area 

were traced and measured using ImageJ software (29). Clinicians 

also conducted manual segmentation to collect features using 

image editing software (30). For skin segmentation using the 

YCbCr color space, morphological operators were applied to 

refine the image, and a 25 cm2 reference square was used for 

pixel-to-real-area calibration (31).

3.2.4 Classification of wound

The classification of wound area has been used to differentiate 

between color, size, and tissue type. Five approaches were reported 

for the process. K-means clustering algorithms were used to divide 

the segmented wound area into red, yellow, and black tissue, 

representing healthy, slough/infected, and necrotic tissues, 

respectively (27). Statistical analysis with SPSS was used to 

assess the significance of wound size changes and compare the 

efficacy of different treatments (29). Third, a Random Forest 

and Support Vector Machine was trained for predictive analytics 

(30). Fourth, using RGB pixel values and a feedforward 

multilayer perceptron (or artificial neural network), the ulcer 

tissues were classified as granulated, dilacerated/fibrin, or 

necrotic (31). Fifth, a Siamese Neural Network (SNN) was used 

to assess DFU progression over time by computing distances 

from each class anchor point (none, infection, ischemia, both, 

and healthy) and generated a table with figures and a radar 

chart (32).T
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3.3 Healing prediction using hyperspectral 
imaging

Hyperspectral imaging (HSI) is a technique that determines 

the high-resolution spectrum of each pixel across the 

electromagnetic spectrum of interest. Six studies used HSI to 

predict the progression of DFU healing (33–38). As the first 

step, the eligible patients were properly screened based on 

inclusion criteria (35, 37, 38), for example, by abstaining from 

smoking or caffeine (33). To reduce noise and normalize 

attenuation values, the calibration of a push-broom camera 

across a wavelength range of 430–750 nm was applied in the 

study conducted by Yang et al. (34). Hyperspectral imaging 

data, corrected for light scattering (33), was processed to 

calculate tissue oxygenation levels (33), with skin temperature 

and the ankle-brachial pressure index (ABPI) recorded as 

baseline measurements (33). In another study, baseline 

assessments included transcutaneous oxygen pressure (TcpO2), 

ankle-brachial and toe-brachial indexes, and HSI, which 

evaluated tissue parameters such as oxygen saturation, 

hemoglobin index, near-infrared perfusion, and water content 

(37). The HSI was also used to quantify peri-wound 

oxyhemoglobin (OxyHb), deoxyhemoglobin (DeoxyHb), and 

oxygen saturation (O2Sat) in two studies (36, 38). Photonics- 

based algorithms were used in one study (36) and included the 

combination of HSI and thermal imaging applied to capture 

data on biomarkers including OxyHb, DeoxyHb as well as foot 

temperature patterns to compute the oxygenation metrics 

Oxygen saturation (SpO2) and Tissue oxygen saturation (StO2).

Monitoring of wound healing progression was carried out at 

12 weeks (33, 38) and 24 weeks (33, 37), while other studies 

conducted monitoring over a 3-week period to assess changes in 

wound size, perfusion [e.g., transcutaneous oxygen levels (36), 

hyperspectral imaging], and cytokine levels (35). Using these 

features, wounds were classified as “healers” or “non-healers,” 

and a predictive model was created to estimate the likelihood of 

wound healing. In another study (37) healing was defined as 

complete epithelization without drainage sustained for at least 

10 days within 24 weeks.

3.4 Healing prediction using thermal 
imaging

Thermal imaging records the infrared or near-infrared 

radiation of the object to assess its thermal condition. It is a 

non-invasive technique that detects temperature variations on 

the surface of an object. In the prediction of wound healing of 

DFU, in the study by (28) thermal images were segmented into 

isothermal patches to analyze the wound boundaries and the 

areas according to the temperature distribution (39). The 

assessment parameters include the temperature of the wound 

bed, the area of the isothermal patch on the wound bed, the 

area of the isothermal patch surrounding the wound and the 

number of isolated isothermal patches within the wound region. 

The physical area of the wound bed was determined from color 

images (39).

In another study (40), the combination of thermal imaging 

and computerized planimetry was used to first monitor the 

temperature change indicative of metabolic activity and 

inBammation, and second to measure wound surface area and 

wound perimeter. This study integrated these measurements to 

evaluate the effect of Hyperbaric Oxygen Therapy (HBOT) (40).

Deep learning-based methodology was used in the 

combination of thermal and visible imaging (41). Experts 

annotated the fused image as an input to the Mask R-CNN 

model for precise wound segmentation. Weekly images were 

analyzed to calculate metrics (39–41) including ulcer-to-foot 

area ratio and mean temperature distribution. These metrics 

were correlated with clinician-provided ground truth data to 

track the healing progression.

4 Wound characteristics assessed by 
non-invasive imaging

The literature describes three methods for assessing the 

healing condition of wounds: physiological, geometric, and 

surface assessment.

4.1 Physiological assessment

Evaluating the physiological aspects of wounds by 

hyperspectral imaging is essential for forecasting healing 

trajectory. This assessment concentrates on internal tissue 

properties and physiological states. Wound healing is a complex 

and dynamic process that involves four connected stages: blood 

clotting (hemostasis), inBammatory response, tissue growth 

(proliferation), and tissue repair (44–46). A proper 

understanding of the four stages of wound healing is essential 

for the physiological assessment of wounds (47, 48).

4.1.1 Tissue oxygenation
This parameter is one of the critical predictors of healing 

status for DFUs in HSI due to its fundamental role in wound 

repair processes (33–38). Adequate oxygen, a key component for 

cellular respiration, is important for various stages of wound 

healing (49, 50). Higher tissue oxygenation levels correlate with 

better wound healing outcomes in diabetic patients, whereas 

hypoxia impairs healing (49). Measurements of wound 

oxygenation, such as transcutaneous oxygen measurements 

(TcpO2), can guide treatment planning and predict healing 

potential (50).

4.1.2 Tissue hemoglobin

The tissue hemoglobin index serves as a predictor of healing 

status in DFUs in HSI due to its ability to assess microvascular 

oxygenation and perfusion, which are crucial factors in wound 

healing (37). The cutaneous tissue hemoglobin oxygenation can 

be quantified from hyperspectral imaging technology. The 
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technology generates anatomically relevant tissue oxygenation 

maps that correlate with wound healing potential (49). Studies 

have shown that higher oxyhemoglobin levels and oxygen 

saturation in the peri-wound area are associated with better 

healing outcomes (49, 51).

4.1.3 Temperature
Temperature monitoring of DFUs is a predictor of healing 

status due to its ability to reBect local blood supply, tissue 

damage, and inBammatory processes (39). Higher wound 

temperatures typically indicate infection or inBammation, while 

decreased temperatures suggest impaired healing (52, 53).

4.2 Geometrical assessment

Geometric wound assessment is an important predictor of 

healing status for DFUs, including the shape, wound size, 

perimeter, surface area, and volume measurements (25, 26, 43, 

54, 55). These quantitative metrics provide objective and 

reproducible data that can help clinicians monitor wound 

progression over time, evaluate treatment efficacy, and predict 

healing outcomes (56, 57). The linear nature of wound margin 

advance (WMA) over time, calculated as the change in wound 

area divided by wound perimeter, has been shown to be an 

effective predictor of healing in DFUs (56). Medical 

professionals can use this linear pattern to estimate the total 

healing time based on assessments undertaken at 4–5 weekly 

intervals. This capability makes it a valuable asset for timely 

intervention and fine-tuning treatment approaches (56). Studies 

have shown that a 40% reduction in wound surface area within 

the first two to three weeks of treatment predicts healing within 

12–24 weeks (57), though there is scant evidence to support per 

cent area reduction in isolation as a surrogate for complete DFU 

healing in routine clinical practice (8).

4.3 Surface assessment

An analysis of surface features, textures, and segmentation 

may be used for understanding wound structure and valuable 

predictor of healing status in DFUs (58). They provide objective, 

quantifiable data on wound progression, including color 

classification (27, 30, 31), granulation area (RYB distinction) 

(29), texture feature (30), siamese neural network features (32), 

Mask R-CNN for wound segmentation (41), changes in ulcer 

perimeter and surface (40) and scattering analysis for detecting 

wound bed and surrounding tissue (33).

5 Characteristic wound healing 
prediction model

Over the past ten years, various studies have utilized 

prediction models with non-invasive imaging techniques. 

According to the list of articles that met the inclusion criteria of 

the current review, nine out of seventeen papers were published 

in clinical journals, while the remaining eight appeared in 

engineering journals. According to the list of articles that met 

the inclusion criteria, the clinical journals predominantly used 

statistical approaches as the foundation for prediction tasks, 

although some studies still relied on manual analysis by 

clinicians to validate healing progression. In engineering 

journals, most studies used machine learning strategies to 

predict healing progression. Table 4 shows the characteristic 

wound healing prediction model assessed by non- 

invasive imaging.

5.1 Statistical model analysis

Statistical methods were selected based on the assumption that 

the healing of DFUs follows a linear pattern in wound area 

reduction (25) (26, 54, 59, 60). Jorgensen et al. (25) compared 

the changes in 2D and 3D area measurements using statistical 

approaches. Linear regressions were used to estimate the mean 

changes from each patient, with the negative values as healing 

(decreasing in size) and positive values as nonhealing 

(increasing in size). The paired Wilcoxon rank test was used to 

test the zero median difference of the slope between 3D and 2D 

area measurements. The Bonett-Price approach was then used to 

provide the confidence interval from that median difference and 

the Spearman correlation coefficient was used to calculate the 

correlations between changes in 2D and 3D area measurements 

(25). Data from 150 wounds revealed that while 2D and 3D area 

measurements changed in the same direction, the magnitude of 

changes in 3D measurements was consistently greater than those 

observed in 2D measurements (25).

Malone et al. (26) investigated the relationship between mean 

wound healing measurement variables obtained from five 3D 

wound measurements from 21 participants using linear 

regression and Pearson’s correlation coefficient. The 

performance analysis metrics were the linear healing slope and 

statistical significance, with a p-value of 0.0001 and an R-value 

greater than 0.70, respectively.

Kartika et al. (29) proposed an alternative statistical analysis 

approach for assessing the wound healing process in DFUs. The 

researchers quantified wound area, granulation area, granulation 

TABLE 4 Characteristics assessed by non-invasive imaging.

Non-invasive 
imaging

Characteristic assessed

3D imaging Wound size (25, 26), perimeter area (25, 26), surface 

area (25, 26), volume (25, 26)

Photographic imaging Color classification (27, 30, 31) Wound size (28, 29), 

granulation area within wound boundaries (RYB 

distinction) (29), texture feature (30), Siamese NN 

features (32)

Hyperspectral imaging Tissue oxygenation (33–38), scattering analysis (33), 

oxygen saturation (34, 37)

Thermal imaging Temperature of different wounds (36, 39), Changes in 

ulcer perimeter and surface (40, 41)
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index, and respective temporal changes using ImageJ software, a 

free web-based software that allows easy editing, display, and 

analysis of images. The statistical analysis was subsequently 

performed to evaluate the healing progression using SPSS 

version 20. There were statistically significant differences in 

granulation index on day 3, day 7, and day 14 (p < 0.05).

Yang et al. (34) used HSI to capture reBectance spectra from 

tissue and analyzed them to predict wound healing by 

examining SpO2 levels. The study compared two approaches: 

SpO2 measurement and Principal Component Analysis (PCA). 

The PCA, which reduces dimensionality by identifying principal 

components that capture relevant features of the data, 

outperformed SpO2 in predicting the healing by the 12th week. 

While both methods showed high specificity, PCA achieved 

higher sensitivity (87.5% vs. 50%) and better overall predictive 

accuracy, with a positive predictive value of 91.3%. The study 

demonstrated that PCA, using HSI data, was more effective than 

traditional SpO2 analysis in predicting the healing of DFUs.

In 2022, Lavery et al. (35) evaluated HSI from 23 wounds to 

compare continuous variables and healer vs. non-healer status 

using the paired t-test and independent t-test, respectively. 

Predictive features were derived from baseline data and weekly 

trends, focusing on achieving a ≥50% reduction in wound area 

(healer), improvements in perfusion, and significant changes in 

cytokine levels.

Kounas et al. (38) employed the two-sample t-test to 

distinguish between groups, a binary logistic regression analysis 

comparing healers and non-healers based on oxy-Hb levels. 

There was a negative correlation between oxyHb levels at Visit 1 

and the percentage of ulcer size reduction from Visit 1 to Visit 

4 (r = −0.46, p = 0.02), and between oxyHb levels at Visit 2 and 

the percentage of ulcer size reduction from Visit 2 to Visit 4 

(r = −0.65, p = 0.001).

Lopez-Moral et al. (37) applied logistic regression to predict 

DFU healing status using clinical and imaging-derived features. 

Key predictors included Transcutaneous oximetry (TcpO2), HSI 

parameters i.e., Skeletal Muscle Oxygen Saturation (StO2), 

Thermal Hyperspectral Imager (THI) parameters, Near Infrared 

Perfusion Index (NIR-PI), Tissue water index (TWI), and vascular 

indices [i.e., ankle-brachial index (ABI) and toe-brachial index 

(TBI)]. P-values below 0.05 were considered statistically significant, 

with a 95% confidence interval (CI). Model performance was 

assessed via receiver operating characteristic (ROC) curve analysis, 

identifying optimal cut-off values for each predictor to maximize 

sensitivity and specificity. TcpO2 demonstrated the highest 

diagnostic accuracy (AUC = 0.989, p-value = 0.005), followed by 

StO2 (93% sensitivity and 71% specificity), establishing it as the 

strongest independent predictor of healing.

In a thermal imaging study, Aliahmad et al. (39) employed the 

nonparametric Kruskal–Wallis test to investigate the relationship 

between the healing status of ulcers at week 4 and the ratio of 

DFU parameters measured in the first two weeks of ulceration 

(week 2 to week 1 ratio) from the isothermal areas. They 

defined a timely healing ulcer trajectory as showing more than a 

50% reduction in area by week 4, an indirect measure 

routinely used.

A study conducted by Glik et al. (40) explored the impact of 

Hyperbaric Oxygen Therapy (HBOT) on wound healing using a 

combination of planimetry and thermal imaging. Statistical 

analysis was based on the demographics, age of the treatment 

group, and the median values and ranges of the collected data. 

To evaluate relationships between variables, Spearman’s rank 

correlation coefficient was calculated. For normally distributed 

data, paired-sample t-tests were employed, while Mann–Whitney 

U or Wilcoxon tests were used for data that did not follow a 

normal distribution. Levene’s test was utilized to assess data 

normality. When comparing more than two groups, analysis of 

variance (ANOVA) was applied, with a significance threshold set 

at p < 0.05.

5.2 Machine learning/deep Learning 
analysis

Recent advancements in machine learning and deep learning 

have significantly improved DFU monitoring and healing 

prediction. Various models have been developed to automate 

ulcer assessment, optimize treatment strategies, and enhance 

clinical decision-making. These approaches incorporate 

techniques like Random Forests, Support Vector Machines, 

Artificial Neural Networks, Siamese Neural Networks, and 

Convolutional Neural Networks, each utilizing different imaging 

modalities and features to provide accurate, non-invasive 

evaluations of wound healing.

Kim et al. (30) proposed the two machine learning models to 

predict the results of wound healing: Random Forests (RF) and 

Support Vector Machines (SVM) with RBF kernel. A total of 

208 samples were used, with 25% allocated for testing and 75% 

used for 3-fold cross-validation training. A randomized grid 

search with three-fold cross-validation was used to optimize the 

models on the training set. Two thousand combinations of 

hyperparameters, such as bootstrapping, tree selection criteria, 

maximum depth, minimum samples per leaf, minimum samples 

to split a node, and number of PCA components, were tested 

for RF.

The PCA components, gamma (kernel coefficient), and C (error 

term penalty) were among the 2028 combinations tested for SVM. 

The optimal hyperparameters were chosen for each model from 

300 randomly selected combinations to increase efficiency. The 

area under the receiver operating characteristic (AUROC) curve 

was used to assess the models’ performance. To ascertain feature 

importance for prediction, a different RF model was trained on 

clinical and handcrafted image features without PCA. When 

trained with hand-crafted imaging features alone, both the RF and 

SVM models performed better than when trained with clinical or 

deep learning-based features alone (P < 0.05).

Motta et al. (31) developed an Artificial Neural Network 

(ANN) for classifying wound tissue into granulated, fibrin, and 

necrotic categories. The ulcer area was manually selected by a 

professional expert for use during training. A multilayer 

perceptron feedforward network with ten hidden neurons was 

employed. The Healing Ulcer Index (HUI), which quantified 
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treatment outcomes, was designed for long-term comparison and 

to aid in monitoring patients at treatment centers. These indexes 

were based on changes in the wound area and variations in the 

proportions of different ulcer tissues.

Toofanee et al. (32) presented a novel framework utilizing 

Siamese Neural Networks (SNN) to monitor and assess the 

progression of DFU healing. The process began with data 

acquisition and preprocessing, including resizing and 

augmentation to address class imbalances. The framework 

trained an SNN using EfficientNetV2S and Vision Image 

Transformers to extract features and implement similarity 

learning, comparing new DFU images against class anchors— 

average feature representations for “none,” “infection,” 

“ischemia,” “both,” and “healthy” categories. During the 

evaluation, baseline images were compared with subsequent 

ones, generating radar charts and similarity scores to track 

healing progress and guide clinical decision-making. The model 

achieved a Macro F1-score of 0.6455, outperforming others in 

DFU classification tasks, and was validated by the end user, 

showing its utility for tracking DFU evolution.

Doulamis et al. (36) proposed a photonics-based device for 

DFU monitoring that integrates HSI and thermal imaging. This 

study has used the deep learning framework, including 

convolutional neural networks (CNNs), to implement the 

automatic segmentation and classification of pathological 

regions. The system supports dual configurations: a low-cost in- 

home version equipped with RGB and low-cost HSI sensors for 

patient self-monitoring, and a professional edition incorporating 

high-resolution HSI, near-infrared (NIR) Buorescence, and 

thermal sensors for clinical use. Data acquisition, processing, 

and interpretation were managed through an embedded 

software platform that integrates sensor input with machine 

learning models to deliver real-time, data-driven 

diagnostic support.

Sharma et al. (41) employed a deep learning-based approach 

using Mask R-CNN to evaluate DFU healing. The methodology 

integrated thermal and visual images through an HSV-based 

image fusion technique. Mask R-CNN, an instance segmentation 

model, accurately identifies and delineates the ulcer region, 

using a Region Proposal Network (RPN) and a refined ROI- 

Align operation. The model outputs both mask and class 

predictions independently, optimizing segmentation accuracy. 

This automated system correlates closely with clinician 

measurements (92.5% agreement).

The application of machine learning/deep learning in DFU 

imaging demonstrated the variety of algorithms for specific tasks 

such as classification and segmentation. Traditional machine 

learning models like Random Forests and Support Vector 

Machines used handcrafted features and improved their 

performance by tuning settings (e.g., randomized grid search) 

and reducing feature numbers (e.g., PCA). Deep learning 

approaches, including CNN, SNN, and Mask R-CNN learned 

features automatically from data, and used techniques like data 

augmentation to handle small datasets. The performance was 

measured using AUROC and F1-score, and the results were 

compared with expert labels as ground truth.

6 Limitation of DFU wound healing 
prediction using image techniques 
methods

We have identified five key parameters to compare the 

technologies reviewed in this study and also the strengths and 

weaknesses for each non-invasive image techniques, which can 

be seen in Figure 3 and Table 5 respectively. The information is 

used as a guide to identify the strengths and limitations of each 

group of imaging techniques based on the articles included in 

this study. Based on the review, we have discovered the current 

limitations in the system reported over the past ten years. These 

limitations can be grouped into three main areas, as 

outlined below.

6.1 Limited data for model development

The lack of accessible wound images restricts the amount of 

data available for training and validating predictive models. As 

can be seen in Table 6, the sample sizes available in most of the 

included papers were relatively small, often around twenty, 

which may not be sufficient for machine learning approaches. 

Therefore, it is understandable that most of the predictions or 

measurements of healing were processed statistically. However, 

large and accessible datasets would be extremely valuable for 

FIGURE 3 

Comparative analysis of image techniques for DFU healing progression analysis across key parameters.
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improving the accuracy of predicting wound healing status in 

DFUs. Researchers may struggle to create models that generalize 

well across different populations and clinical scenarios in the 

absence of a diverse and comprehensive dataset.

6.2 Automated wound segmentation 
methods

In the clinical environment, efficient computational methods 

are needed to obtain quick and real-time results, including 

automated wound segmentation. Manual segmentation makes it 

unsuitable for the device to be used in the clinical setting, delays 

the process of analysis, and leads to data without clear 

standards, as different individuals might produce varying tracing 

results (25, 30).

6.3 Technical limitations of imaging devices

Technical limitations must be considered before the device 

can be used in a wide range of clinical settings. Some studies 

have used complicated tools for data collection that are not 

portable or feasible for routine use in primary care settings (25, 

27, 34, 41). Expensive imaging technologies such as HIS (25, 37) 

can also prevent many healthcare providers from using 

advanced tools to assess DFUs, especially since these devices are 

intended for use not only in clinical environments but also in 

home care settings.

7 Future directions and open research 
issues

The future direction of wound diagnostics should focus on 

supporting healthcare providers while leading towards enabling 

individuals with wounds to self-monitor. Achieving this would 

requires a coordinated roadmap that addresses key research gaps 

across data infrastructure, clinical validation, technology 

development, and clinical integration. With the growing 

potential of machine learning and non-invasive imaging, the 

following roadmap outlines the critical steps to advance 

predictive wound healing for DFU using non-invasive 

imaging techniques.

7.1 Build large-scale, multicenter datasets

Currently, there is a lack of large-scale datasets for DFU 

images. This represents a bottleneck in advancing predictive 

models for healing. Future efforts should focus on developing 

centralized, open-access repositories of annotated wound images 

that are collected from diverse populations and clinical settings 

(61–63). These repositories would enable researchers to train 

and test predictive models on a broader set of data, significantly 

improving the generalizability and robustness (64).

Techniques like synthetic data generation using methods such 

as generative adversarial networks (GANs), could also be explored 

to augment existing datasets and overcome data bias. Synthetic 

wound images have shown promise in enhancing dataset 

diversity, particularly in addressing class imbalances and rare 

scenarios (24, 65).

TABLE 5 The strength, weakness and technology readiness level of image technique for DFU wound healing prediction.

No Imaging 
Technique

Image 
properties

Diagnostic value Strengths Weaknesses TRL 
(Technology 

Readiness 
Level)

1 3D Imaging 3D WAM camera 

(capture 3D 

images)

Measure the wound area, 

volume, and track over time 

(weekly) to see how the wounds 

are healing.

Clearly shows the edges 

and shape of the wound.

Longitudinal measurement needed 

(≥8 weeks). Assumes linear 

healing, so it may misread changes 

if healing isn’t steady.

5–6

2 Photograph Smartphone/tablet 

camera

Measure wound area, 

granulation area, granulation 

index, and nicrotic tissue. 

Assessing healing through the 

delta change of the measurement 

parameters.

Widely available. Can 

capture wound size, 

granulation index, and 

color evolution. Accessible 

to non-expert users like 

clinicians.

RGB-based monitors the surface 

change, lack information about 

depth, or metabolic insights that 

are important for predicting 

healing. RGB is highly sensitive to 

lighting that can destroy color and 

segmentation

6–7

3 Thermal 

imaging

FLUKE-Tir1 

infrared thermos- 

imaging, FLIR 

camera

Measure the temperature of the 

wound bed and the area of the 

isothermal patch of the wound.

Can calculate the mean 

temperature of the wounds 

as an indicator of 

inBammation.

Need to combine with other image 

techniques (e.g., photograph 

imaging) in the wound 

segmentation process. Thermal 

reading can be affected by room 

temperature and recent physical 

activity

4–5

4 Hyperspectral 

imaging

HyperView 

camera.

Analysis of oxyhaemoglobin 

level.

Provide biomarker-level 

insights into tissue 

oxygenation.

Costly and less portable. Relies on 

consistent lighting and calibration 

to ensure accuracy.

7–8

TRL 1–3, basic principles observed to proof-of-concept; TRL 4, technology validated in lab; TRL-5, technology validated in controlled research environment; TRL-6, technology 

demonstrated in a relevant clinical environment; TRL-7, system prototype in operational environment; TRL-8, system complete and qualified.
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TABLE 6 Characteristic wound healing prediction model assessed by non-invasive imaging.

Year Ref Predictive 
characteristics

Model Sample 
size

Model 
performance

Period of 
assessment

Image properties

3D (photographic) imaging

2020 Jørgensen 

et al. (25)*

A negative change in the wound 

area

Linear regression 150 patients Corr = 0.94 8 weeks (weeks 2, 

4 and 8)

3D-WAM camera (captures 

3D images), iPhone 5s for 

2D images and analysed 

with ImageJ software.

2020 Malone 

et al. (26)*

Wound size reduction Linear regression 21 

participants

Healing slope = >0.7 weekly 3D wound imaging system 

with adhesive optical target 

for calibration.

Photographic imaging

2015 Wang et al. 

(27)**

Wound size reduction K-means 64 images N/M N/M Nexus 4 smartphone 

camera.

2018 Plodere 

et al. (28)*

Wound size N/M 11 

participants

N/M N/M Samsung Galaxy S4 with 

OpenCV for image analysis.

2020 Kartika 

et al. (29)*

Delta change of granulation area, 

wound area, and granulation 

index granulation tissue,

Statistical analysis 

(SPSS)

30 patients Δ granulation index on 

day-3, 7 and 14 (p < 0.05).

Baseline, days 3, 7 

and 14.

The software used for 

analysis was ImageJ, which 

analyzes wound granulation 

through color segmentation 

and edge tracing

2020 Kim et al. 

(30)**

Color and texture feature; DL 

features (ResNet50), clinical 

atribute

Random Forest 

(RF) and Super 

Vector Machine 

(SVM)

113 patients AUC = 0.760–0.794 N/M Smartphone/tablet camera,

2020 Motta et al. 

(31)**

Color of scar tissue (granulation, 

fibrin, and necrotic tissue)

Multilayer 

perceptron 

feedforward ANN 

with ten hidden 

layer neurons.

10 

participants

Avg error compared with 

ImageJ = 7.48%

2 months Sony Cybershot camera, 

16.2 megapixels. Images 

were taken under specific 

lighting conditions without 

Bash, using a reference 

square for scale.

2023 Toofanee 

et al. (32)**

Cosine similarity and euclidean 

distance

Siamese Neural 

Network (SNN)

5,734 test 

images

Macro F1-score = 0.6455 Images obtained from 

DFUC2021 challenge and 

additional healthy images 

from Kaggle.

Hyperspectral/imaging

2015 Jeffcoate 

et al. (33)*

Tissue oxygenation and 

scattering analysis

Regression 43 people The positive correlation 

between oxygenation 

assessed by HIS and time 

to healing (P = 0.03)

12 and 24 weeks A custom-built 

hyperspectral camera was 

used to measure light 

reBection and calculate 

oxygen levels in the skin.

2018 Yang et al. 

(34)**

Oxygen saturation (SpO2) levels 

in tissue and PCA scores

PCA 43 

participants

PCA: Sensitivity = 87.5%, 

Specificity = 88.2%) 

SpO2: Sensitivity = 50%, 

Specificity = 88.2%

12 weeks A Peltier-cooled charge- 

coupled device (CCD) 

Sensicam QE coupled with 

an ImSpector V10E imaging 

spectrograph.

2020 Lavery 

et al. (35)*

Impact of continuous diffusion 

of oxygen (CDO) therapy

Statistical analysis 

(paired T-tests and 

independent 

T-tests)

23 patients N/M 3 weeks Camera type: Hyperspectral 

imaging device (HyperView, 

Hypermed) and 

transcutaneous oxygen 

measurement (PeriFlux 

5000). Measurement device: 

3D wound measurement 

using inSight (eKare).

2021 Doulamis 

et al. (36)**

Tissue oxygen saturation (SpO2, 

StO2), peripheral blood Bow and 

arterial perfusion, temperature 

differences

CNN and decision 

trees

N/M N/M 19 months Hyperspectral Sensor: 

IMEC-based sensors using 

Fabry–Pérot structures for 

capturing wavelengths 

between 460 and 975 nm.

2022 López- 

Moral et al. 

(37)*

Oxygen saturation (StO2) Logistic regression 21 patients StO2: Sensitivity = 93% 

Specificity = 71% 

AUC = 0.932

24 weeks High-quality infrared- 

enhanced CMOS megapixel 

camera sensor (CMOSIS 

CMV 2000 3E12) integrated 

into an intelligent camera 

with USB3-data transfer

2023 Kounas 

et al. (38)*

Oxyhemoglobin (OxyHb), 

Deoxyhemoglobin (DeoxyHb), 

Statistical analysis: 

Logistic regression

27 patients Visit 1: Sensitivity = 85%, 

Specificity = 70% Visit 2: 

12 weeks, visits 

every 3–4 weeks

HyperView® apparatus.

(Continued) 
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Combining wound imaging with complementary information 

such as patient demographics, comorbidities, biochemical 

markers, and treatment history could provide a more holistic 

understanding of the healing process. Multimodal approaches 

have been shown to improve model performance in predicting 

the healing of DFU (66) and chronic wounds (67). This 

integration would require collaborative efforts across disciplines 

to standardize data collection protocols and ensure 

interoperability between datasets.

7.2 Standardize imaging protocol

Standard protocol in non-invasive image technique to predict 

healing status of DFU is essential to ensure consistent, reliable, 

and reproducible assessment. Consistent procedures for image 

acquisition such as lighting, positioning, calibration, 

environmental/camera control are critical to ensure reliable data 

across time and clinical settings. Protocol standardization can 

facilitate clinical implementation by making imaging more 

interpretable for healthcare providers.

7.3 Integrate machine learning for image 
analysis

Machine learning methods, especially convolutional neural 

networks (CNNs), such as U-Net and its variants, have proven 

highly effective in medical image segmentation and could be 

adapted for use in predicting DFU healing (68, 69). To enhance 

clinical adoption, these methods must be computationally 

efficient, capable of running on standard hardware, and robust 

to variations in wound appearance caused by lighting, skin tone, 

and ulcer severity.

In addition, the implementation of explainable AI (XAI) 

methods in segmentation tools would enhance the transparency 

and acceptance among clinicians (70). Providing visual overlays 

or confidence maps could help clinicians validate the automated 

segmentation results, ensuring the reliability in decision- 

making processes.

7.4 Conduct multicenter clinical trials

To validate the predictive utility of imaging and AI models, 

multicenter prospective clinical trials are needed. These should 

evaluate whether the early prediction of healing status leads to 

improved patient outcomes, such as earlier intervention or 

reduced amputation. Trials should also assess how imaging tools 

perform across different care settings, such as hospitals, 

community, and home care services.

7.5 Develop portable and user-friendly 
imaging devices

Future research should focus on developing portable, cost- 

effective devices that maintain high diagnostic accuracy. 

Advances in sensor miniaturization, wearable technology, and 

smartphone-based imaging platforms could provide practical 

solutions, enabling real-time wound assessment and monitoring 

in diverse care environments (71, 72). In addition, the 

integration of user-centered design principles is critical to 

ensure that these tools are intuitive for non-specialist users, such 

as general practitioners and caregivers (73, 74). Efforts should 

TABLE 6 Continued  

Year Ref Predictive 
characteristics

Model Sample 
size

Model 
performance

Period of 
assessment

Image properties

and Oxygen Saturation (O2Sat) 

levels.

Sensitivity = 85% 

Specificity = 85%

Thermal imaging

2019 Aliahmad 

et al. (39)**

Temperature of wound bed area, 

area of the isothermal patch of 

the wound bed, area of the 

isothermal patch of the peri- 

wound, number of isolated 

isothermal patches of the wound 

region, and physical wound bed 

area from color images

Statistical analysis: 

nonparametric 

Kruskal–Wallis 

tests

26 patients The ratio of wound bed at 

week 2 with the based 

line: (P = 0.036)

12 weeks Fluke-TiR1 infrared 

thermo-imaging and Nikon 

D90 DSLR cameras,

2019 Glik et al. 

(40)*

Effects of hyperbaric oxygen 

therapy (HBOT) on ulcer healing

Statistical analysis 

(ANOVA, paired- 

sample t-test)

142 patients N/M N/M Thermovision Camera E60 

(FLIR Systems, Sweden), 

calibrated using black body 

standards for thermal 

imaging

2023 Sharma 

et al. (41)**

Ulcer-to-Foot Area Ratio (U: 

F Ratio), Absolute Temperature 

Difference (ATD), Mean 

Temperature Distribution

Mask R-CNN 42 patients Accuracy = 92.50% 12 weeks A FLIR E-60 infrared 

thermal imaging camera 

(which gives thermal as well 

as RGB images)

*Clinical article.

**Engineering article.
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also be made to reduce the computational requirements of data 

analysis algorithms, enabling deployment on low-power devices.

7.6 Enable multimodal imaging integration

Combining multiple image techniques into an integrated 

framework provides a more comprehensive view of wound 

healing status by capturing physical, physiological, and 

biochemical information. These can improve diagnostic 

capabilities beyond the limitations of individual techniques. 

Future direction should focus on developing tools that can 

quickly and accurately analyze the combined imaging features, 

which make it easier for clinicians to assess wounds and make 

treatment decisions.

8 Discussion and conclusion

Assessing wound healing progression is crucial in DFU to 

ensure treatment effectiveness, detect complications early, and 

guide timely clinical decisions. It helps prevent serious outcomes 

like infection or amputation and improves patient recovery and 

care quality. In clinical practice, most clinicians still rely on 

visual assessment to monitor DFU healing due to simplicity and 

cost-effectiveness. In recent studies, non-invasive imaging 

techniques offer safer, affordable, and portable alternatives to 

conventional methods like MRI, CT, and PET in the healing 

prediction of DFU. They enable real-time monitoring and early 

prediction using Machine learning/deep learning analysis, 

however, they are not yet widely adopted in routine care 

because of the validity and accessibility.

This systematic review evaluated the current non-invasive 

imaging techniques used to predict the wound healing status of 

DFUs. Our results highlight the wound healing classification 

process, though it remains in the early phases of development 

and clinical validation. We identified several imaging methods, 

such as visible light imaging, 3D imaging, hyperspectral 

imaging, and thermal imaging. Each technique presents its own 

strengths and faces different problems in development and 

application. In order to provide a tool that can be used in 

clinical, home, and community services, several criteria must be 

met, including a clear data collection protocol; a large number 

of data samples; a process for extracting information from the 

wound area, and for classifying the feature information into 

accurate outputs of healed and non-healed wounds; and the 

possibility of being developed in real-time analysis in a short time.

While non-invasive imaging techniques hold significant 

promise for predicting diabetic foot ulcer (DFU) healing, several 

barriers burden their routine use in clinical practice. 

Overcoming these obstacles is crucial for successfully translating 

these promising technologies into everyday patient care. 

1. Regulatory barriers: Regulatory approval for new medical 

technologies presents a significant challenge. The process of 

approving medical devices and technologies can be time- 

consuming and costly. Imaging technologies require 

extensive validation and clinical trials before they can be 

used in practice. The different standards in clinical 

validation require multiple rounds of testing that can delay 

the introduction of promising technologies to be used. 

Aligning regulations might help speed up approval and 

reduce the costs.

2. Technological barriers: Challenges such as the lack of 

standardized image protocols, and the complexity of some 

technologies (e.g., hyperspectral and 3D imaging) make these 

tools difficult to integrate into clinical workBows. 

Additionally, some of these technologies require specialized 

equipment and expertise that are not universally available. 

Developing a standardized imaging protocol and improving 

compatibility with existing healthcare systems may make 

integration easier.

3. Economic barriers: The high cost of advanced imaging 

equipment and computational resources needed for data 

analysis is a significant barrier. Non-invasive imaging 

technologies can be expensive and may limit their 

accessibility for use in home or community care. Conducting 

cost-benefit analyses and improving affordability might help 

increase accessibility.

4. Clinical barriers: Clinicians may face difficulties in adopting 

these new technologies due to a lack of training or resistance 

to change. There is a need for robust clinical validation to 

demonstrate the reliability and clinical utility of these 

imaging techniques before they can be widely accepted. 

Providing comprehensive training programs and 

demonstrating the clinical benefits might encourage adoption.

This review identifies which imaging techniques are most suitable 

for routine use in clinical, home care, and community-based care 

settings for predicting DFU healing outcomes. As the findings 

were based on only 17 eligible studies, this focused selection 

allowed for detailed analysis of current imaging techniques, 

providing valuable insight and highlighting important directions 

for future research.

Based on our findings, we conclude the following: 

1. Need for end-to-end integration: To achieve real-time results, 

it is necessary to build an end-to-end integrated system, from 

image acquisition to analysis and output. From this 

perspective, visual (RGB) imaging and thermal imaging are 

promising alternatives due to the simplicity and the ability 

to process data automatically on the same device without 

human assistance (e.g., through automatic segmentation and 

classification). These methods are also more portable and 

user-friendly compared to more complex technologies like 

hyperspectral imaging or 3D imaging, making them better 

suited for use in home and community-based settings.

2. Role of AI in early prediction: With the integration of 

advanced techniques such as machine learning and deep 

learning, early prediction of healing status is possible (no 

need to wait up to 4 weeks to ascertain wound healing 

ability). This can assist clinicians in making more timely and 

accurate treatment decisions.
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3. Need for validation and clinical readiness: While non- 

invasive imaging techniques have high potential as 

alternatives to monitor wound healing progress, further 

validation supported with larger datasets is still needed to 

ensure the reliability of the results before these techniques 

can be translated into clinical practice. Additionally, more 

detailed consideration of the barriers to clinical adoption, 

such as clinician training, and integration into existing 

clinical workBow, would be beneficial to fully understand 

what is required to implement these technologies in 

routine care.
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