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Central nervous system (CNS) infections caused by pathogens such as HIV, 

Herpes simplex virus, Cryptococcus neoformans, and Toxoplasma gondii 

remain among the most difficult to treat due to the physiological barrier 

posed by the blood-brain barrier (BBB), pathogen latency, and systemic 

toxicity associated with conventional therapies. Exosome-based delivery 

systems are becoming a game-changing platform that can solve these 

therapeutic problems using their natural biocompatibility, minimal 

immunogenicity, and capacity to cross the BBB. This review current 

developments in exosome engineering that aim to make brain-targeted 

therapy for neuroinfectious illnesses more selective and effective. Much focus 

is on new molecular methods like pathogen-specific ligand display, aptamer 

conjugation, lipid modification, and click–chemistry–based surface 

functionalisation. These methods make it possible to target diseased areas of 

the brain precisely. Exosomes can also carry therapeutic payloads, such as 

anti-viral and antifungal drugs, gene editing tools like CRISPR/Cas9 and 

siRNA, and more. This makes them helpful in changing pathogens’ 

persistence and the host’s immunological responses. The paper tackle 

problems with translation, such as biodistribution, immunogenicity, GMP 

production, and regulatory issues. Future possibilities like synthetic exosomes, 

combinatory medicines, and delivery design that uses AI. The combination of 

nanotechnology, molecular biology, and infectious disease therapies shows 

that exosome engineering offers a new way to meet the clinical needs that 

are not satisfied in treating CNS infections.
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Highlights

• Exosomes possess an inherent ability to cross the blood-brain 

barrier (BBB), offering a promising platform for CNS- 

targeted drug delivery.

• Surface engineering of exosomes with ligands (e.g., RVG, 

transferrin, mannose, aptamers) enables selective targeting of 

infected brain cells (e.g., microglia in HIV, neurons in 

toxoplasmosis, or meninges in cryptococcosis).

• Engineered exosomes have therapeutic success in HIV 

encephalitis, cryptococcal meningitis, cerebral toxoplasmosis, 

and tuberculous meningitis models.

• Intranasal, intravenous, intrathecal, and intraventricular 

administration are discussed to optimise CNS biodistribution 

and treatment efficacy.

1 Introduction

Infections of the central nervous system (CNS) represent a 

clinically and therapeutically challenging group of infections caused 

by multiple pathogens, including Human Immunodeficiency Virus 

(HIV), Herpes Simplex Virus (HSV), Cryptococcus neoformans, 

and Toxoplasma gondii. Such infections can lead to severe 

neurological issues, neuroin*ammation, and in some cases, 

encephalitis or meningitis that can be fatal, particularly in the 

immunocompromised population (1, 2).

The blood-brain barrier (BBB) is among the greatest obstacles in 

treating CNS infections. It is a selective physiological barrier which 

prevents the entry of most drugs into the brain (3). While it 

protects the CNS from potential hazards due to toxic substances, it 

is also the barrier that limits medications to areas of the brain 

parenchyma needed for addressing an infection. Additionally, 

many cases of standard treatment fail to target the CNS effectively, 

are damaging to the rest of the body, and are non-targeted against 

certain pathogens, which has an overall negative impact reducing 

efficacy and increasing any risk of pathogens persisting or 

recurring in the body (4, 5). Exosomes—extracellular vesicles (30– 

150 nm) secreted by nearly all cell types—are currently being 

heavily researched as an option for targeted drug delivery to the 

brain (6). They are naturally suitable for crossing the blood brain 

barrier (BBB), transporting biological cargo (e.g., proteins, nucleic 

acids, and lipids), effectively interacting and regulating with the 

recipient cell (7). The research examining their natural biological 

role in intercellular communication, low immunogenic profile, and 

modifiable surface properties, leads us to consider them as delivery 

vehicles for agents specifically targeting infected CNS sites (8). This 

review will examine the cutting-edge developments in exosome 

engineering for infectious pathogens of the brain and will consider 

the most recent developments in regard to surface modifications, 

pathogen-targeted delivery using ligand displays, and molecular 

payloads including CRISPR/Cas9 and siRNA (9). This will also 

include engineered delivery of anti-viral, anti-fungal, and neuro- 

protective drugs by modified exosomes (10). It will also consider 

the difficulty of making these drugs deliver to the target correctly 

in application; i.e., immunogenicity, biodistribution, clinical scale- 

up, and regulatory considerations. The field of nanobiotech and it’s 

potential when combined with the treatment of infectious diseases 

is relatively novel and potentially revolutionary in providing a 

sophisticated and considerate mechanism to combat CNS 

infections more precisely, accurately and efficiently (11).

2 CNS-Infecting pathogens, 
pathogenesis and therapeutic barriers

Infections of the central nervous system (CNS) caused by a 

variety of microorganisms or pathogens still create a large global 

burden of diseases, that especially affects immune compromised 

individuals, like those with advanced HIV/AIDS, tuberculosis 

(TB), etc. (12, 13). Due to CNS infections, the microorganism 

or pathogen in*icts damage to the nervous system, both acutely 

and chronically, increasing the difficulty of therapy, due to the 

fact that it can occupy CNS space, avoid the host immune 

system, and develop powerful resistance to drugs (14, 179). 

Among the major pathogens of the brain are;

2.1 Human immunodeficiency virus (HIV)

HIV invades the CNS much sooner in the course of the 

infection, and establishes latent reserves within microglial cells 

and perivascular macrophages (15). The virus can cause HIV- 

associated neurocognitive disorders (HAND), characterized by 

memory loss, motor impairment, and behavioral changes (16). 

These effects generally emerge from chronic neuroin*ammation, 

viral neurotoxiins, and even neuronal damage following immune 

activation-not simple infection of neurons (17).

2.2 Herpes simplex virus (HSV-1 and HSV-2)

Herpes simplex virus (HSV) is sometimes associated with 

herpes simplex encephalitis (HSE), which can be serious and 

potentially life threatening without treatment (18). After the first 

infection, the virus may remain dormant in the trigeminal or 

sacral ganglia which may reactivate causing additional episodes 

and potentially spreading into the brain. While either the HSV- 

1 or HSV-2 subtypes can cause HSE, HSV-1 is the most 

common cause of sporadic viral encephalitis in adults. Its rapid 

timing, propensity for causing temporal lobe necrosis, and long- 

term cognitive impairment are notable (19, 20).

2.3 Cryptococcus neoformans

This encapsulated fungal infection is one of the leading causes 

of fungal meningitis, especially in people with weak immune 

systems, like those with AIDS or who have had a transplant (21). 

Cryptococcus spreads through the blood and gets into the CNS. It 

then uses “Trojan horse” mechanisms (within infected phagocytes) 
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to get over the BBB. It can live and reproduce in the subarachnoid 

space. Cryptococcal meningitis, which is what happens when this 

happens, is marked by increased intracranial pressure, changes in 

mental status, and a high death rate (22).

2.4 Toxoplasma gondii

T. gondii is a common protozoan that lives inside cells 

and causes toxoplasmic encephalitis (TE), especially in people with 

weak immune systems (23). The parasite causes a long-lasting, 

hidden infection in the central nervous system (CNS), mainly in 

neurons and astrocytes. When latent tissue cysts in the brain 

become active again, they can cause seizures, localised neurological 

impairments, and encephalopathy (24, 25).

3 Therapeutic barriers and challenges 
in the management of brain infections

3.1 Poor blood-brain barrier (BBB) 
permeability

The BBB is a very selective and well-controlled barrier that 

keeps most drugs from getting into the brain. Many therapeutic 

compounds, including big hydrophilic medicines, cannot get 

through the BBB in sufficient concentrations, leading to 

subtherapeutic levels at the site of infection (26).

3.2 Systemic toxicity and lack of targeting 
specificity

Drugs often need to be given at large systemic doses to 

penetrate the CNS effectively, which raises the risk of off-target 

effects and toxicity. This is especially bad with antifungals like 

amphotericin B or antiretroviral medicines, which can hurt the 

kidneys or liver (8).

3.3 Pathogen persistence and latency

CNS pathogens often evade immune surveillance and persist 

in latent or quiescent forms within protected niches such as 

microglia (HIV), neuronal ganglia (HSV), or neurons (T. gondii) 

(27). These reservoirs are inaccessible primarily to conventional 

drugs and can serve as sources of reactivation, contributing to 

recurrent or chronic disease (28).

3.4 Neuroinflammation and immune- 
mediated damage

In many CNS infections, neuronal damage results from direct 

pathogen activity and an exaggerated immune response. This 

neuroin*ammatory milieu makes treatment much harder by 

damaging the BBB, changing how drugs are transported, and 

making tissue damage worse. Because of these problems, we 

need new, focused delivery methods to cross the BBB quickly, 

target just sick cells, and deliver therapeutic payloads with as 

few side effects as possible. Exosome-based drug delivery 

systems have much potential to get around these problems (28).

Importantly, the biologic behavior of each CNS pathogen will 

greatly impact the nature of exosome-based therapies. For 

example, HIV establishes latency in microglia and macrophages, 

and designed exosomes with ligands (e.g., RVG peptide or anti- 

gp120 antibodies) to deliver siRNA or CRISPR cargo can be 

used to target these reservoirs. HSV, on the other hand, persists 

in neuronal ganglia and reactivates in episodic fashion; 

exosomes containing anti-ICP0 siRNA or decorated with gD- 

binding peptides can provide pathogen-specific suppression (29). 

Cryptococcus crosses the BBB by “Trojan horse” mechanisms 

and exists in the meninges, which endorses the use of mannose- 

or dectin-1-modified exosomes packaged with amphotericin 

B or *uconazole. Finally, Toxoplasma gondii forms latent cysts 

in neurons and astrocytes; thus, exosomes that contain aptamers 

to SAG1 or CD36 in combination with a CRISPR or siRNA 

cargo has an added therapeutic value. By connecting pathogen 

biology with the design of exosomes, we can rationally dictate 

how to optimize therapies to manage barriers associated with 

latency, intracellular sanctuary and immune evasion (30).

4 Exosomes: biology, biogenesis, and 
relevance in CNS therapy

Exosomes are tiny extracellular vesicles of nano-sized (30– 

150 nm in diameter) that are very important for cell-to-cell 

communication because they carry a wide range of biological 

components, such as proteins, lipids, DNA, mRNA, and non- 

coding RNAs like microRNAs (miRNAs) (31). They come from 

the endosomal compartment and are discharged into the outside 

world when multivesicular bodies (MVBs) fuse with the plasma 

membrane (32).

4.1 Biogenesis of exosomes

The formation of exosomes is a tightly regulated process 

involving both ESCRT-dependent and ESCRT-independent ways 

that exosomes develop, and the process is strictly controlled 

(33). The Endosomal Sorting Complex Required for Transport 

(ESCRT) machinery helps the endosomal membrane bud inward 

to make intraluminal vesicles (ILVs) inside MVBs in the 

ESCRT-dependent pathway. ESCRT-0, -I, -II, and -III are 

important parts of ESCRT that help choose cargo, change the 

shape of membranes, and split vesicles (34). Proteins like 

tetraspanins (CD63 and CD81) and lipids like ceramides help 

make ILVs by bending membranes and sorting specific cargo 

into exosomes. These pathways do not depend on ESCRT 

Figure 1. When MVBs are fully grown or mature, they can 

either fuse with lysosomes for degradation or with the plasma 
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membrane to release their ILVs as exosomes into the extracellular 

space (35).

4.2 Molecular composition and functions

Exosomes carry unique surface markers, including CD9, CD63, 

CD81, ALIX, and TSG101. They also have cargo important for their 

function, such as miRNAs controlling gene expression in cells that 

take them in (36). Proteins and enzymes change how the immune 

system works or assist cells in metabolising, as well as lipids that 

help keep membranes stable and make it easier for vesicles to fuse. 

These molecular contents are carefully packaged, often showing the 

health or illness condition of the parent cell. This makes exosomes 

possible indicators for CNS ailments (37). Comparison with other 

delivery systems, exosomes have advantages as CNS delivery 

vehicles including but not limited to their ability to cross the 

blood–brain barrier (BBB), low immunogenicity, and inherent 

biocompatibility (38). Conversely, liposomes are established 

nanocarriers with sufficient drug loading capabilities and scalable 

manufacture; however, they are often labile to rapid clearance and 

have limited BBB penetrability. Polymeric nanoparticles have 

tunable physicochemical properties and controlled release, but may 

present cytotoxicity and an immune response, which negatively 

impacts long-term safety (39). Viral vectors are highly efficacious 

in gene delivery but raise fears surrounding immunogenicity, 

mutagenesis, and communication among regulatory hurdles. 

Exosomes, in comparison, afford a natural targeting mechanism 

and decreased toxicity (40). Nevertheless, challenges remain for 

exosomes in the form of scalability, heterogeneity, and reliable data 

for standardization. Hence, there is no single system which is the 

universally optimal solution, but exosomes can balance efficacy 

with safety for therapies in CNS infections (as long as current 

limitations are solved by future investigations).

4.3 Exosomes in CNS communication and 
therapy

Neurones, astrocytes, oligodendrocytes, and microglia are all 

neural cells that release exosomes in the CNS. Moving bioactive 

molecules between cells helps with important bodily functions such 

as synaptic plasticity, neuronal survival, myelination, and 

neuroin*ammation (41). Their intrinsic capacity to breach the BBB 

and tendency to go towards in*amed or infected neural regions 

make them suitable delivery vehicles for therapeutic interventions 

in CNS diseases. Recent studies have shown that exosomes can be 

modified to carry therapeutic substances (including antiretrovirals, 

antifungal medicines, and CRISPR/siRNA constructs) to parts of 

the brain that are infected or injured (9). Their low 

immunogenicity, long circulation half-life, and capacity to avoid 

phagocytic clearance make them even better candidates for brain- 

targeted therapy, especially in CNS infections when standard 

treatments do not reach therapeutic levels (9).

5 Molecular engineering of exosomes 
for brain pathogen-specific targeting

Developing engineered exosomes as nanocarriers for targeted 

therapy of CNS infections has emerged as a cutting-edge approach 

in nanomedicine (42). Native exosomes exhibit some ability to 

FIGURE 1 

Biogenesis and natural function of exosomes.
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cross the blood-brain barrier (BBB) and home to specific tissues, 

but molecular engineering significantly enhances their precision, 

cargo-loading capacity, and disease-specific targeting (43). This 

section explores the diverse surface modification techniques, 

genetic engineering tools, and chemical conjugation strategies 

for optimising exosomes for pathogen-specific CNS therapy (44) 

(Figure 2).

5.1 Exosome surface modification 
strategies for targeting CNS infectious

Surface engineering is a central strategy in exosome 

modification, enabling specific interaction with infected cells or 

facilitating BBB penetration. Two primary approaches are 

employed: ligand display and membrane anchoring of targeting 

moieties (45). One of the most important parts of exosome- 

based targeted therapy is ensuring that the therapeutic vesicles 

are sent directly to the cells in the CNS infected with pathogens. 

Pathogen-specific ligand display is a method that makes this 

level of accuracy possible. It involves targeting moieties (ligands) 

on the surface of exosomes so that they can find and bind to 

pathogen-related indicators or host cell receptors that have been 

changed by infection. This method makes exosomes more 

selective, easier to take up, and more effective as treatments, 

especially when it comes to diseases that infect the brain, such 

as Mycobacterium tuberculosis, HIV, Cryptococcus neoformans, 

Herpes simplex virus (HSV), and Toxoplasma gondii (44) 

Table 1. The principles of pathogen-specific ligand display 

involves engineering the exosome membrane to present 

molecular recognition elements that bind selectively to: 

Pathogen-specific antigens (e.g., viral glycoproteins, fungal 

capsular components). Host cell receptors are regulated during 

infection (e.g., mannose receptor CD206, ICAM-1) and Cellular 

stress or in*ammatory markers in infected brain tissue. These 

ligands may include: Peptides, Antibodies or antibody 

fragments, Aptamers, Lectins or sugar moieties and single-chain 

variable fragments (scFvs) (51) Table 1.

5.1.1 Engineering Strategies for Ligand Display
5.1.1.1 Genetic Fusion to Exosomal Membrane Proteins

The most common and stable method involves genetically 

fusing a targeting ligand to an exosome-enriched membrane 

protein like Lamp2b (Lysosomal-associated membrane protein 

2b), CD63, CD9, CD81 (tetraspanins) and PDGFR or VSVG 

(viral glycoproteins) (52). For instance, the Lamp2b fused with 

the RVG peptide allows the exosomes to bind to acetylcholine 

receptors on neuronal cells, widely applied for targeting CNS- 

infecting viruses such as rabies and HIV (53) Table 1.

5.1.1.2 Chemical Conjugation

Chemical modification enables the covalent attachment of 

ligands to exosome surfaces post-isolation using Click chemistry, 

EDC/NHS coupling and Biotin-streptavidin bridging (54). This 

method is helpful for ligands such as: Antibodies targeting viral 

surface glycoproteins (e.g., gp120 in HIV) and peptides that 

bind fungal or parasitic membrane antigens (55) Table 1.

5.1.1.3 Lipid-Insertion Method

Ligands conjugated with lipids such as DSPE-PEG can be 

spontaneously incorporated into the lipid bilayer of exosomes, 

offering a non-genetic and modular strategy for surface 

functionalisation. For example, the DSPE-PEG conjugated to 

mannose or dectin-1 to target fungal β-glucans on Cryptococcus 

or Candida (56) Table 1.

As summarised in Table 1, tailoring exosome engineering 

requires close alignment with the infection biology of each 

pathogen. HIV-associated neuroinfections benefit from RVG- or 

anti-gp120-decorated exosomes for selective uptake by infected 

microglia (57). For Toxoplasma, aptamer-modified exosomes 

can target SAG1 antigens on parasitic cysts within neurons, 

enhancing delivery of gene-silencing tools. Cryptococcus 

FIGURE 2 

Strategies for molecular engineering of exosomes.
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infections, which exploit phagocytes to enter the CNS, are more 

effectively treated using mannose- or dectin-functionalised 

exosomes delivering antifungal drugs. HSV encephalitis, 

characterised by neuronal latency and reactivation, can be 

addressed through gD- or gB-binding ligand exosomes carrying 

antiviral siRNA. These pathogen-informed strategies highlight 

how exosome design must be customised to the distinct 

mechanisms of CNS pathogens rather than applying a uniform 

delivery approach (19, 58). Pathogen-specific ligand display 

offers several advantages, such as directing exosome-loaded 

drugs to infected cells, avoiding healthy tissues and increasing 

target specificity. It improved BBB navigation, such as ligands 

like RVG or transferrin can help exosomes cross the BBB and 

reach infected CNS regions—enhanced uptake by diseased cells, 

whereby ligands promote receptor-mediated endocytosis, 

boosting therapeutic payload internalisation (59). Also, effective 

synergistic therapy potential, for instance, targeting infected cells 

enables co-delivery of antimicrobials, siRNA, or 

immunomodulators precisely where needed (60, 61). On the 

other hand, there are limitations and challenges, including 

ligand immunogenicity, of which foreign peptides or antibodies 

may trigger immune reactions. Stability issues involving some 

ligands (e.g., aptamers) may degrade or detach under 

physiological conditions. Ligand density control, such as over- 

or under-expression of surface ligands, affects targeting 

efficiency and biodistribution. Heterogeneity of infected tissues, 

resulting from pathogen expression, may vary across stages or 

regions of infection, complicating uniform targeting (60, 62).

Our review study suggests future innovations focusing on 

dual-targeting ligands that combine BBB-penetrating ligands 

(e.g., T7 peptide) with pathogen-specific moieties for enhanced 

precision—designing ligands that activate or expose binding 

domains only under infection-specific conditions (e.g., pH- 

sensitive or enzyme-activated), like responsive ligands—using 

phage display, aptamer SELEX, or computational docking to 

discover novel ligands for emerging CNS pathogens (14, 63), 

such as ligand libraries and high-throughput screening. 

Pathogen-specific ligand display represents a transformative 

strategy in the field of exosome-based therapeutics (64). By 

tailoring the surface of exosomes with molecular tags that 

recognize and bind to infected brain cells, researchers can 

significantly enhance drug delivery platforms’ accuracy, 

efficiency, and clinical potential. As techniques in ligand 

discovery, bioconjugation, and synthetic biology continue to 

evolve, pathogen-targeted exosome systems may soon become a 

mainstay in precision neuroinfectious disease treatment (65, 66).

5.1.2 Implications of exosomes and BBB-targeting 

ligand display
Exosomes can be modified to express peptides that bind with 

endothelial receptors at the BBB, which improves CNS delivery. 

The rabies virus glycoprotein (RVG) peptide binds to nicotinic 

acetylcholine receptors, which helps it cross the BBB (67). 

Transferrin- or lactoferrin-conjugated exosomes use transferrin 

receptor-mediated endocytosis to enter the brain. Angiopep-2, 

TAT, and ApoE-derived peptides are promising ligands that 

help the CNS take up other substances. Genetic fusing of 

targeting moieties to exosomal membrane proteins like Lamp2b, 

CD63, or CD9 is the most common way to make these changes 

to the surface. This makes it possible for exosomes to show and 

express them stably (68, 69). Exosome therapy has to target the 

BBB so that therapeutic agents can reach the blood-brain barrier 

and enter infected brain areas. This method makes drug 

administration more effective while reducing off-target effects 

and systemic toxicity (70). These BBB-targeting ligands include 

receptor-mediated transcytosis (RMT) or adsorptive-mediated 

transcytosis, which help exosomes penetrate through endothelial 

cells. Enhanced accumulation of therapeutic exosomes in CNS 

compartments. Minimised off-target effects in peripheral organs. 

Increased therapeutic efficacy in neuroinfectious conditions such 

as HIV encephalitis, neurocryptococcosis, and cerebral 

toxoplasmosis (5, 71, 72) Table 2.

5.1.3 Prominent ligand display used in exosome 
engineering
5.1.3.1 RVG peptide

The rabies virus glycoprotein (RVG) peptide has an affinity for 

nAChRs, which are expressed on neurons and BBB endothelial 

cells (77). When fused to exosomal membrane proteins like 

Lamp2b, RVG guides exosomes across the BBB and enables 

targeting of neuronal cells. This has been widely applied in 

RNA-based therapies for brain infections and 

neuroin*ammation (78), Table 3.

5.1.3.2 T7 peptide

T7 is a synthetic peptide that binds selectively to the 

transferrin receptor. It provides a smaller, more stable 

alternative to full-length transferrin (83). Its use in exosome 

engineering supports targeted delivery across the BBB with a 

lower risk of immunogenicity or competition with endogenous 

transferrin (84).

TABLE 1 Ligands for specific brain-infecting pathogens.

Pathogen Target marker Ligand used Delivery strategy

HIV gp120, infected microglia Anti-gp120 scFv, RVG peptide Lamp2b fusion, antibody conjugation (46)

Toxoplasma gondii SAG1, CD36 SAG1-specific aptamer Genetic fusion or aptamer-lipid insertion (47)

Cryptococcus neoformans Glucuronoxylomannan (GXM) Mannose, Dectin-1 peptide Lipid-inserted DSPE-PEG-mannose (48)

Mycobacterium tuberculosis (CNS-TB) Mannose receptor (CD206), ICAM-1 Mannose, anti-CD206 antibody Lipid insertion, chemical conjugation (49)

Herpes simplex virus (HSV) gD/gB glycoproteins gD-binding peptide, anti-gB antibody Genetic display or covalent conjugation (50)
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5.1.3.3 Angiopep-2

Angiopep-2 is designed to interact with the LDL receptor- 

related protein-1 (LRP1), which is highly expressed on the BBB 

endothelium. It is particularly effective in facilitating the 

transport of small molecules and nanoparticles into the brain. 

Exosomes decorated with Angiopep-2 have shown promise in 

treating glioblastoma and CNS infections (85).

5.1.3.4 Transferrin

As a natural ligand of TfR, transferrin has been used to 

decorate exosomes to enhance CNS penetration. However, its 

performance may be affected by high levels of endogenous 

transferrin in circulation, necessitating dosage optimisation or 

combination with synthetic peptides (86) (Figure 2).

5.1.3.5 Apoe fragments

Derived from apolipoprotein E, these peptides target LDL 

receptors and are particularly useful for delivering lipid-based or 

anti-in*ammatory agents to the brain. They offer a biologically 

inspired approach to mimic native BBB transport mechanisms (87).

5.1.4 Applications ligand display in brain-infecting 
pathogen therapy

Exosomes modified with ligands that target the BBB have 

shown promise in directly sending anti-viral, antifungal, and 

antiparasitic medicines to the brain. This focused method makes 

treatments work better against illnesses, including HIV 

encephalitis, neurocryptococcosis, and cerebral toxoplasmosis, 

while lowering the risk of systemic side effects. Researchers have 

examined exosomes with BBB-targeting ligands in several 

neuroinfectious illnesses (78, 88).

Adding BBB-targeting ligands to exosomes is an important step 

forward in creating treatments for brain-infecting viruses. These 

ligands make exosomes more effective at treating diseases by 

helping them get past the brain’s natural defences and deliver 

medicine exactly where it is required. As ligand design and 

delivery methods continue to improve, BBB-targeted exosomes will 

likely change how neuroinfectious diseases are treated (78, 89, 90).

5.2 Genetic engineering tools for 
therapeutic payloads

In addition to surface targeting, exosomes can be genetically 

engineered to encapsulate specific nucleic acid-based 

therapeutics that modulate gene expression in target cells.

5.2.1 CRISPR-Cas9 system

Scientists have made exosomes containing CRISPR/Cas9 

ribonucleoprotein complexes or Cas9 mRNA coupled with guide 

RNAs (gRNAs). This lets them edit genes in latent viral 

reservoirs, including cutting out the HIV provirus from host 

DNA. This method could lead to possible cures for long-term 

CNS illnesses (91, 92).

5.2.2 Small interfering RNA (siRNA) and antisense 
oligonucleotides (ASOs)

siRNAs and ASOs can silence pathogen-specific genes or 

modulate host immune responses. For instance, siRNAs 

targeting HIV tat/rev or HSV ICP0 have demonstrated viral 

suppression. ASOs have been designed to inhibit Cryptococcus 

virulence genes or T. gondii metabolic pathways (93, 94).

5.2.3 Endosomal sorting and cargo loading

To enhance intracellular loading of therapeutic cargo into 

exosomes, donor cells are engineered with exosomal sorting 

motifs: Fusion proteins such as Lamp2b-GFP, CD63-Rab27a, or 

ALIX-binding domains are used to direct siRNAs, proteins, or 

CRISPR components into exosomes. MS2 bacteriophage coat 

protein-RNA aptamer systems have also been used to enrich 

RNA cargos selectively (95, 96).

TABLE 3 The prominent ligands used in exosome engineering.

Disease Ligand used Therapeutic payload Benefit

HIV Encephalitis RVG siRNA or antiretroviral Selective suppression of viral replication in the brain (79).

Neurocryptococcosis Angiopep-2 + Mannose Amphotericin B Enhanced antifungal concentration in CNS tissues (80).

Cerebral Toxoplasmosis T7 + anti-SAG1 aptamer CRISPR or siRNA Precise targeting of T. gondii within neurons (81)

Tuberculous Meningitis Transferrin Rifampicin, mRNA Improved drug transport across the BBB to infected macrophages (82)

TABLE 2 Receptors at the BBB and their ligands.

Receptor at the BBB Function Common ligands used for targeting

Transferrin Receptor (TfR) Iron transport is up-regulated in in*ammation Transferrin, T7 peptide, anti-TfR antibody

Low-Density Lipoprotein Receptor (LDLR) Lipid uptake ApoE, Angiopep-2 (73, 74)

Insulin Receptor (IR) Glucose homeostasis Insulin or IR-targeting peptides

Nicotinic Acetylcholine Receptor (nAChR) Neurotransmission RVG (rabies virus glycoprotein) peptide (75)

Leptin Receptor Energy regulation Leptin fragments

Scavenger Receptors (e.g., SR-B1) Lipid and pathogen uptake HDL-mimetic peptides (76)
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5.3 Chemical engineering to enhance 
exosome stability and specificity

Beyond biological modification, chemical strategies have been 

widely applied to improve exosome robustness, payload stability, 

and cellular targeting (57). These includes;

5.3.1 Click chemistry
Click chemistry is a chemical reaction that happens quickly, 

selectively, and without affecting biological molecules. It “clicks” 

molecular parts together in mild conditions. K. Barry Sharpless 

first came up with this idea in 2001, and it has changed the way 

bioconjugation is done, especially in drug delivery, 

nanomedicine, and diagnostics (97). Click chemistry makes it 

possible to change the surface of exosomes precisely and 

effectively add targeting ligands, imaging agents, or therapeutic 

payloads without damaging their structure or biological activity 

(98, 99). This is especially important for treatments that target 

pathogens that invade the brain, since they need to be delivered 

precisely to infected cells and be able to penetrate the blood- 

brain barrier (BBB). Click chemistry makes it easier to create 

new exosome-based drugs that are specifically designed to treat 

CNS infections (100).

The Copper (I)-catalysed azide-alkyne cycloaddition (CuAAC) 

is the most common click reaction. It makes a stable 1,2,3-triazole 

ring between an azide and an alkyne molecule. Click chemistry is 

known for having high specificity and yield, mild reaction 

conditions (physiological pH and temperature), bio- 

orthogonality (it does not interfere with biological processes), 

and few byproducts. In biological systems, copper-free “click” 

reactions like strain-promoted alkyne-azide cycloaddition 

(SPAAC) and inverse electron-demand Diels-Alder (IEDDA) 

reactions are preferred since they do not cause copper ions to 

be poisonous to cells (101, 102).

5.3.2 Surface Functionalisation
Click chemistry enables covalent attachment of targeting 

ligands (e.g., antibodies, peptides, aptamers) to guide exosomes 

to pathogen-infected cells, BBB-penetrating moieties such as 

transferrin, lactoferrin, or RVG peptides for enhanced brain 

uptake and *uorescent or radiolabels for tracking and imaging 

in vivo. Some studies indicate that the exosome surface is first 

functionalised with azide groups, then a DBCO-modified RVG 

peptide is “clicked” on via SPAAC, allowing specific targeting to 

neurons infected with viral pathogens (103–105).

5.3.3 Cargo Loading Enhancement
Click chemistry allows for internal or membrane-bound 

anchoring of therapeutic molecules: CRISPR-Cas9 components, 

siRNA or antisense oligonucleotides, Antimicrobial peptides and 

Anti-in*ammatory small molecules. Such modifications ensure 

controlled orientation and stability, which are crucial for precise 

delivery in the CNS microenvironment (57).

5.4 Relevance of chemical engineering 
exosome in brain-infecting pathogen 
therapy

Click chemistry enhances the therapeutic utility of exosomes 

in several pathogen-targeted applications HIV-Associated 

Neuroinfections: Enables display of gp120-binding aptamers on 

exosomes for targeting infected microglia (106). Herpes Simplex 

Virus (HSV): Facilitates loading of anti-HSV siRNA inside 

exosomes with modified membrane proteins for enhanced 

neuronal uptake (57).Toxoplasmosis: Allows tethering of 

parasite-targeting antibodies on exosomal surfaces to direct 

them toward infected astrocytes (107). Tuberculous Meningitis 

(TBM): Supports BBB-targeted delivery of anti-TNF-α siRNA 

using click-functionalised exosomes (104, 105). The challenges 

for consideration include toxicity. A study showed copper 

toxicity (CuAAC) reaction that requires careful post-reaction 

purification or copper-free variants (93, 94). Ensuring batch-to- 

batch consistency in functionalisation is necessary for clinical- 

grade applications for scalability (108). Modifications must 

preserve exosome structure and prevent immune clearance 

(109), thereby enhancing the biocompatibility of ligands. Surface 

modifications may not always guarantee internalisation into the 

intended subcellular compartment (102), improving intracellular 

targeting. However, prospects could involve developing 

multifunctional click-compatible ligands (e.g., dual BBB- 

targeting and infection-targeting)—integration with 

bioorthogonal imaging for real-time tracking of therapeutic 

delivery (108). Scalable GMP-compliant click chemistry 

platforms for clinical-grade exosome production—application of 

click-to-release systems where cargo is activated only in the 

infected microenvironment (110). The click chemistry gives us a 

strong and *exible set of tools for changing the surfaces and 

interiors of exosomes. This makes it possible to deliver drugs to 

infected areas in the brain very selectively, efficiently, and stably. 

Exosomes are a critical molecular method for developing 

precision treatment for brain-infecting diseases because they 

work well with biological systems and have natural targeting and 

transport capabilities (110).

5.5 Conjugation strategies and chemistry

Aptamers can be conjugated to exosomes using several 

chemical and genetic methods:

5.5.1 Covalent conjugation
Click Chemistry: Copper-catalysed azide-alkyne cycloaddition 

(CuAAC) enables site-specific attachment of alkyne-modified 

aptamers to azide-labelled exosomal surface proteins or vice versa.

Maleimide-thiol linkage: Aptamers modified with thiol groups 

can be linked to maleimide-functionalised lipids embedded in 

exosome membranes (55).
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5.5.2 Lipid insertion

Post-isolation, cholesterol or other lipid-conjugated aptamers 

are passively inserted into the lipid bilayer of exosomes via 

hydrophobic interaction, preserving aptamer functionality and 

exosome integrity (111).

5.5.3 Genetic engineering

Parent cells can be transfected to express aptamer-binding 

domains fused with exosomal membrane proteins (e.g., Lamp2b, 

CD63), allowing selective display of aptamers on exosomal 

surfaces after loading (45).

5.6 Aptamer conjugation in exosome 
engineering for targeted CNS infection 
therapy

Aptamer conjugation has become a *exible and valuable way 

to make exosomes functional for targeted delivery, notably in 

the problematic area of central nervous system (CNS) infections 

(112). The Systematic Evolution of Ligands by Exponential 

Enrichment (SELEX) technique chooses aptamers, which are 

short, single-stranded DNA or RNA oligonucleotides, to bind 

strongly and selectively to a wide range of targets, such as 

proteins, cells, and tiny molecules (45, 113). The rationale for 

Aptamer Use in brain-targeted exosome therapy is that 

aptamers can resemble antibodies in recognising targets because 

of their unique structural folding. They also have benefits such 

as being less immunogenic and poisonous. Easier to make and 

change, better stability in various physiological circumstances 

and a high binding selectivity with an affinity of nanomolar to 

picomolar (114). In the context of CNS-targeted therapies, 

aptamers can be selected to bind to: Blood-brain barrier (BBB) 

transporters (e.g., transferrin receptor, insulin receptor), 

Pathogen-specific antigens (e.g., surface proteins of Neisseria 

meningitidis, Cryptococcus neoformans, or viral envelope 

proteins), infected cells or in*ammatory microenvironment 

markers (e.g., ICAM-1, VCAM-1, and CD44) (114, 115).

5.6.1 Evidence applications of aptamer- 
functionalised in CNS infection targeting
5.6.1.1 BBB translocation

Aptamers that bind transferrin or insulin receptors let 

exosomes penetrate the BBB through receptor-mediated 

transcytosis. For example, exosomes with transferrin receptor 

aptamer (like TVRA) attached to them and filled with siRNA or 

antibiotics worked better at getting into the central nervous 

system in models of bacterial meningitis (74).

5.6.1.2 Pathogen-Directed targeting

Exosomes containing aptamers that target pathogen virulence 

factors (such as HIV gp120 and Listeriolysin O) can carry anti- 

viral or anti-bacterial drugs directly to infected cells, reducing 

systemic exposure risk (116).

5.6.1.1 Neuroin.ammation modulation

Aptamers that bind to markers of neuroin*ammation, such as 

TNF-α, IL-6 receptors, and activated microglia markers, can send 

exosomes with anti-in*ammatory miRNAs or medicines to sick 

parts of the brain (117, 118). However, aptamers are better than 

other targeting ligands like antibodies and peptides because they 

are easier to make and change, cheaper, and penetrate better. 

After all, they are smaller and have a lower risk of activating the 

immune system, which is important for repeated CNS 

therapeutic dosing (89, 90, 119).

Furthermore, the challenges are that nucleases may degrade 

aptamers; however, chemical modifications (e.g., 2′-*uoro, 2′- 

O-methyl substitutions) can enhance nuclease resistance. Scale- 

up of aptamer-exosome conjugates under GMP conditions 

remains underdeveloped, leading to manufacturing complexity. 

High mutation rates in pathogens may necessitate re-selection of 

aptamers due to target variability (120).

Future research engagement will be to develop multiplexed 

exosomes conjugated with multiple aptamers for simultaneous 

targeting of co-infections or complex CNS environments. 

Integration of aptamer-exosome systems with stimuli-responsive 

release mechanisms. Clinical-grade aptamer libraries for broader 

CNS pathogen spectrum coverage (120). Aptamer conjugation will 

make exosome-based delivery platforms more accurate for treating 

CNS infections. This technique has much potential for turning 

molecular discoveries into next-generation, tailored drugs for 

brain-infecting pathogens thanks to improvements in aptamer 

selection, conjugation chemistry, and exosome bioengineering (121).

6 Lipid modification in exosome 
engineering for targeted CNS 
infection therapy

Changing the lipids on exosomes is a key part of exosome 

engineering since it allows the change of the surface of 

exosomes to make them better at targeting, staying stable, and 

delivering their cargo. Exosomes are naturally lipid-bilayer 

vesicles; thus, changing their lipid parts is a safe and effective 

way to deliver drugs better, especially for hard-to-reach areas 

like the brain, where they can target infectious agents (45) 

(Figure 3). The rationale for lipid modification in CNS 

therapeutics is that exosomes have a lipid bilayer comprising 

cholesterol, sphingomyelin, phosphatidylserine, and other 

phospholipids similar to cell membranes. These structural 

commonalities give targeted delivery and intracellular trafficking 

significant benefits (115). However, native exosomes do not 

naturally go to infected brain areas. Changing lipids can help 

get beyond the BBB, avoid immune clearance, and stay longer at 

infected or in*amed areas. Changing lipids makes exosomes 

more stable in the blood, which helps them penetrate through 

the blood-brain barrier (BBB) and adhere to diseased or 

in*amed brain tissues more easily. It also helps ligands 

(including aptamers, peptides, and antibodies) stick to the 

surface of the exosome (45).
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6.1 Strategies for lipid modification of 
exosomes

Several methods have been developed to alter or enhance the 

lipid composition of exosomes either pre-isolation (during 

biogenesis) or post-isolation (after purification). The post- 

isolation lipid insertion strategy involves passively inserting 

or incorporating modified lipids into the exosome membrane 

(45). For instances, cholesterol-conjugated ligands such as 

molecules like miRNA, aptamers, or peptides can be attached 

to cholesterol and inserted into exosome membranes via 

hydrophobic interactions (73, 74). Also, PEGylated lipids 

(e.g., DSPE-PEG), here the insertion of polyethene glycol 

(PEG)-linked lipids can prolong circulation time, reduce 

opsonisation and clearance by macrophages, and provide 

anchor points for further ligand attachment (e.g., via NHS 

ester or maleimide groups) (122). Lastly is targeting ligand- 

lipid conjugates such as RVG (rabies virus glycoprotein 

peptide), transferrin, or folate can be conjugated to lipids like 

DSPE and inserted to enhance brain or pathogen-specific 

targeting (123). On the other hand, is the pre-isolation lipid 

engineering in donor cells that involves lipid supplementation 

in culture, were the parent cells are cultured with exogenous 

modified lipids, which get incorporated into budding 

exosomes (124). Also, genetic modification of donor cells that 

involves overexpression of enzymes like ceramide synthase or 

phospholipid remodelling enzymes changes the lipid profile of 

secreted exosomes, improving membrane *uidity or targeting 

properties (125).

6.2 Applications of lipid modified exosomes 
in targeted therapy of brain-infecting 
pathogens

Lipid-modified exosomes have been explored in multiple 

therapeutic contexts, such as:

6.2.1 BBB penetration enhancement

RVG–lipid modified exosomes have shown the ability to 

deliver siRNA or drugs across the BBB by targeting the nicotinic 

acetylcholine receptor. Lipid-conjugated PEGylation delays RES 

(reticuloendothelial system) clearance and promotes 

accumulation in brain tissue (126).

6.2.2 Pathogen- or inflammation-targeted 

delivery
Modified lipids attached to mannose or ICAM-1 targeting 

ligands can send exosomes to activate the immune system or 

infected endothelial cells. Phagocytic cells (like microglia) are 

more likely to take up exosomes modified with 

phosphatidylserine analogues. This makes them suitable for 

delivering drugs directly to the site of bacterial meningitis or 

neuroinvasive fungal infections (127–129).

6.2.3 Drug loading enhancement

Lipid-modified exosomes can more efficiently encapsulate 

hydrophobic anti-pathogen drugs (e.g., amphotericin B, 

rifampicin, acyclovir). Thermosensitive lipids allow triggered 

FIGURE 3 

Exosome-based targeted therapy for brain infections.
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cargo release in response to localised heating or in*ammation (44, 

127–129).

Among the limitations and challenges of exosomes’ 

applications in targeted therapy of brain-infecting pathogens are 

membrane integrity-associated excessive modification, which 

may disrupt membrane *uidity or exosome uptake efficiency. 

Inconsistent lipid insertion or orientation can affect targeting 

and therapeutic outcomes. Specific synthetic lipid moieties may 

elicit immune responses in vivo. Reproducibility and cost- 

efficiency in clinical-grade lipid modifications are still under 

optimisation (109, 130). However, future research perspectives 

could focus on stimuli-responsive lipids (e.g., pH-sensitive, 

redox-sensitive, thermosensitive) for controlled drug release in 

infected CNS regions. Exosomes with lipid modifications can do 

more than one thing, like imaging agents, targeting ligands, and 

therapeutic payloads for theranostic uses. Synthetic exosome 

mimetics that use specific lipid compositions to copy the 

qualities of natural exosomes while making them easier to 

manage. Changing the lipids in exosomes is a game-changing 

way to make medicines for CNS illnesses. Exosomes can be 

made better for targeted delivery, longer circulation, and 

efficient payload release by changing the structure of the lipids. 

New discoveries in lipid chemistry, membrane biology, and 

nanomedicine will improve these tactics, giving doctors more 

options for treating deadly brain infections with precision and 

little harm to the rest of the body (131, 132).

7 Exosome-based drug delivery 
systems against brain pathogens

Exosome-based drugs are a game-changer for treating central 

nervous system infections (CNS) infections, especially when 

traditional treatments don’t work well because they don’t get 

through the blood-brain barrier (BBB), are toxic, or aren’t 

targeted enough (16). Exosomes provide a *exible, 

biocompatible, and targeted way to distribute a wide range of 

drugs, from small compounds and biologics to gene-editing 

systems, straight to brain areas that are diseased or in*amed 

(133). Here, we talk about new improvements in exosome- 

mediated delivery systems that are made to treat viral, fungal, 

protozoal, and neuroin*ammatory disorders that affect the brain.

7.1 Antiretroviral delivery for 
HIV-associated CNS infections

Conventional antiretroviral therapy (ART) is often ineffective 

in eliminating HIV reservoirs in the brain due to limited drug 

penetration and persistence of the virus in microglial cells. 

Engineered exosomes have shown promise in overcoming these 

barriers (134).

7.1.1 Tenofovir and efavirenz delivery
Exosomes from macrophages or mesenchymal stem cells have 

wrapped up tenofovir and efavirenz and sent them straight to the 

CNS. These exosomes show that they can cross the BBB more 

easily, deliver drugs directly to infected microglia, and release 

them over time, which lowers systemic toxicity and raises CNS 

drug concentrations (135).

7.1.2 CRISPR-Based HIV gene editing tools

Exosomes could transport CRISPR-Cas9 ribonucleoproteins, 

mRNA, and guide RNAs targeting integrated HIV DNA (e.g., 

LTR, gag, or tat/rev regions). Based on exosomes, these methods 

provide a non-viral, immunologically safer way to cut out genes 

or stop the production of proviral HIV in CNS reservoirs, which 

could lead to functional cure treatments.

7.2 Antifungal strategies against 
cryptococcus neoformans

Current antifungal drugs have toxic profiles and don’t get into 

the brain very well, which makes it very hard to treat cryptococcal 

meningitis. Researchers are working on exosome-based delivery 

systems to make them more effective and less harmful (136).

7.2.1 Amphotericin B-loaded exosomes
Amphotericin B is very toxic when given systemically, so it 

benefits from being put in exosomes, which makes it more soluble, 

targets the brain better, and lowers its toxicity to the kidneys. 

Preclinical models have shown reduced fungal burden and 

improved survival using exosome-encapsulated formulations (137).

7.2.2 Fluconazole-loaded exosomes

Exosomes functionalised with mannose ligands have been 

used to selectively target Cryptococcus cells by binding to fungal 

surface mannoproteins, thereby enhancing the antifungal action 

of *uconazole while reducing off-target effects (138, 139).

7.3 Antiprotozoal applications for 
toxoplasma gondii

Toxoplasmic encephalitis remains a significant cause of 

mortality in immunocompromised populations, and new 

molecular approaches are needed to overcome the parasite’s 

ability to form latent cysts in the brain (140).

7.3.1 SiRNA-loaded exosomes

Scientists have made exosomes that deliver siRNAs that target 

important virulence genes of T. gondii, such as ROP18 (rhoptry 

protein 18), which helps the parasite avoid the immune system, 

and SAG1 (surface antigen 1), which helps the parasite invade 

host cells. In preclinical animals, these siRNA-loaded exosomes, 

especially when paired with ligands that can cross the blood- 

brain barrier (such as RVG or transferrin), have been shown to 

stop parasite reproduction, lower cyst burden, and enhance 

survival (139, 141).
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7.4 Implication of exosomes in 
neuroprotective payloads to counter CNS 
damage

Infections in the CNS can cause neuroin*ammation, oxidative 

stress, and damage to neurons, long after the pathogens are gone. 

Exosomes can also transport neurotropic and anti-in*ammatory 

drugs to help rehabilitate and stop long-term neurological 

problems (142).

7.4.1 Brain-derived neurotrophic factor (BDNF) 

and glial cell line-derived neurotrophic factor 
(GDNF)

When given through exosomes, these neurotrophins have 

been demonstrated to help neurons stay alive, make synapses 

more *exible, and fix broken brain circuits in models of viral 

encephalitis and HIV-related neurodegeneration (143).

7.4.2 MiRNA-Loaded exosomes

Exosomes high in anti-in*ammatory miRNAs like miR-124, 

miR-146a, or miR-21 can change how microglia work, stop pro- 

in*ammatory cytokines (such as TNF-α and IL-6), and help 

neuroin*ammation go away. These miRNA therapeutics help 

pathogen-specific treatments by reducing harm to the immune 

system in the CNS (144). Exosome-based delivery systems 

provide a multi-faceted way to treat CNS infections by carrying 

anti-bacterial and gene-editing medicines and neuroprotective 

and anti-in*ammatory compounds. Exosomes are one of the 

most promising platforms for next-generation treatments for 

brain-infecting diseases because they can transport different 

payloads, target specific cell types, and penetrate biological 

barriers. Continued progress in standardisation, biodistribution 

studies, and clinical-grade manufacturing will be essential to 

translate these innovations into human therapies (145).

8 Implications of exosomes on routes 
of administration and bioavailability

The therapeutic efficacy of exosome-based delivery systems in 

treating CNS infections is highly dependent on the route of 

administration and the biodistribution of these nanocarriers 

(146). Given the complexity of the blood-brain barrier (BBB) 

and latent pathogen reservoirs in specialised CNS 

compartments, optimising how exosomes are delivered—and 

understanding where they localise—is essential for clinical 

success (147).

8.1 Delivery routes for CNS-targeted 
exosomes

Several administration routes have been explored to maximise 

exosome delivery to the brain. The choice of route in*uences 

distribution, onset of action, and clinical feasibility (148).

8.1.1 Intranasal delivery

A non-invasive and patient-friendly route that enables 

exosomes to bypass the BBB via the olfactory and trigeminal 

nerve pathways. The various studies show that RVG-tagged 

exosomes delivered intranasal accumulations in the olfactory 

bulb, hippocampus, and cortex within hours and are particularly 

effective for siRNA and CRISPR-Cas9 cargo in models of viral 

encephalitis and neuroHIV (149).

8.1.2 Systemic (intravenous) administration

While systemic injection (IV) is the most common method, 

the reticuloendothelial system may rapidly clear unmodified 

exosomes. Surface modification with ligands like transferrin, 

RVG, or lactoferrin enhances BBB crossing and CNS uptake. 

Bio distribution studies confirm CNS accumulation, especially in 

in*ammatory or infected brain regions, due to enhanced 

permeability (150).

8.1.3 Intrathecal injection

Direct administration into the cerebrospinal *uid (CSF) 

spreads the drug throughout the CNS and avoids systemic 

metabolism. Exosomes can reach the spinal cord, meninges, and 

deep brain regions when injected into the spine. They are 

employed in models of fungal meningitis and toxoplasmic 

encephalitis (127–129).

8.1.4 Intraventricular injection
It provides high local concentrations of exosomes in the 

brain’s ventricular system and is used for preclinical studies 

targeting deep-seated infections or delivering neurotropic 

factors. Invasive but highly effective in rodents for testing 

exosome pharmacokinetics and payload release (151).

8.2 Imaging and tracking of exosomes

Exosomes must be tracked in vivo to evaluate distribution, 

clearance, and CNS specificity to assess their therapeutic 

relevance. Multiple labelling and imaging techniques have been 

developed, including;

8.2.1 Radiolabeling
Isotopes like 99mTc, 111In, and 64Cu are conjugated to 

SPECT or PET imaging exosomes, providing quantitative 

biodistribution data. This enables longitudinal tracking in small 

animals and non-human primates and demonstrates preferential 

accumulation in the brain, spleen, liver, and infected sites (152).

8.2.2 Fluorescence imaging

Lipophilic dyes such as DiR, DiI, and PKH26 label exosomal 

membranes. This will allow real-time tracking in live animal 

imaging systems (IVIS) and histological studies, and also 

confirms accumulation in microglia, astrocytes, and infected 

neuronal zones post-administration (153, 154).
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8.2.3 MRI contrast agents

Incorporation of superparamagnetic iron oxide nanoparticles 

(SPIONs) into exosomes permits visualisation by MRI. This 

offers high-resolution anatomical mapping of exosome 

localisation in brain tissues (155).

8.3 Evidence of CNS accumulation and 
specificity

Several preclinical studies have confirmed the ability of 

engineered exosomes to cross the BBB and selectively target 

CNS pathogens. RVG-modified exosomes delivering anti-HIV 

siRNA showed specific uptake by HIV-infected microglia and 

reduced viral replication in the CNS. In Cryptococcus infection 

models, mannose-modified exosomes loaded with amphotericin 

B localised preferentially to infected meninges and reduced 

fungal burden significantly. Exosomes tagged with T. gondii- 

specific aptamers demonstrated high specificity for parasitic 

cysts in the brain and suppressed cystogenesis when carrying 

gene-silencing cargo (156). This review again shows that 

optimising delivery routes and surface engineering are 

important for getting targeted therapy, reducing off-target 

effects, and increasing the therapeutic index in CNS infections. 

By carefully choosing the right ways to give exosomes and doing 

precise molecular engineering, we may get them to the CNS 

areas more effectively. Modern tracking technology gives us 

much information about how exosomes move through the body 

and where they go. These new ideas make using exosome-based 

medicines in clinical settings possible to treat hard-to-treat brain 

infections (157).

9 Translational and clinical 
considerations

Exosome-based therapies show great potential for CNS 

infections; however, their clinical application faces substantial 

technical, regulatory, and manufacturing impacts. Despite 

preclinical progress, there are no approved therapies due to a 

number of issues, including logistical challenges with bulk 

production, safety verification, regulatory issues, and undefined 

quality control measures (8).

9.1 Scalability and manufacturing 
challenges

Exosome production remains difficult to scale reproducibly, 

with yields varying by donor cell type, culture conditions, and 

passage number. Although bioreactors and tangential *ow 

filtration (TFF) improve yield and purity compared to 

ultracentrifugation or precipitation, batch-to-batch 

reproducibility and GMP-compliant release criteria (identity, 

purity, potency) are not yet standardized (180).

9.2 Immunogenicity and safety profiles

While generally considered biocompatible, engineered or 

allogeneic exosomes may carry PAMPs or in*ammatory 

molecules that raise immunogenicity concerns (181). PEGylation 

and membrane engineering (e.g., CD47 expression) can mitigate 

risk, but regulators require extensive long-term toxicology, 

biodistribution, and off-target data. Preclinical reports of low 

toxicity for exosome-based siRNA, CRISPR, or antifungal 

delivery (158) remain too limited in scale to satisfy clinical 

standards (159).

9.3 Regulatory landscape and clinical trials

Exosome therapies fall into a gray zone between biologics, cell- 

derived products, and nanomedicine, complicating approval 

pathways. Regulatory agencies (FDA, EMA, CDSCO) demand 

source traceability, sterility, reproducible characterization, and 

validated potency assays. Although early-phase trials in cancer 

and neurodegeneration demonstrate safety and CNS targeting, 

no product has yet been approved for CNS infections, re*ecting 

the regulatory bottlenecks (160).

9.4 GMP compliance and quality control

Currently, no harmonized GMP standards exist for exosome 

therapeutics. Key analytical markers—particle size (30–150 nm), 

zeta potential, protein cargo (CD9, CD63, CD81), and RNA 

content—are inconsistently applied, and robust potency assays 

are undeveloped. Lack of clear release specifications and 

validated QC assays for clinical-grade exosomes remains a 

critical barrier to regulatory approval (161). Also, the challenge 

of batch-to-batch consistency requires stringent protocols for 

donor cell characterisation, culture conditions, and post- 

processing storage (e.g., lyophilisation, cryopreservation). Like 

Quality Control Technologies are Nanoparticle tracking analysis 

(NTA), Western blotting and *ow cytometry for surface 

markers (CD63, CD81, CD9) and High-throughput RNA 

sequencing for transcript cargo profiling (162).

9.5 Toward personalised medicine and 
point-of-care delivery

Exosome platforms hold significant promise for individualised 

therapies, especially in settings where rapid, tailored interventions 

are needed:

9.5.1 Personalised drug delivery
Exosomes from patients could contain gene-editing tools or 

targeting ligands that are distinct to each patient. This would 

lower immune responses and make the treatment more effective. 

This method could help get rid of latent reservoirs with great 
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accuracy in CNS illnesses like neuroHIV or 

toxoplasmic encephalitis.

9.5.2 Point-of-care potential

Modular bioreactors and lab-on-chip separation devices could 

be used to make portable production and management systems 

that can be used on-site. This is especially important in areas 

with few resources or many disease outbreaks, where treatments 

need to be given quickly. The journey from bench to bedside 

for exosome-based therapies targeting brain infections is 

promising but complex. Addressing scalability, immunogenicity, 

GMP compliance, and regulatory alignment is essential to 

unlock the full therapeutic potential of this platform. Advances 

in standardisation, automation, and personalised approaches will 

accelerate clinical translation and open new avenues for treating 

challenging CNS infections with precision and safety (163).

10 Limitations of exosome-based 
delivery

Exosome-based delivery platforms have many technical 

challenges that prevent clinical translation. One of the biggest 

challenges is batch-to-batch variability, since yield, cargo 

composition, and functional activity are dependent on cell 

source, culture conditions, and scale-up process, making it 

difficult to get reproducible results. In addition, exosome 

preparations may be contaminated with other forms of 

extracellular vesicles (microvesicles, apoptotic bodies) and non- 

vesicular biomolecules, such as protein aggregates, lipoproteins, 

and RNA–protein complexes, making functional assessment 

complicated and figuring out dosage issues difficult and raising 

safety concerns (164). Additionally, there is a lack of 

standardized isolation and purification methods. The most 

routinely used approaches for isolating and purifying exosomes 

include ultracentrifugation, precipitation, size-exclusion 

chromatography, and tangential *ow filtration. Each of these 

methods yields different amounts of exosomes with differing 

levels of purity and different scalability, and no agreement on 

how to create clinical-grade protocols (165). Lastly, quality 

control and potency assays are underdeveloped, and the 

commonly used exosome markers (CD9, CD63, CD81) reveal 

identity, but do not measure therapeutic efficacy. These issues— 

variability, contamination, non-standardized purification, and 

potency assays—are all significant barriers that need to be 

overcome if we are to translate exosome therapeutics into 

clinical use (109).

11 Future perspectives and research 
directions

The area of medication delivery using exosomes is moving 

quickly forward and can potentially change how we diagnose 

and treat diseases. However, a few important areas still need 

more research to completely understand what exosomes can do, 

especially in complicated illnesses, including the central nervous 

system (CNS), cancer, and infectious disorders. We must also 

plan how exosome research and clinical translation will go over 

the next ten years (51, 166).

11.1 Mechanistic insights into exosome– 
pathogen interactions

One critical area of future research involves elucidating the 

molecular and cellular mechanisms underlying exosome- 

pathogen interactions. Exosomes can inhibit or facilitate 

pathogen dissemination by serving as decoys or carriers. 

Understanding: How viruses like HIV, SARS-CoV-2, or Zika 

exploit exosomal pathways, the role of exosomal cargo 

(miRNAs, proteins, lipids) in modulating immune responses, 

Host-pathogen communication through exosomal signaling, will 

not only improve our comprehension of disease progression but 

may also enable the repurposing of exosomes as anti-viral or 

antimicrobial delivery tools. High-resolution proteomics and 

single-exosome RNA sequencing technologies will be 

instrumental in uncovering these mechanisms (166).

11.2 Synthetic exosomes and hybrid 
delivery systems

Natural exosomes are safe for living things, but they have 

problems with scalability, heterogeneity, and loading cargo 

efficiently. So, people have been paying attention to the rise of 

synthetic exosomes (or biomimetic vesicles). These 

manufactured structures copy the physical and biological 

properties of natural exosomes, which allow changes in their 

composition and surface in a regulated way, encapsulate drugs 

more effectively and precisely, and make them more stable and 

last longer. Hybrid technologies, including exosome-liposome 

hybrids or exosome-coated nanoparticles, also have the 

advantage of targeting naturally and having engineered 

functionality. These platforms may prove especially useful in 

crossing the blood-brain barrier (BBB) or targeting hard-to- 

reach tissues (167).

11.3 Integration with AI-driven exosome 
design, Bio printing, and organ-on-chip 
models

The integration of computational biology and Artificial 

intelligence (AI) is being increasingly used in exosome 

engineering, including cargo loading, surface modification, 

targeting, and quality control. Machine learning can help predict 

the most efficient encapsulation of RNA or drug; while there are 

programs (e.g., with AlphaFold) that could assist with designing 

ligands or peptides for improved targeting toward the brain 

(168). For example, AI-guided optimization of miRNA loading 

for glioblastoma treatment, as well also computational docking, 
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were used to support engineering RVG-tagged exosomes that can 

cross the blood–brain barrier (169). AI has also made patient- 

specific predictions by analyzing exosomal biomarkers and 

supporting personalized medicine. Next generation, AI-driven 

imaging is expected to improve reproducibility and the quality 

of evidence that goes into manufacturing. The incorporation of 

robotics for liquid handling and integrating AI with high- 

throughput screening and design may help lead to more 

efficient scaled-up exosome-based therapies for clinical use 

(170). Moreover, 3D bio printing can aid in fabricating 

exosome-loaded scaffolds for regenerative applications, such as 

neural repair or cardiac tissue engineering. Alongside this, 

organ-on-chip platforms (like brain-on-chip or liver-on-chip) 

are being developed to mimic in vivo environments, providing a 

more accurate preclinical assessment of exosome-based 

therapeutics, including toxicity and permeability studies (171).

11.4 Combinatorial therapeutic approaches

Combinatory Medicines Combinatory medicines refer to 

therapies that include two or more agents that work 

synergistically, have better resistance profiles, or are less toxic 

than monotherapies. This approach is increasingly important in 

multifactorial diseases including cancer, infections, and 

neurological disorders with multiple therapeutic targets (172). 

For instance, chemotherapy plus immunotherapy (e.g., PD-1 

inhibitor plus paclitaxel) has demonstrated improved survival 

rates in patients with non-small cell lung cancer (173). In 

infectious diseases, antiretroviral therapy (ART) involves 

combination therapies that target different stages of the HIV life 

cycle to reduce viral resistance. The use of a multiple-drug 

regimen to treat tuberculosis (isoniazid, rifampicin, ethambutol, 

pyrazinamide) is essential to ensure resistant strains do not 

develop and to ensure that patients ultimately receive a curative 

treatment (174). In the neurological context, levo-dopa with 

carbidopa used as a co-medication in Parkinson’s disease (PD) 

to increase efficacy and decrease undesirable systemic side 

effects. There is ongoing research into co-delivery of drugs (e.g., 

doxorubicin with siRNA) via various delivery vehicles including 

nanoparticles or exosomes to improve delivery targeting and 

maximize therapeutic outcomes (24, 25, 175).

11.5 Standardisation, regulatory 
advancements, and clinical translation

While the exosome engineering for targeted therapy for brain- 

infecting pathogens is promising, the clinical application of 

exosomes still requires standardised isolation, characterisation, 

and storage protocols (176). Therefore, future research could 

focus on creating potency tests and quality control measures for 

clinical-grade exosomes, setting up production lines that follow 

good manufacturing practices (GMP), and making rules for 

making synthetic or hybrid exosome compositions. Long-term 

clinical trials are also necessary to determine the long-term 

safety, immunogenicity, and therapeutic results of exosome- 

based therapeutics in different patient groups. Exosome research 

is at a crucial point, with progress in several fields coming 

together to realise their therapeutic potential fully (158). Future 

work should harness molecular tools, delivery approaches, and 

translational challenges, using synthetic biology, nanotechnology 

and AI to enhance targeting, scalability, and safety for exosome 

based therapies for brain pathogens. As the area grows, it will be 

important to deal with mechanistic gaps, translational obstacles, 

and regulatory hurdles to successfully move from bench to 

bedside (177, 178).

12 Conclusion

Exosome engineering represents a paradigm shift in targeted 

drug delivery, particularly for challenging conditions like central 

nervous system (CNS) infections. These infections—including 

viral encephalitis, bacterial meningitis, fungal neuroinfections, 

and parasitic diseases—are often life-threatening and difficult to 

treat due to the presence of the blood–brain barrier (BBB), 

which limits the entry of most therapeutics into the brain. One 

of the most remarkable attributes of exosomes is their innate 

ability to traverse the BBB, a property not shared by many 

conventional drug delivery vehicles. This makes them uniquely 

equipped to deliver therapeutic agents directly to infected or 

in*amed brain tissues. Furthermore, exosomes can be 

engineered to carry customised cargo, such as: anti-viral or anti- 

bacterial drugs, Anti-in*ammatory molecules, Small interfering 

RNA (siRNA), microRNA (miRNA), or mRNA, Proteins or 

peptides that modulate host immune responses. These 

capabilities allow exosomes to act as passive carriers and 

bioactive modulators of the host–pathogen interface. Their 

biocompatibility, low immunogenicity, and ability to mimic 

natural intercellular communication further enhance their 

potential as delivery platforms for CNS-targeted therapy. 

Additionally, exosomes can be derived from various cell types— 

such as dendritic cells, macrophages, mesenchymal stem cells, or 

even brain endothelial cells—to fine-tune their surface markers 

and targeting properties. When engineered with specific ligands 

or surface peptides, they can achieve cell-type-specific delivery, 

reducing off-target effects and increasing therapeutic precision. 

Despite these advantages, the field must overcome several 

translational challenges, including: Scalable and reproducible 

manufacturing, Comprehensive safety profiling, regulatory 

approval hurdles, and standardised characterisation protocols. 

Nevertheless, with continued progress in nanotechnology, 

synthetic biology, and systems pharmacology, integrating 

exosome-based therapies into clinical practice appears 

increasingly feasible. Exosome engineering holds tremendous 

promise for transforming the treatment landscape of CNS 

infections. By enabling precision-targeted delivery, promoting 

host-pathogen modulation, and facilitating cross-BBB drug 

transport, exosomes are poised to become next-generation 

therapeutic vectors. A key strength of exosome engineering lies 

in its adaptability to pathogen-specific challenges. By 
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considering where pathogens reside (e.g., microglia, neurons, 

meninges), how they persist (latency, cyst formation, immune 

evasion), and which surface markers they express, exosome 

platforms can be rationally tailored to deliver precise therapeutic 

payloads. This pathogen-focused approach not only enhances 

therapeutic efficacy but also reduces off-target effects, 

positioning exosomes as uniquely suited for tackling diverse 

CNS infections. As interdisciplinary collaborations expand and 

mechanistic understanding deepens, exosome-based therapies 

could redefine how we approach and manage complex 

neuroinfectious diseases, potentially improving patient 

outcomes worldwide.
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