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Objective: This study investigates deep convolutional neural networks (CNNs) 

for automated detection of early to mid-stage Parkinson’s disease (PD) from 

static facial images, aiming to explore non-invasive, cost-effective approaches 

for early diagnosis and remote monitoring.

Methods: 2,000 facial images were collected from PD patients and healthy 

controls, followed by data augmentation to expand the dataset to 6,000 images. 

After randomly dividing the dataset into training and test sets according to 8:2, 

five CNN architectures were fine-tuned and assessed. Model performance was 

assessed by accuracy, precision, recall, specificity, F1 score, and area under the 

ROC and PR curve (AUC). Grad-CAM visualization techniques were applied to 

identify the discriminative facial regions associated with PD.

Results: ResNet18 achieved the best overall performance, yielding an F1 score 

of 99.67% across metrics. MobileNetV3 also performed robustly, particularly 

excelling in recall (99.00%), suggesting its suitability for high-sensitivity 

screening applications. EfficientNetV2 demonstrated stable convergence and 

competitive classification performance (F1 score: 96.30%), while VGG16 

exhibited balanced performance with rapid convergence. Inception-v4 

showed relatively lower accuracy and greater variability, indicating a potential 

risk of overfitting. Grad-CAM heatmaps revealed that the most predictive 

facial regions across models were concentrated around the eyes, lips, and 

nose, consistent with PD-related hypomimia.

Conclusion: CNNs, particularly ResNet18 and MobileNetV3, exhibit significant 

potential for the automated identification of PD from facial imagery. These 

models offer promising avenues for developing scalable, non-invasive screening 

tools suitable for early detection and remote healthcare delivery, providing 

significant clinical and social value in the context of aging populations.
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1 Introduction

Parkinson’s disease (PD), the second most prevalent 

neurodegenerative disorder (1), has witnessed a substantial 

upsurge in both prevalence and incidence rates over the past 

few decades (2). Projections suggest that by 2050, the global case 

count will exceed 25.2 million with the aging population (3), 

imposing a colossal strain on public health infrastructures. 

Despite the typical clinical manifestations of PD, early diagnosis 

remains a major challenge. Existing diagnostic criteria, including 

the UK Brain Bank criteria (4) and the MDS clinical diagnostic 

criteria (5), are predominantly reliant on subjective clinical 

evaluations. Patients are typically discovered only after the onset 

of overt motor symptoms. By this juncture, more than half of 

the dopaminergic neurons in the substantia nigra may have 

been depleted, thereby forfeiting the prime window for early 

intervention (6). Conventional biomarkers, such as cerebrospinal 

/uid alpha-synuclein assays and dopamine transporter imaging, 

can improve diagnostic accuracy but are constrained by high 

costs, invasiveness, and accessibility, rendering them unsuitable 

for large-scale screening initiatives (7). Consequently, developing 

objective, affordable, and accessible methods to detect markers 

of PD is of great clinical and public health significance for early 

detection and disease monitoring.

The typical symptoms of PD include a series of non-motor 

symptoms and motor impairments such as resting tremor, 

muscle rigidity, and bradykinesia. In recent years, hypomimia 

(8), as one of the important phenotypic features of PD, has been 

attracting increasing attention. Patients frequently present with a 

“masked face,” characterized by reduced blinking, passive lip 

separation, and /attened nasolabial folds (9). While these 

features can impair social interactions, they may also serve as 

potential early biomarkers for PD diagnosis (10).

With the advancement of artificial intelligence and computer 

vision, facial manifestations of PD are increasingly being 

transformed into quantifiable and structured data (11, 12). This 

enables the in-depth exploration of subtle facial muscle 

dynamics unique to PD patients (13). Convolutional neural 

networks (CNNs), known for their capabilities in automatic 

feature extraction, high representational power, robustness, and 

spatial feature modeling, have been extensively adopted in facial 

analysis tasks (14). They further benefit from techniques such as 

data augmentation and transfer learning, which enhance 

generalization performance (15). Building on these 

developments, our study explored the classical CNN models for 

early to mid-stage PD detection based on static facial images. 

This approach aims to provide a non-invasive, cost-effective, 

and scalable solution for Early large-scale screening and remote 

patient management of PD.

2 Related works

Initial efforts largely relied on facial landmark features. For 

example, Hou et al. (16) proposed a method combining facial 

geometric and texture descriptors, such as Euclidean distances, 

angles, Local Binary Patterns, and Gray-Level Co-occurrence 

Matrices, achieving 93.6% accuracy and an F1 score of 93.8% 

using data from 70 PD patients and 70 healthy controls (HC). 

Rajnoha et al. (17) employed 128-dimensional facial embedding 

vectors with Random Forest and XGBoost classifiers, reporting 

an accuracy of 67.33% on 50 PD-control pairs. 

Grammatikopoulou et al. (18) introduced two indices of facial 

expressiveness (HSI1 and HSI2) based on selfies collected via 

smartphones. Using keypoint detection through Google Face 

API and Microsoft Azure Face API, they achieved a sensitivity 

of 0.89 and a specificity of 0.73 for HSI2.

Several studies have adopted video-based analysis with temporal 

modeling. Bandini et al. (19) analyzed facial landmark trajectories in 

videos to quantify motion entropy. Gómez et al. (11) introduced a 

phase-based representation of facial expressions, utilized ResNet50 

with transfer learning to extract Action Unit features, and 

optimized the feature space via triplet loss. This approach achieved 

87.3% accuracy on video data from 30 PD patients, which was an 

improvement of 3.6% over baseline methods. Further advancing 

this trajectory, Valenzuela et al. (20) proposed an end-to-end 

spatiotemporal model upon a 3D CNN, analyzing facial 

movements during vowel pronunciation. The model attained 

91.87% classification accuracy on 16 PD-control pairs.

The advent of deep learning has further improved diagnostic 

performance by enabling the extraction of high-dimensional 

semantic features. Calvo-Ariza et al. (13) combined traditional 

descriptors like Histogram of Oriented Gradient, and Local 

Binary Patterns with deep learning architectures, achieving 

80.4% accuracy under pleasant expressions. Hou et al. (12) 

utilized a label-free 2D video model incorporating facial 

geometry and texture features and reported an F1 score of 88% 

using Random Forest and Support Vector Machine classifiers. 

Jin et al. (21) extracted 106 facial landmarks using Face++ in 

analyzing jitter-based features, and that Support Vector Machine 

yielded an F1 score of 99%, while Long-Short Term Memory 

achieved 86.76% accuracy. A study employing the Semantic 

Feature based Hypomimia Recognition network applied end-to- 

end deep learning to the Smile Video dataset, achieving an 

accuracy of 99.39% (22). In parallel, growing attention has been 

paid to privacy and computational efficiency. Jiang et al. (23) 

integrated Paillier homomorphic encryption with edge AIoT 

devices to perform secure video analysis on encrypted 

recordings from 52 PD patients, achieving an identification 

accuracy of 95% between patients treated with deep brain 

stimulation before and after. Due to the limited dataset, 

enhancing the training accuracy and generalization capacity of 

the model poses a significant challenge. Therefore, Huang et al. 

(24) used StarGAN to synthesize facial expressions of PD 

patients and combined these with a Swin Transformer to 

integrate multi-modal features. Their model achieved 100% 

diagnostic accuracy on data from 95 PD patients.

Abbreviations  

HC, healthy controls; PD, Parkinson’s disease; CNNs, convolutional neural 
networks; TP, true positive; FN, false negative; FP, false positive; TN, true 
negative; TPR, true positive rate; FPR, false positive rate; ROC, receiver 
operating characteristic; PR, precision–recall; AUC, area under curve; Grad- 
CAM, gradient-weighted class activation mapping.
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A summary of previous studies is presented in Table 1. 

Despite their contributions, several common limitations persist. 

Many models were developed using small sample sizes, resulting 

in poor generalizability. Additionally, facial manifestations in PD 

are closely associated with disease severity (25). In the early 

stages, patients may present only subtle signs that often escape 

detection by both family members and clinicians. In contrast, 

these features become markedly more pronounced in the 

advanced stages, by this time more than 50% of dopaminergic 

neurons in the substantia nigra may have been lost, missing the 

best opportunity for early intervention (6). Most studies did not 

specify the clinical stage of the PD patients included, and few 

have developed high-performance deep learning models capable 

of detecting early to mid-stage PD using simple static facial 

images. To address these gaps, we explored deep learning 

frameworks based on classical CNN models for the recognition 

of early and mid-stage PD based on static facial imagery, to 

facilitate early, large-scale auxiliary screening and diagnosis.

3 Methods

Figure 1 shows the /owchart of our research method. This 

study has been approved by the Ethics Committee of Shandong 

University of Traditional Chinese Medicine Affiliated Hospital 

(2024-136-YJS). Our research performed in accordance with the 

Declaration of Helsinki. Informed consent has been obtained 

from all participants and/or their legal guardians, including the 

extra consent for the publication of identifying images.

3.1 Subject recruitment

3.1.1 PD patients
Between March 2024 and June 2025, a total of 208 PD patients 

were recruited from the Department of Neurology at the Affiliated 

Hospital of Shandong University of Traditional Chinese Medicine. 

Five standardized facial images were obtained from each patient. 

Recruit PD patients according to the following criteria: 

1. Inclusion Criteria: 

a. Patients met the diagnostic criteria for idiopathic PD 

established by the International Parkinson and 

Movement Disorder Society in 2015 (5).

b. Disease stage ranged from 0 to 3 on the Hoehn and Yahr 

scale (26), indicating early to mid-stage PD.

2. Exclusion Criteria: 

a. Patients with comorbid depression, anxiety, or psychotic 

disorders as defined by the Diagnostic Criteria and 

Treatment Guidelines for Depression, Anxiety, and 

Psychotic Disorders in PD (27).

b. Patients diagnosed with multiple system atrophy, 

progressive supranuclear palsy, or other Parkinson- 

plus syndromes.

c. Patients with secondary parkinsonism due to infection, 

toxins, vascular lesions, drug effects, or traumatic injury.

d. Patients with significant intracranial pathology (e.g., 

tumors, in/ammatory lesions, history of brain surgery, 

extensive infarction, or cerebral hemorrhage), or with 

severe systemic diseases.

e. Patients exhibiting motor /uctuations, such as the “on- 

off” phenomenon.

f. Individuals of non-Asian ethnicity, those with abnormal 

skin pigmentation, or those presenting with facial 

abnormalities due to conditions such as facial paralysis.

3.1.2 Healthy control subjects
During the same period, 1,013 healthy volunteers were 

recruited from the same hospital. One standardized facial image 

was collected from each participant. Recruit healthy participants 

according to the following criteria: 

1. Inclusion Criteria: 

a. Participants were aged between 45 and 80 years, in good 

general health, and free from major organic diseases or 

psychiatric disorders.

b. No history of persistent discomfort or significant decline in 

functional capacity over the past three months; able to 

maintain normal daily life and work activities.

2. Exclusion Criteria: 

a. Presence of any abnormal clinical findings or suspected 

illnesses that required exclusion.

b. History of long-term regular medication use, blood 

donation within the past three months, surgical 

procedures within the past month, or excessive intake of 

alcohol, tea, coffee, or other caffeinated beverages.

c. Individuals of non-Asian descent.

d. Subjects with facial scarring or deformities due to trauma 

or other conditions.

3.2 Data collection

Facial images were acquired using a dual-camera system 

(Huawei, Beijing, China) equipped with 20-megapixel and 

16-megapixel sensors. The raw images were captured at a 2K 

resolution of 1,860 × 2,160 pixels. Standardized clinical 

procedures were followed: Participants were seated indoors 

under natural lighting, without hats or masks, with long hair 

tied back to ensure full facial exposure. They were instructed to 

maintain a neutral expression and gaze directly forward. 

Additional demographic and clinical information—such as 

region of origin, age, education level, and treatment history— 

was recorded for each participant.

3.3 Dataset preprocessing

All preprocessing and analyses were performed using 

Python scripts developed and executed within the PyCharm 

environment (https://www.jetbrains.com/pycharm/). As the 

data were collected from clinical settings, preprocessing 
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steps were essential to prepare the images for deep 

learning applications.

Initially, raw images underwent cleaning, cropping, and data 

augmentation. Facial regions were extracted from each image 

based on 68 facial landmarks, ensuring that only the complete 

face (excluding the background) was retained. To improve 

model robustness and generalization, two augmented images 

were generated from each original image using a combination of 

the following random techniques: 

a. Horizontal /ipping, to simulate left-right symmetry.

b. Vertical /ipping, to increase dataset variability.

c. Random rotation within a range of −30° to +30°, enhancing 

rotation invariance.

TABLE 1 Summary of previous literature on facial recognition for Parkinson’s disease.

Approach Year Source of data Model (s) Performance Metrics Cite

Machine 

learning

2017 17 PD and 17 HC The classifiers of CK + database 

and the Radboud FACES 

DAtabase with a 10-Fold Cross- 

Validation strategy

The average accuracy of 88%. and 98% for 

happiness, 90% for disgust, 88% for anger, 

84% for neutral, and 74% for sadness

Neutral, happiness, anger, 

disgust, and sadness in 

video

(19)

2018 50 PD and 50 HC Random forest, XGBoost, and 

decision trees

The decision tree algorithm achieved the 

best accuracy with 67.33%

Simple static face pictures (17)

2019 23 PD and 11 HC The Google Face API and 

Microsoft Face API

The sensitivity of 79% and a specificity of 

82% for the Google, while for Microsoft 

the results were 89% and 73%

Smiling and right/left eye 

open in Selfie Photo

(18)

2021 70 PD and 70 HC Random forest, support vector 

machines, and k-nearest neighbor

The highest accuracy at 86% in the 

random forest model using texture 

features

Poker face and smiling in 

videos

(12)

2021 70 PD and 70 HC Support vectormachine 93.6% accuracy and 93.8% F1 score Facial video (texture 

features)

(16)

2022 FacePark-GITA database 

(11) (30 PD and 24 HC)

Support vector machine 72.8%, 75.8%, and 80.4% accuracy for 

anger, surprise, and happiness

happiness, surprise, and 

angriness in video

(13)

Deep learning 2020 33 PD and 31 HC Long short-term memory 86.76% accuracy smile expression in video (21)

2021 47 PD and 39 HC VGG and ResNet with the 

semantic loss

99.39% accuracy Facial video from neutral 

expressions to smiles

(22)

2023 VGGFace2, EmotioNet, 

and FacePark-GITA 

database

ResNet50 Freeze 75 (transfer 

learning from face analysis to 

action units recognition)

87.3% accuracy smile, anger, surprise, left 

eye wink, or right eye wink 

in video

(11)

2023 95 PD (adopt the StarGAN 

to synthesize the 

premorbid normal facial 

expression images)

Models in ImageNet-1K and 

ImageNet-21K

100% accuracy in both 

EfficientNetV2-Small and EfficientNet-B7 

model

The synthesized neutral, 

anger, disgust, fear, 

happiness, sadness, and 

surprise facial images

(24)

FIGURE 1 

The flowchart of our research method.
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d. Random adjustment of brightness, contrast, sharpness, 

saturation, and hue, to mimic different lighting environments 

and camera settings.

e. Random cropping followed by resizing to a fixed resolution, 

improving scale and perspective invariance.

Finally, all images were resized and normalized to a consistent 

shape of 256 × 256 × 3 pixels.

3.4 Model training and testing

We applied the PyTorch deep learning framework (https:// 

www.pytorch.org) to develop five CNNs for the classification of 

PD: EfficientNetV2, Inception-v4, MobileNetV3, ResNet18, 

and VGG16.

EfficientNetV2 (28) begins with a standard 3 × 3 convolutional 

layer (stride = 2), followed by multiple stacked MBConv modules 

from stages two through eight. The final stage includes a 1 × 1 

convolution, an average pooling layer, and a fully connected layer. 

This architecture is known for its high accuracy, low latency, and 

efficient training, making it suitable for applications ranging from 

lightweight deployments to high-performance computing.

Inception-v4 (29) integrates a Stem module for preliminary 

feature extraction, Inception-A/B/C modules to capture fine- 

grained and multi-scale semantic features, Reduction-A/B 

modules for spatial downsampling, and a final classification 

head. This design enables the effective extraction of hierarchical 

and multi-scale features for complex image classification tasks.

MobileNetV3 (30) is composed of a Stem module, a series of 

Bottleneck blocks, and a Squeeze-and-Excitation attention 

mechanism, and incorporates neural architecture search 

components. It achieves significant reductions in parameter 

count and computational complexity without compromising 

classification accuracy.

ResNet18 (31) comprises a 7 × 7 convolutional layer with a 

stride of 2, followed by 16 3 × 3 convolutional layers arranged in 

8 residual blocks (each with two convolutional layers), and a 

fully connected output layer. Despite its relatively shallow depth, 

ResNet18 exhibits strong representational power and is widely 

used in image classification, object detection, and embedded 

vision applications.

VGG16 (32) features a straightforward design consisting solely 

of stacked 3 × 3 convolutional layers and 2 × 2 max-pooling layers. 

With 16 weight layers in total, VGG16 is widely adopted in 

computer vision tasks due to its simplicity and transfer 

learning capability.

To enhance model performance, we fine-tuned each 

architecture by unfreezing the final block and applying the 

Softmax function for binary classification. In addition, we added 

L2 regularization to prevent overfitting. The batch size was set 

to 32, with a learning rate of 1e-5. Training was performed for 

up to 50 epochs, and early stopping was implemented to 

prevent overfitting by terminating training once the optimal 

model was reached. The preprocessed dataset was randomly 

partitioned 8:2 into test and training sets. The training and test 

sets were kept strictly independent to ensure complete 

separation and prevent any risk of data leakage.

3.5 Model evaluation

To assess model performance, we employed several evaluation 

metrics, including accuracy, precision, recall, F1 score, loss 

function values, Receiver Operating Characteristic (ROC) curves, 

and PR curves.

In our binary classification setting, positive and negative labels 

correspond to PD and healthy samples, respectively. Classification 

outcomes were categorized as follows: True Positive (TP): PD 

samples correctly classified as PD; False Negative (FN): 

PD samples misclassified as healthy; False Positive (FP): Healthy 

samples misclassified as PD; True Negative (TN): Healthy samples 

correctly classified. Based on the classifier’s predicted probabilities, 

samples were ranked, and the following metrics were computed.

3.5.1 Accuracy, precision, recall, and F1 score

Accuracy is defined as the ratio of the number of correctly 

predicted samples to the total number of samples:

Accuracy ¼
TP þ TN

TP þ FP þ TN þ FN 

Precision measures the proportion of actual PD samples among 

those predicted as PD:

Precision ¼
TP

TP þ FP 

Recall (Sensitivity) represents the proportion of actual PD samples 

that are accurately identified:

Recall ¼
TP

TP þ FN 

F1 Score is the harmonic mean of precision and recall, re/ecting 

the balance between them:

F1 score ¼
2TP

2TP þ FP þ FN 

3.5.2 Loss function

The loss function quantifies the deviation between the 

predicted values and the true values, guiding model 

optimization. In this study, we applied the cross-entropy loss in 

conjunction with the Softmax activation function. A lower loss 

indicates better model generalization and predictive accuracy.

3.5.3 Receiver operating characteristic (ROC) 
curve and precision–recall (PR) curve

The ROC curve is a graphical representation to assess the 

performance of classification models. It depicts the relationship 

between the False Positive Rate (FPR) on the x-axis and the 
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True Positive Rate (TPR) on the y-axis. Area Under Curve (AUC) 

quantifies the model’s overall discriminative ability, with values 

spanning from 0.5 (indicative of random chance) to 1.0 

(indicating perfect classification (33). By comparing the shapes 

of ROC curves and their corresponding AUC values across 

models, one can intuitively assess classifier performance. Higher 

AUC means better differentiation.

FPR ¼ FP=(FP þ TN) 

TPR ¼ TP=(TP þ FN) 

The PR curve depicts recall on the x-axis and precision on the 

y-axis and is constructed by computing these metrics at 

various classification thresholds (34). The PR curve is 

particularly informative in scenarios with class imbalance, as 

it focuses on the performance concerning the positive class. 

A curve that approaches the top-right corner of the chart 

denotes stronger performance. Similarly, PR-AUC provides a 

summary measure of the balance between precision and 

recall; a larger PR-AUC re/ects a more favorable trade-off 

and, consequently, better overall model effectiveness.

3.5.4 Comparative statistical testing of models

In the comparative analysis of classification models, we 

employed a tripartite statistical framework to ensure robust and 

interpretable results. The McNemar test (35) served as the 

primary method for evaluating significant differences in 

classification accuracy between paired models. This non- 

parametric test examines discordant predictions through a 

contingency table framework, offering heightened sensitivity to 

error rate disparities in binary classification tasks compared to 

traditional chi-square tests, particularly at moderate sample sizes 

(n > 30). Complementing this, paired t-tests (36) were applied to 

detect systematic biases in predicted probability distributions. To 

address potential non-normality in probability outputs, we 

concurrently implemented the Wilcoxon signed-rank test (37) 

for capturing skewness, heavy tails, or outlier-driven 

distributional asymmetries. This methodological triangulation 

creates a synergistic analytical framework: the McNemar test 

directly quantifies classification efficacy differences, paired t-tests 

reveal central tendency biases, and Wilcoxon tests characterize 

distributional divergence.

3.5.5 Model interpretability

To enhance the interpretability of our models, we employed 

Gradient-weighted Class Activation Mapping (Grad-CAM) (38), 

visualizing the region in the input image that contributes the 

most to model decision-making. By generating activation 

heatmaps overlaid on facial images, Grad-CAM enables insight 

into which facial areas in/uenced the classification outcome. We 

implemented Grad-CAM on the final convolutional layer of 

each model to localize discriminative regions relevant to 

PD identification.

4 Results

4.1 Participants

To minimize variability and ensure sample accuracy, we 

excluded images in which participants were blinking or 

displaying expressions in/uenced by nervousness. From the 

recruited cohort, we selected 200 patients whose images 

captured a natural, neutral facial expression. To achieve 

balanced group distribution and maintain statistical robustness, 

1,000 individuals were randomly selected for the control group. 

The patient group comprised 114 males and 86 females, with a 

mean age of 65.83 ± 9.74 years, while the control group included 

572 males and 428 females, with a mean age of 64.95 ± 10.24 years.

4.2 Data preparation and model training

Following data cleaning, we selected 1,000 eligible facial 

images each from the enrolled patients and the recruited healthy 

individuals. After data augmentation, the number of images in 

each group increased to 3,000. The two datasets were separated 

into training and test sets randomly (mutually independent) at a 

ratio of 8:2, and fine-tuned training was conducted on the 

models of EfficientNetV2, Inception-v4, MobileNetV3, 

ResNet18, and VGG16 respectively.

4.3 Performance parameters

The classification performances including Accuracy, Precision, 

Recall (Sensitivity), Specificity, and F1 Score of the five models are 

listed in Table 2. As evident from the tabulated results, the models 

exhibit varying levels of effectiveness across the evaluation metrics.

Among them, ResNet18 demonstrates the most outstanding 

overall performance, with its accuracy, recall, specificity, and F1 

score all approaching or reaching 99.67%, marginally 

outperforming others. Next are MobileNetV3 and VGG16. 

MobileNetV3 shows a high accuracy rate, while VGG16 exhibits 

a well-balanced classification ability. In particular, MobileNetV3 

achieves a recall rate of 99.00%. EfficientNetV2 also performs 

stably, with an F1 score of 96.30%, which is superior to that of 

Inception-v4. In contrast, Inception-v4 has relatively lower 

values in all metrics, with an F1 score of 87.26%, indicating that 

its recognition ability in this task is slightly inferior. In 

summary, considering their performance in this specific dataset, 

ResNet18 and MobileNetV3 emerge as the most effective models 

and are recommended as the preferred architectures for this 

application scenario.

4.4 Accuracy curves

Figure 2 illustrates the accuracy curves for both training and 

test sets across all models during training. With respect to 

convergence speed, VGG16 and ResNet18 converged most 
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rapidly, followed sequentially by Inception-v4, MobileNetV3, and 

EfficientNetV2. Due to the implementation of an early stopping 

mechanism, the first three models terminated training 

prematurely upon reaching optimal and stabilized performance.

4.5 Training and test loss

Figure 3 depicts the loss curves for the training and test sets. 

Notably, EfficientNetV2 and MobileNetV3 exhibited smooth and 

steadily declining loss values, indicating high training stability 

and a lower likelihood of overfitting. Conversely, Inception-v4 

and VGG16 demonstrated /uctuations in the latter stages of 

training, with slight increases in loss, suggesting a potential 

overfitting risk.

4.6 ROC and PR curve analysis

Figures 4, 5 display the ROC and PR curves, respectively. The 

PR curve re/ects the balance between precision and recall across 

various classification thresholds, whereas the ROC is the 

relationship graph between TPR and FPR, serving as a 

comprehensive metric of overall classification performance. 

Among the models, ResNet18, MobileNetV3, and VGG16 

delivered superior performance, as indicated by their higher 

AUCs. In contrast, Inception-v4 underperformed, which may be 

attributed to model overfitting or suboptimal parameter settings.

4.7 Comparative statistical analysis of 
model performance

The pairwise statistical comparisons of model performance are 

summarized in Table 3. ResNet18 emerged as the top-performing 

model, demonstrating a clear and consistent advantage 

across all key metrics. Its accuracy exceeded that of 

EfficientNetV2 by 3.33% (p = 4.12 × 10−9), Inception-v4 by 

12.25% (p = 5.70 × 10−33), MobileNetV3 by 0.83% (p = 0.024), 

and VGG16 by 1.25% (p = 0.0013), with all differences reaching 

statistical significance. MobileNetV3 (98.83%) and VGG16 

(98.42%) formed a high-performance second tier, showing no 

significant difference between them (p = 0.404), but both 

significantly outperformed the remaining models. EfficientNetV2 

achieved moderate performance—significantly better than the 

lowest-ranked Inception-v4 (accuracy difference of 8.92%, 

p = 2.28 × 10−18)—yet still markedly inferior to the top three 

models. Inception-v4 consistently ranked last, with an accuracy 

of 87.42% and an AUC of 94.24%, and exhibited highly 

significant disadvantages compared with all other models 

(p < 10−27). The primary source of performance disparity lay in 

the ability to identify positive cases (sensitivity), with ResNet18 

showing particular superiority in handling borderline or 

ambiguous samples (e.g., a 42:2 win ratio against EfficientNetV2 

in contested cases).

4.8 Model interpretation via grad-CAM

To enhance model interpretability, Grad-CAM heatmaps were 

generated for each model, as shown in Figure 6. The heatmaps 

revealed that ResNet18 primarily focused on the upper facial 

region above the nose, while MobileNetV3 and Inception-v4 

concentrated on the periorbital and perioral areas. VGG16 

showed strong attention to the eyes and lips, and EfficientNetV2 

concentrated on the nasal region and its surroundings. Although 

attention varied across models, the eyes and lips emerged as the 

most consistently emphasized regions, suggesting their potential 

relevance as discriminative facial features in PD classification.

5 Discussion

PD, as a neurodegenerative disorder, has a variety of 

manifestations in both motor and non-motor symptoms (39). 

One of its hallmark features is hypomimia, which is 

characterized by a reduction or absence of facial expressions, 

resulting in an unnatural facial appearance (40, 41). This 

characteristic facial feature can serve as a crucial clue in PD 

diagnosis. In this study, we evaluated five classical CNN models 

for the identification of early and mid-stage PD based on static 

facial images. The experimental results demonstrate that CNNs 

are capable of effectively capturing discriminative facial features 

associated with PD.

The five models evaluated in this study represent a diverse 

spectrum of convolutional neural network architectures, ranging 

from lightweight to high-performance designs. This selection 

includes the latest efficient architecture (EfficientNetV2), well- 

established benchmarks widely validated in medical image 

analysis (ResNet18, VGG16), and multi-branch networks with 

strong fine-grained feature extraction capabilities (Inception-v4). 

Compared with other lightweight alternatives, such as 

EfficientNet Lite and MobileViT, these architectures offer 

greater training stability and stronger interpretability on small- 

TABLE 2 Accuracy, precision, recall (sensitivity), specification, and F1 score for each model.

Model Accuracy (%) Precision (%) Recall (sensitivity) (%) Specificity (%) F1 score (%)

EfficientNetV2 96.33 97.12 95.50 97.17 96.30

Inception-v4 87.42 88.38 86.17 88.67 87.26

MobileNetV3 98.83 98.67 99.00 98.67 98.84

ResNet18 99.67 99.50 99.83 99.50 99.67

VGG16 98.42 98.18 98.67 98.17 98.42
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sample medical datasets, supported by extensive prior literature in 

similar tasks. Such characteristics facilitate horizontal comparisons 

and reproducibility. Collectively, this model set enables a 

comprehensive assessment of architectures with different scales 

and design philosophies for facial image–based Parkinson’s 

disease recognition, while maintaining high diagnostic accuracy.

FIGURE 2 

The accuracy curves for both training and test sets across all models during training. (A) Accuracy curves for EfficientNetV2. (B) Accuracy curves for 

Inception-v4. (C) Accuracy curves for MobileNetV3. (D) Accuracy curves for ResNet18. (E) Accuracy curves for VGG16.
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FIGURE 3 

The loss curves for the training and test sets. (A) Loss curves for EfficientNetV2.  (B) Loss curves for Inception-v4. (C) Loss curves for MobileNetV3. 

(D) Loss curves for ResNet18. (E) Loss curves for VGG16.
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Among the models tested, ResNet18 consistently 

outperformed the others across all evaluation metrics, achieving 

the highest accuracy, recall, specificity, and F1 score. This 

superior performance may be attributed to its residual structure, 

which facilitates gradient /ow and mitigates vanishing gradient 

issues during deep network training (42). MobileNetV3 also 

FIGURE 4 

The ROC curve for each model.

FIGURE 5 

The PR curve for each model.
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showed competitive performance, particularly in the recall, making 

it a promising lightweight alternative suitable for deployment in 

mobile or embedded diagnostic platforms. Due to the 

accompanying aging-related phenomena in the elderly population, 

many clinical manifestations of PD are highly likely to be 

overlooked, leading to delays in diagnosis and treatment. In this 

context, achieving a high recall rate in predictive models is 

particularly valuable, as it represents the model’s capability to 

precisely recognize genuine positive cases, especially rare ones, 

thereby minimizing the risk of misdiagnosis. VGG16 exhibited 

fast convergence during training, reaching optimal performance 

rapidly under the early stopping mechanism. While its final 

accuracy and recall were slightly lower than those of ResNet18, it 

maintained a well-balanced classification ability across all metrics. 

EfficientNetV2 showed stable training performance with a steadily 

declining loss curve for both training and test sets, suggesting a 

strong resistance to overfitting. Its performance metrics, 

particularly the F1 score (96.30%), indicate robust and balanced 

classification capabilities. In contrast, Inception-v4 exhibited the 

weakest performance, as indicated by relatively lower accuracy 

and F1 score values. The loss curve of Inception-v4 displayed 

signs of instability during the later stages of training, possibly 

re/ecting sensitivity to parameter tuning or insufficient 

adaptation to the facial feature distribution in the dataset. These 

results suggest that not all complex architectures are necessarily 

advantageous for small-to-moderate-scale facial classification 

tasks, especially when the features are subtle. The ROC and PR 

curve analyses further supported these findings. ResNet18 and 

MobileNetV3 achieved the largest areas under both the ROC 

and PR curves, re/ecting their strong discriminative capabilities 

and robust trade-offs between precision and recall. Meanwhile, 

the modest AUC values of Inception-v4 indicate suboptimal 

classification boundaries and weaker generalization ability. Our 

best-performing model, ResNet18, achieved the highest 

recognition accuracy on real facial images (as opposed to 

synthetically generated images) when compared with models 

reported in previous studies (Table 1).

To enhance model interpretability, we applied Grad-CAM. 

Although different models attended to various facial regions, the 

worth noticing is that eyes and lips emerged as consistently 

important across multiple models. Studies proved that upper 

facial dyskinesia in PD patients is most evident in the reduced 

frequency of spontaneous blinking and prolonged pauses 

between eyelid closure and reopening (43). Lower facial motor 

abnormalities are primarily re/ected in expressive movements 

such as smiling. For instance, the peak velocity and amplitude 

of lip corner movements during postural or voluntary smiles are 

notably reduced, with these kinematic deficits strongly 

correlating with the severity of bradykinesia in the limbs (44). 

Studies employing facial electromyography and action unit 

analysis have revealed significantly reduced muscle activity in 

the periocular region and at the corners of the mouth in PD 

patients compared to healthy controls (45, 46). Our results are 

consistent with known the regions of PD-related hypomimia, 

such as reduced blinking, slackened lips, and diminished 

expressiveness in the mid-facial area. This visual evidence T
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provides physiological plausibility to the models’ decisions and 

may serve as a foundation for identifying explainable facial 

biomarkers of PD. From a clinical perspective, these findings 

demonstrate the potential of AI-based facial image analysis for 

non-invasive, cost-effective, and scalable screening of early and 

mid-stage PD, particularly in remote or resource-limited settings 

where traditional diagnostic tools may be inaccessible. 

Moreover, the models explored here lay the groundwork for 

further integration into telemedicine platforms and mobile 

health applications.

Despite the promising results, several limitations should be 

noted. First, the dataset utilized in our research was collected 

under relatively controlled conditions, with uniform lighting, 

background, and head positioning. Consequently, the 

generalizability of the models to real-world clinical or other 

settings remains to be tested, such as scenarios with cluttered 

FIGURE 6 

The gradient-weighted class activation mapping for each model.
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backgrounds, varying lighting conditions and angles, non- 

neutral facial expressions, and device disparities. Although 

data augmentation has been employed to achieve data 

diversity and balance the cohort size, this does not represent 

real-world population differences and cannot substitute for 

genuine population diversity, especially regarding variations 

caused by gender, age group, race, skin color, facial features, 

or comorbidities. Future studies will focus on expanding the 

dataset to include larger and more heterogeneous populations, 

and validating the models in real-world clinical environments. 

Moreover, both the model training and testing were 

conducted using data from the same source and device, 

lacking multi-center data testing. In the future, a larger-scale 

and more diverse dataset from different sources and 

collection methods is required to enhance the robustness of 

the models in practical applications. This study focused 

exclusively on static facial images, which inherently omits 

dynamic facial cues such as blinking frequency, micro- 

expressions, and subtle movement patterns. Although this 

choice was intentional to simplify data acquisition, reduce 

computational cost, and improve applicability in low-resource 

or remote settings, it may limit the system’s ability to capture 

certain early Parkinsonian signs associated with facial 

dynamics. Future work could incorporate short video 

segments or frame sequences to extract temporal features via 

3D CNNs or transformer-based models, potentially enhancing 

sensitivity to subtle motor impairments while maintaining 

usability in clinical and telehealth environments. The 

interpretation of Grad-CAM is still an empirical inference, 

and the regions of interest in the model may be interfered 

with by facial textures or lighting during image capture. 

Further efforts towards enhancing model interpretability and 

clinical explainability are crucial to foster trust and adoption 

among healthcare professionals. The facial-image–based 

screening classifier for early- to mid-stage Parkinson’s disease 

should be positioned as a highly sensitive, auxiliary tool to 

support screening and clinical decision-making. When 

integrated into existing clinical work/ows, it can facilitate risk 

stratification, generate automated referral recommendations, 

and support the primary care, telemedicine, and specialist 

settings, thereby improving early presentation rates and 

enhancing diagnostic efficiency. Before clinical deployment, 

the system should undergo rigorous multi-center external 

validation and prospective pilot studies to assess its 

performance and fairness across diverse populations. It must 

also comply with relevant regulatory requirements, ensuring 

robust privacy protection and data security. From a technical 

perspective, integration with hospital Hospital Information 

System via Fast Healthcare Interoperability Resources 

standards is recommended, alongside the provision of 

interpretable outputs (e.g., Grad-CAM heatmaps and 

associated confidence scores). A comprehensive quality 

management framework and post-deployment performance 

monitoring should be established to mitigate potential risks, 

such as false positives or model drift. Furthermore, 

embedding the most effective models into portable or 

smartphone-based platforms could enable large-scale, low- 

cost screening and facilitate ongoing external validation, 

particularly in underserved or remote regions. Given its non- 

invasive, scalable, and economically viable nature, this 

approach offers significant clinical and societal benefits for 

early detection of Parkinson’s disease in aging populations.

6 Conclusion

This study demonstrates the feasibility and effectiveness of 

using CNNs to classify early to mid-stage PD based on static 

facial images. Among the five architectures evaluated, ResNet18 

and MobileNetV3 emerged as the top-performing models, 

offering both high accuracy and interpretability through Grad- 

CAM analysis. These findings suggest that facial phenotypes— 

particularly features related to ocular and oral muscle activity— 

can serve as viable, non-invasive biomarkers for early PD 

screening. The proposed approach holds significant promise for 

deployment in scalable, low-cost diagnostic applications, 

potentially contributing to earlier intervention and improved 

patient outcomes.
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