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Introduction: KineFeet, a depth camera-based web tool for analyzing 

functional foot kinematics, was developed and tested in this study. The 

program was optimized for usability, affordability, and clinical relevance 

through an iterative design and development process.

Methods: The Azure Kinect DK camera records and analyzes sagittal and frontal 

plane foot movements in real time. A usability-focused study was created. Five 

physiatrists tested the KineFeet prototype for its ability to assess foot kinematics. 

Performance was measured by task completion success, error rate, and time. 

The System Usability Scale (SUS) measured user satisfaction. Quality 

assessments were also obtained through semi-structured interviews.

Results: Participants achieved an average success rate of 96.29%, with an error 

rate of 0.074% and an average completion time of 10 min 11 s. Time-Based 

Efficiency (TBE) showed that user performance (0.0442 tasks/s) was 1.21 

times slower than expert user performance (0.05348 tasks/s). SUS yielded an 

average score of 66.5, indicating a good level of satisfaction and 

user acceptance.

Conclusion: KineFeet represents a promising innovation in assessing 

functional foot kinematics. The system demonstrated strong usability in 

preliminary testing and holds potential for broader clinical adoption following 

further development.
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1 Introduction

Although static measures of foot posture are only weakly 

related to rearfoot or midfoot kinematics and have limited 

ability to predict dynamic movement, assessing foot kinematics 

is crucial for diagnosing and managing lower extremity 

musculoskeletal issues (1). Optical motion capture systems, 

widely recognized as the gold standard for gait analysis, face 

significant challenges due to their high cost, complex setup, and 

limited availability (2). Consequently, there is an increasing 

demand for more practical and clinically relevant alternatives. 

Developing affordable and easily accessible gait analysis tools via 

web-based software could democratize movement analysis and 

facilitate the creation of personalized treatment plans (3). 

Successfully building such a system requires a comprehensive 

understanding of biomechanics, software engineering, and data 

processing techniques (4).

The initial stage of developing a web platform involves 

selecting appropriate sensors and hardware components that are 

comprehensive and capable of capturing the necessary kinematic 

data with high fidelity. Depth camera technology, initially 

developed for gaming and consumer electronics, has 

demonstrated potential for motion tracking applications (5–7). 

Devices such as the Azure Kinect DK offer depth sensing and 

skeletal tracking capabilities at a markedly reduced price 

compared to advanced optical motion capture systems (8–11). 

A study using three depth sensors found that the Azure Kinect 

demonstrated better tracking performance for kinematic gait 

patterns during treadmill walking at non-frontal viewing angles 

compared to the Kinect v2 and Orbbec Astra Pro v2 sensors 

(12). Integrating such technology into a web-based platform has 

the potential to eliminate software installation requirements and 

enhance portability.

The KineFeet system was developed to overcome these 

challenges. KineFeet is a prototype web-based application that 

utilizes depth camera technology for clinical foot kinematic 

analysis. The main function of the application is to analyze the 

sagittal and frontal planes of the foot during gait, providing 

automatic detection of subphases in the stance phase of the gait 

cycle, real-time measurements, and data export options within a 

browser environment. This paper describes the design and 

development of KineFeet, presenting the results of a usability 

evaluation conducted with experienced clinicians. This study 

details the development process and assesses KineFeet’s usability 

through both qualitative and quantitative methods. The usability 

testing involved clinicians to evaluate effectiveness, efficiency, 

and user satisfaction.

2 Materials and methods

This study was a software development and observational 

analytic research design to evaluate its usability. Data were 

collected at the Department of Physical Medicine and 

Rehabilitation, Dr. Cipto Mangunkusumo General National 

Hospital (Central Jakarta, Jakarta, Indonesia). The study 

protocol received approval and registration from the Research 

Ethics Committee of the Faculty of Medicine at the University 

of Indonesia (KET- 1586/UN2.F1/ETIK/PPM.00.02/2023). The 

research methodology was structured into several sequential 

phases, beginning with the iterative development of the KineFeet 

system, followed by technical validation and user-based 

usability testing.

2.1 Step 1: iterative system development

KineFeet was developed using a user-centered design 

methodology, incorporating feedback from clinical users 

throughout the development process. The system was 

constructed with the following goals: (1) Ensure ease of use for 

clinicians with minimal technical training. (2) Provide accurate 

sagittal plane angle measurements. (3) Enable real-time 

visualization and data storage. (4) Maximize accessibility 

through web-based deployment.

2.1.1 Hardware components
2.1.1.1 The computer

The system requires a computer equipped with a minimum of 

eight cores in the central processing unit (CPU), a graphics 

processing unit (GPU) with specifications equivalent to or 

stronger than the Nvidia GTX 1050, and at least 8 gigabytes 

(GB) of random access memory (RAM).

2.1.1.2 Camera placement

KineFeet recorded simultaneously using two Microsoft Azure 

Kinect Cameras (Microsoft, Redmond, WA, USA) placed on the 

posterior and sides of the treadmill, showing the medial side of 

the foot. The camera was positioned at a distance that allowed 

the entire length of the treadmill belt to be visible, while still 

maintaining marker detection. The posterior camera was placed 

40 cm behind the treadmill and the lateral camera 52 cm from 

the side of the treadmill. Both cameras were mounted on 

tripods with 40 cm height from the ground to the base of the 

camera (Figure 1).

2.1.1.3 Marker

A white round button 1 cm in diameter is an effective marker 

to ensure good detection. Smaller sizes pose difficulty, while larger 

sizes are impractical due to the close distance between joints. 

Buttons as markers are ideal for Kinect Azure’s depth sensor 

mechanism, capable of distinguishing objects from the 

background. Markers with 2 mm or greater are easily identified. 

Secure markers to socks with double-sided adhesive tape. 

Above-knee socks, with color contrast to buttons, provide 

Abbreviations  

IC, initial contact; IC_to_LR, intial contact to loading response; LR, loading 

response; LR_to_MSt, loading respnse to midstance; MSt, midstance; 

MSt_to_TSt, midstanc to terminal stance; TSt, terminal stance; TSt_to_PSw, 

terminal stance to pre-swing; PSw, pre-swing; PSw_to_HE, pre-swing to 

hallux extension; HE, hallux extension; HE_to_ISw, hallux extension to initial 

swing; ISw, initial swing; ISw_to_IC, initial swing to initial contact.
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uniform backgrounds, ensuring consistent detection of markers as 

angle’s endpoints (Figure 2).

To further improve the reliability of marker detection, 

KineFeet’s configuration was refined through an iterative process 

of testing and adjustment. High-contrast visibility between the 

marker and its background was prioritized; thus, white markers 

were consistently paired with red socks to enhance distinction. 

In order to reduce visual inconsistencies, all participants wore 

socks and markers made from identical materials and colors. 

Moreover, to prevent displacement caused by sock shifting or 

wrinkling during walking, snug-fitting socks were used and 

carefully positioned to ensure that markers remained securely in 

place throughout each trial.

2.1.1.4 Workspace

Ideal marker identification requires sufficient lighting. The 

best quality was obtained by placing a light source (3800 Lm 

light) behind each camera and utilizing a soft box to diffuse the 

light and minimize shadows on the backdrop screen. A white 

backdrop screen is placed to minimize distractions and improve 

lighting (Figure 3).

2.1.1.5 Treadmill

Non-inclined treadmill or walking pad with a Gat surface wide 

enough to allow a natural stride without the lower limbs crossing. 

A sufficient width has been shown to improve patient confidence 

and assist balance.

2.1.1.6 Recording

The pattern of walking on a treadmill may differ from walking 

on land. Steps become shorter, and the attempt to maintain 

balance may result in altered lower limb kinematics. To reduce 

these variations, it is important to familiarize the patient with 

the mechanics of treadmill walking before recording. For 

patients with balance problems, the use of a body harness is 

recommended to increase confidence and reduce the risk of 

falls. Gradually increase the speed until patients are comfortable, 

aiming for a pace similar to their usual walking speed while 

avoiding holding onto the handlebars.

Video recordings were captured for a duration of 5 s using two 

Azure Kinect cameras positioned laterally and posteriorly. This 

5-second window was strategically selected to capture a brief yet 

stable segment of the gait cycle, typically when the participant’s 

walking pattern had stabilized and appeared most natural. The 

relatively short duration also facilitated faster data upload and 

processing through the KineFeet web application. Recording 

commenced once the participant’s gait appeared steady (Figure 4).

2.1.2 System architecture and data processing

The KineFeet system uses a cloud-based platform for 

automated gait analysis. Video is captured with Azure Kinect 

cameras and uploaded to a server for processing. A deep 

learning model (Convolutional Neural Network), trained on a 

substantial dataset of annotated anatomical images, is utilized to 

FIGURE 1 

Camera placement. (a) Schematic placement of the cameras for KineFeet recording of the right foot, (b) Microsoft Azure Kinect Camera mounted on 

tripod at 40 cm height above the ground with a distance of 52 cm facing the left side of the treadmill, and (c) set the camera behind the treadmill with 

a distance of 40 cm.
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identify key anatomical points on the body. These keypoints are 

connected to form vectors, which are then used to calculate 

joint angles. Furthermore, the system incorporates deep learning 

models to analyze motion sequences over time, enabling precise 

identification of gait phases such as initial contact, midstance, 

and toe-off by tracking changes in heel and toe positions frame 

by frame. KineFeet operates within a three-dimensional (3D) 

coordinate system (X, Y, Z), improving the accuracy of joint 

positioning and allowing for a more detailed analysis of lower 

limb kinematics compared to traditional two-dimensional 

approaches. To enhance the accuracy of angle measurement, 

physical reference markers (e.g., small buttons or reGective tags) 

may be used in combination with AI-based keypoint detection. 

For instance, the medial longitudinal arch (MLA) angle is 

calculated based on three anatomical landmarks: the medial 

malleolus (MM), the navicular (NV), and the head of the first 

FIGURE 2 

Placement of markers. (a) Medial side; (1) first distal interphalang joint, (2) head of first metatarsal, (3) in the middle of navicular tuberosity and head of 

first metatarsal on first metatarsal shaft, (4) navicular tuberosity, (5) medial malleolus, (6) calcaneal tu- berosity, (7) knee joint line, and (b) posterior 

side; (8) achilles tendon attachment, (9) on a line with medial malleolus, (10) gastrocnemius musculotendinous junction, and (c) on the lateral side of 

(11) half of a calf.

FIGURE 3 

Workspace for kineFeet. (a) Gait analysis room set for Kinefeet recording, (b) placement of camera and studio light, and (c) white backdrop.
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metatarsal (HM), with the angle at the navicular determined using 

vector geometry.

v1
!¼ ~M � ~NV 

v2
!¼ ~HM � ~NV 

cos u ¼
v1
!� v2

!

kv1
!kkv2

!k

u ¼ cos�1 v1
!� v2

!

kv1
!kkv2

!k

� �

To ensure consistent timing for gait event detection and joint 

angle calculation throughout the gait cycle, all video recordings 

were made at a rate of 30 frames per second (fps).

2.1.3 Foot functional consideration underlying 

system development
Foot motion and muscle engagement are closely tied to three 

sequential functions during gait: absorbing impact, maintaining 

stability during weight bearing, and facilitating forward 

progression (13). These biomechanical roles begin at initial 

contact, where the heel first strikes the ground, and continue 

through the loading response, when body weight shifts onto the 

forefoot. During this early stance period, ground reaction forces 

induce eversion at the subtalar joint, leading to foot pronation. 

This movement unlocks the midtarsal joint, increasing Gexibility 

in the tarsal region. Biomechanically, this results in Gattening of 

the medial longitudinal arch, allowing for more uniform 

distribution of pressure across the foot. As the gait cycle 

progresses from midstance to terminal stance, the subtalar joint 

gradually moves into inversion, which promotes supination, a 

combination of plantarGexion, inversion, and adduction. 

Supination results in midtarsal joint locking, stiffening the tarsal 

structure and reelevating the medial longitudinal arch, which is 

essential for effective force transmission during push-off (14). 

Restrictions in motion at these joints may impair this natural 

mechanism, potentially contributing to arch instability and gait 

abnormalities over time. To evaluate foot kinematics that 

facilitate shock absorption and weightbearing stability, Kinefeet 

measures the subtalar angle and the Medial Longitudinal 

Arch angle.

2.1.3.1 Subtalar angle

The subtalar angle is formed by the line between the posterior 

calcaneus and the posterior ankle joint line, and the line between 

the midpoint of the tendon muscle junction and the posterior 

ankle joint line. The measurement was taken from the initial 

contact point until pre-swing, except for the terminal stance 

phase, due to the difficulty in accurately identifying the terminal 

stance position from a posterior viewpoint of the ankle (Figure 5).

2.1.3.2 Medial longitudinal arch angle

The Medial Longitudinal Arch Angle is formed by the line 

between the head of metatarsal 1 and the tuberosity of the 

navicular and the line between the tuberosity of the navicular 

and the posteromedial calcaneus. It was measured to capture 

changes in medial longitudinal arch height during the stance 

phase (Figure 6).

Progression during the gait cycle refers to the foot’s role in 

effectively advancing the body forward. This is accomplished 

through three coordinated mechanisms known as foot rockers. 

First, the heel rocker is activated at the initial stance phase when 

the heel strikes the ground, facilitating forward rotation of the 

tibia while absorbing impact. Next, during mid-stance, the ankle 

rocker enables the tibia to progress over the planted foot 

through movement at the ankle joint. Finally, in the terminal 

stance phase, the forefoot rocker supports push-off as the heel 

lifts and body weight transitions to the toes. These three rockers 

work in tandem to ensure smooth, stable, and energy-efficient 

weight transfer during walking, aiding in shock absorption and 

minimizing energy loss (13).

FIGURE 4 

Recording kineFeet. (a) User interface to start recording after entering patient’s data, and (b) user interface preparing to submit the video after 

completing the recording.
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KineFeet measures the ankle angle (Ank) to evaluate the first 

rocker, where foot movement occurs relative to the cruris at the 

talocrural joint, with the heel serving as the fulcrum. The Ankle 

Angle is formed by the line between the head of metatarsal 1 

and the posteromedial calcaneus and the line between the 

medial knee joint line and the medial malleolus. It was 

measured at two distinct points: initial contact and mid-loading 

response (labeled as Ank_LR Angle). Ank_LR angles are 

determined when the sole is in contact with the surface and is 

fully supported (foot Gat) (Figure 7).

The ankle inclination (AI) angle is measured to evaluate the 

second rocker, which refers to the movement of the tibia with 

the talocrural joint acting as the fulcrum. This movement 

involves transitioning from posterior tilting in the middle of the 

loading response to anterior tilting at the end of midstance. The 

Tibia Inclination Angle is formed by a vertical line that passes 

through the medial malleolus and a line between the medial 

knee joint line and the medial malleolus. It measured during the 

mid-loading response, when the tibia is in a posterior 

inclination position, until the beginning of terminal stance, 

when it reaches maximum anterior inclination, just before the 

heel off (Figure 8).

Finally, the metatarsophalangeal 1 (MTP) angle is measured to 

evaluate the third rocker, which is the hallux extension movement 

at the MTP 1 joint. The 1st Metatarsophalangeal Angle is formed 

by the line between the midpoint of metatarsal 1 and the head of 

metatarsal 1, and the line between the head of metatarsal 1 and the 

medial head of proximal phalanx. It measured from the beginning 

of terminal stance, until it reaches its maximum of hallux 

extension, just before toe-off (Figure 9).

FIGURE 5 

Subtalar angles of the left foot at different gait phases: (a) initial contact (CA_IC), (b) loading response (CA_LR), (c) midstance (CA_MSt), and (d) onset 

of pre-swing (CA_PSw).
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FIGURE 6 

(a) MLA angle on initial stance phase (MLA_IC) of the right foot, (b) mid- loading response (MLA_LR), (c) midstance phase (MLA_MSt), (d) terminal 

stance phase (MLA_TSt) of the left foot, (e) pre-swing phase (MLA_PSw), and (f) maximal hallux extension (MLA_HE).

FIGURE 7 

(a) Ankle initial contact (ANK_IC) angle of the right foot, and (b) ankle mid- loading response (ANK_LR) angle of the left foot.
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2.2 Step 2: software testing

Evaluating a machine learning model’s performance is an 

important step in the development process. In this study, we use 

a classification model to categorize the data. Performance is 

assessed using two main metrics: the confusion matrix and the 

F1 score. The confusion matrix shows true positives, true 

negatives, false positives, and false negatives, providing details of 

the prediction results. The F1 score is the harmonic mean of 

precision and recall, balancing false positives and false negatives 

into a single metric (15–17).

2.2.1 Stance subphase detection accuracy
The efficacy of Kinefeet in identifying gait subphases was 

assessed using a classification model that organizes data into 

predefined categories. The confusion matrix presented in 

Figure 10 provides a detailed evaluation of the multi-class 

classification performance across 14 discrete subphases in the 

validation dataset. The overall accuracy was 73.6%, with a 

macro-averaged F1-score of 0.730, suggesting moderate 

generalizability of the model across categories. However, class- 

wise analysis indicates several critical misclassification patterns 

that require attention (Figure 10).

To facilitate interpretation of the confusion matrix, the 14 

subphases are abbreviated as follows: IC (Initial Contact)—the 

moment when the foot first contacts the ground, typically with 

the heel; IC_to_LR (Initial Contact to Loading Response)—the 

transition phase from heel strike to full plantar contact 

(metatarsal heads touching the ground); LR (Loading Response) 

—when the entire foot is Gat on the Goor, just before the tibia 

begins to incline anteriorly; LR_to_MSt (Loading Response to 

Midstance)—the transition from full-foot contact to contralateral 

toe-off; MSt (Midstance)—the point when the contralateral foot 

lifts off the ground, marking the start of single-limb support; 

MSt_to_TSt (Midstance to Terminal Stance)—the transition 

from midstance to when the tibia reaches a vertical position; TSt 

(Terminal Stance)—when the contralateral limb passes the 

stance limb and the tibia of the stance limb is upright; 

TSt_to_PSw (Terminal Stance to Pre-Swing)—the phase from 

vertical tibial alignment to initial ground contact by the 

contralateral foot; PSw (Pre-Swing)—beginning with 

contralateral contact and indicating the initiation of load 

transfer off the stance limb; PSw_to_HE (Pre-Swing to Hallux 

Extension)—transition from contralateral contact to maximal 

dorsiGexion of the hallux; HE (Hallux Extension)—the moment 

of peak hallux extension just before the metatarsal heads lift off; 

HE_to_ISw (Hallux Extension to Initial Swing)—the interval 

from maximal hallux extension to the first liftoff of the hallux; 

ISw (Initial Swing)—when the hallux leaves the ground, 

initiating the swing phase; and ISw_to_IC (Initial Swing to 

Initial Contact)—the transition from toe-off to the subsequent 

heel strike.

2.2.1.1 Correct classification

The model exhibited strong performance in identifying the 

terminal states PSw (n = 345), HE (n = 198), and ISw_to_IC 

(n = 372), all of which showed high diagonal dominance. This 

indicates that these states possess distinctive features that the 

model successfully learned to differentiate. For instance, 

ISw_to_IC had minimal confusion with adjacent transitions, 

underscoring the separability of this class in the feature space.

2.2.1.2 Misclassification pattern

Significant class confusion was observed across gait subphases, 

particularly between LR, LR_to_MSt, and MSt, as well as between 

TSt, TSt_to_PSw, and PSw_to_HE. For instance, LR was 

frequently misclassified as LR_to_MSt (n = 48) and MSt (n = 55), 

and vice versa, indicating a lack of discriminability in these 

temporally adjacent subphases. Similarly, TSt_to_PSw was 

often confused with TSt (n = 48) and PSw (n = 40), suggesting 

that the model struggles to capture the nuances in state 

FIGURE 8 

(a) Ankle inclination angle during mid-loading response phase (AI_LR) of the right foot, (b) tibia posterior inclination angle during mid-stance phase 

(AI_MSt) of the left foot, and (c) tibia anterior inclination angle during terminal stance phase (AI_TSt) of the right foot.
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transitions, potentially due to feature overlap or temporal 

ambiguity (Figure 11).

Notably, IC was misclassified as ISw_to_IC in 73 instances, the 

largest off-diagonal error in the matrix. This misclassification 

likely reGects a high degree of feature similarity between 

baseline and transition-to-baseline states, indicating the need for 

improving feature engineering or temporal modeling 

refinements (e.g., incorporating sequential data via LSTMs or 

temporal attention mechanisms).

2.2.2 Accuracy angle formation
Another important factor is the angle formed by two 

intersecting lines with markers as endpoints. This task is 

challenging, as the swinging contralateral limb often obscures 

the markers. At times, the application fails to recognize the 

markers as endpoints, resulting in an incorrect angle. 

Additionally, a consistent mistake has been observed in 

calculating the subtalar angle. While the angle created is correct 

through the chosen marker, the predicted angle size is 

significantly different from the actual value (Figure 12).

2.3 Step 3: usability testing

Usability testing is a methodological approach to evaluate the 

functionality of applications or systems. It involves structured user 

scenarios to assess the ease and efficiency with which users can 

navigate and interact with the system. The tester will observe 

the user while they utilize the application to complete the 

scenario task that has been assigned to the user (18).

FIGURE 9 

Metatarsophalangeal (MTP) angles of the right foot: (a) at the beginning of terminal stance phase (MTP_TSt), (b) during pre-swing phase (MTP_PSw), 

(c) prior to toe-off (MTP_HE), and (d) at the onset of initial swing (MTP_ISw).
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2.3.1 Methods

Usability testing of the KineFeet prototype was conducted 

using a user-based testing system to measure effectiveness, 

efficiency, and user satisfaction. The respondents were given 30 

tasks, ranging from tool preparation and patient preparation to 

recording and downloading results. The effectiveness of an 

application is typically assessed by how successfully users 

achieve their objectives. This can be measured by the number of 

tasks completed, whether fully or partially, along with the 

frequency of errors encountered during task performance and 

the average time taken to complete these tasks. Time-Based 

Efficiency (TBE) refers to the speed at which users interact with 

the application while completing tasks (19). Participants were 

also asked to complete the System Usability Scale (SUS), a ten- 

item questionnaire providing a quantitative measure of 

perceived usability (see Supplementary Table S1) (20). After 

completing the trial, participants were asked to participate in an 

open-ended feedback interview.

2.3.2 Participants
Five physiatrists with experience and in-depth knowledge of 

observational gait analysis were recruited for the 

usability evaluation.

2.3.3 Data analysis
Quantitative data were analyzed using descriptive statistics, 

and SUS scores were calculated for each participant. The 

satisfaction aspect is assessed using the System Usability Scale. 

Each participant will be given tasks based on the task scenario 

that has been created (see Supplementary Table S2). After 

completing the given tasks, participants ought to fill the SUS 

questionnaire as a final step.

2.3.3.1 Success rate

The success rate is considered acceptable if the average value 

reaches 78% (19). The component calculated by the success rate 

is the percentage of tasks that users complete correctly. 

FIGURE 10 

KineFeet’s confusion matrix. IC, initial contact; IC_to_LR, initial 

contact to loading response; LR, loading response; LR_to_MSt, 

loading response to midstance; MSt, midstance; MSt_to_TSt, 

midstance to terminal stance; TSt, terminal stance; TSt_to_PSw, 

terminal stance to pre-swing; PSw, pre-swing; PSw_to_HE, pre- 

swing to hallux extension; HE, hallux extension; HE_to_ISw, hal- 

lux extension to initial swing; ISw, initial swing; ISw_to_IC, initial 

swing to initial contact.

FIGURE 11 

Misclassification example: TSt_to_PSw (terminal stance to pre- 

swing) was incorrectly classified by the model as PSw (pre-swing).

FIGURE 12 

Accuracy of angle formation. (a,b) Show incorrect detection of markers resulting in inaccurate angle formation, while (c) illustrates correct marker 

detection producing accurate angle measurement.
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Equation 1 is an equation for calculating the success rate, where S 

is the number of fully completed tasks (full successes), PS is the 

number of partially completed tasks (partial successes), and 

Total Tasks is the total number of tasks assigned.

Success Rate ¼
S þ (PS � 0:5)

Total Tasks
� 100% (1) 

2.3.3.2 Time-based efficiency

Time-Based Efficiency, is considered normal when the user’s 

TBE, divided by that of an expert, approaches a value of 1 (19). 

In this context, an expert is defined as someone who is more 

familiar with KineFeet and has used it extensively (more than 

100 times), specifically the research team.

Time-based efficiency (TBE) is the speed at which users use 

the application when completing tasks. The component 

calculated by Time-Based Efficiency is the percentage of tasks 

that users complete correctly. Equation 2 is the equation used to 

calculate TBE. nij is the result of task i by user j, where nij = 1 if 

the task is successfully completed and nij = 0 otherwise; tij is the 

time taken by user j to complete task i; N is the total number of 

tasks; and R is the number of respondents.

Time Based Efficiency ¼

PR
j¼1

PN
i¼1

nij

tij

N R
(2) 

2.3.3.3 Error rate

Error Rate, said to be reasonable if the average error rate value 

is 0.02 (19). Error Rate is the rate of errors made by users during 

testing. The component calculated by the error rate is interpreted 

as an inappropriate action or error made by the user when 

completing the task. Equation 3 is used to calculate the error 

rate. Where Total Defects refers to the number of errors or 

incorrect actions recorded during usability testing, and Total 

Opportunities is the total number of user interactions or steps 

where an error could potentially occur.

Error Rate ¼
Total Defects

Total Opportunities
(3) 

2.3.3.4 System usability scale (SUS)

System Usability Scale (SUS) scores were interpreted using the 

adjective rating scale proposed by Jeff Sauro. Scores between 84.1 

and 100 indicate “Best Imaginable” usability. Scores ranging from 

72.6 to 84.0 are considered “Excellent”, while scores from 62.7 to 

72.5 reGect “Good” usability. A SUS score between 51.7 and 62.6 

corresponds to an “OK” rating. Scores from 25.1 to 51.6 are 

interpreted as “Poor”, and scores between 0 and 25 represent 

“Worst Imaginable” usability (20).

3 Results

Participants demonstrated strong knowledge of gait cycle 

phases and kinematics, enabling them to effectively evaluate the 

performance of KineFeet in measuring foot kinematics.

3.1 Effectiveness

The average success rate for respondents in evaluating foot 

kinematics using KineFeet was 96.29%, with an error rate of just 

0.074%. The average time taken to complete all assigned tasks 

was 10 min and 11 s.

3.2 Time-based efficiency (TBE)

The user’s TBE when evaluating a non-neuropathic diabetic 

patient using KineFeet was 0.0442 tasks per second, while the 

expert’s TBE was 0.05348 tasks per second. These metrics 

illustrate how much longer it takes a user to complete tasks 

compared to an expert. On average, users required 1.209 times 

longer to complete the tasks than the expert.

3.3 System usability scale (SUS)

The Questionnaire consists of 10 questions, each question is 

answered using a 5-point Likert scale (from Strongly Disagree to 

Strongly Agree). The questionnaire is designed to provide a 

comprehensive view of how users perceive usability across the 

application. In the context of the assessment, satisfaction has 

been identified as a primary metric, with an average Satisfaction 

Survey (SUS) value of 66.5 points. This indicates that the level 

of user satisfaction and acceptance of the application is deemed 

as adjectively good (in the range of 62.7–72.5). This outcome 

suggests that the use of KineFeet is practical.

3.4 User feedback

User feedback provided valuable insights into KineFeet’s 

usability, particularly in terms of learnability, effectiveness, 

efficiency, and satisfaction (see Supplementary Table S3). Users 

found the language and terminology clear, though some 

expressed confusion about the sequence of result images and the 

unexplained Heel-Off (HE) phase. They recommended 

reordering the images to follow the correct gait phase sequence 

(IC–LR–MSt–TSt–PSw–HE–ISw) and including visual aids for 

better gait phase identification. Navigation was generally 

intuitive, but challenges were reported during the recording 

process, especially in cueing patients on the treadmill, 

maintaining sock-mounted markers, and setting up technical 

components like cameras and cables. Users suggested 
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improvements such as better marker design and fixed camera 

mounts for bilateral recordings. Despite these issues, they 

reported high confidence (80%–100%) in completing tasks with 

minimal disruption.

KineFeet was also perceived as efficient and responsive, with 

users valuing features like automatic gait angle calculations and 

a clean interface. However, the need to run external applications 

(e.g., Azure Kinect Viewer, Kinect Manager) before launching 

KineFeet was seen as inconvenient. Streamlining this step and 

allowing direct video frame selection were recommended. 

Overall satisfaction was high, with users praising the system’s 

clarity, ease of use, and helpful annotations. While most 

expectations were met, some suggested incorporating subtalar 

angle analysis in future versions. These findings indicate strong 

clinical potential, with targeted refinements likely to enhance 

usability and user acceptance.

4 Discussion

Accurate subphase start/end detection is crucial for the correct 

interpretation of the data. The overall accuracy was 73.6%, with a 

macro-averaged F1-score of 0.730, suggesting moderate 

generalizability. Users should verify several prediction options 

presented by Kinefeet to ensure the accuracy of subphase 

detection dan angle formation.

The prediction of the subtalar angle is significantly inaccurate 

for several reasons. First, the subtalar movement is minimal and 

difficult to detect using the Kinefeet camera. Second, the axis of 

the ankle and subtalar joints is oblique, causing slight rotation 

when there is eversion or inversion movement in the subtalar 

due to midfoot movement. Third, there is inadequate data for 

visual computation. To enhance the precision of subtalar angle 

measurement, future developments of KineFeet should involve 

the incorporation of a posterior camera to augment its visual 

computation capabilities. Consequently, the subtalar angle 

measurement will be excluded from future assessments of 

KineFeet’s performance and clinical application until the 

necessary enhancements have been implemented and subjected 

to further evaluation.

Kinefeet was developed using a “machine-learned model”, 

which refers to a model created by applying a supervised 

machine learning algorithm to a labeled dataset (19). Machine- 

learned models are trained on specific datasets, known as their 

training distribution. The potential issues with this model 

include out-of-distribution generalization and incorrect feature 

attribution (21). To prevent errors related to these problems, 

careful evaluation of machine-learned models is essential (22), 

using new data from the performance distribution, including 

samples that are likely to reveal model failures such as those 

with different population demographics, challenging conditions, 

poor quality images, or errors (21).

The accuracy of subphase and marker detection could be 

improved by changing the model training approach used for 

automated machine learning (AutoML) or continuous machine 

learning (CML) in the next development project. AutoML is a 

process that automates the repetitive and time-consuming 

steps involved in creating machine learning models. This 

framework helps data scientists, analysts, and developers build 

machine learning (ML) models with high scalability, efficiency, 

and productivity while maintaining model quality (23, 24). 

CML, also called continuous learning or continual learning, is 

an approach where machine learning models gradually gain 

knowledge from new data streams over time. This process 

happens without needing explicit retraining on a fixed 

dataset. Unlike traditional machine learning models, which 

are trained once on a static dataset and then retrained 

periodically, continuous learning models go through an 

iterative process of updating their parameters. This allows the 

models to adapt to new data patterns and changing conditions 

in real time (24).

The usability test supports KineFeet as a feasible tool for 

clinical foot kinematics analysis, particularly in settings where 

high-end motion capture systems are unavailable. The high 

success rate and low score rate indicate that KineFeet is an easy 

application to use. The TBE score, which is close to one, also 

indicates that KineFeet is easy to learn, so that the time taken to 

complete the examination protocol is not significantly different 

between a new user and an expert. Additionally, the SUS score 

of 66.5 indicates that clinicians found the system to be intuitive 

and functional for its intended use. From the interviews, it was 

found that the participants thought KineFeet had a very 

promising potential. Participant feedback highlighted areas for 

further improvement, particularly simplifying the setup process 

and reducing reliance on external applications such as Azure 

Kinect Viewer, which could make the system even more 

practical for routine clinical use.

Limitations of the study include a small sample size and a 

focus on qualitative evaluation and usability rather than 

accuracy or validity. Prior research has shown that a small 

number of participants—approximately four to five users—can 

reveal a significant portion of usability issues. For example, 

Nielsen and Molich reported that five evaluators identified about 

two-thirds of usability problems using heuristic evaluation (25), 

while Virzi demonstrated that four or five users are often 

sufficient to detect around 80% of usability issues using think- 

aloud protocols (26). Future work will therefore focus on 

clinical validation of measurement accuracy against gold- 

standard systems, test-retest reliability testing, and expanding 

usability assessments to larger and more diverse user groups— 

including clinicians, technicians, and patients—to enhance both 

generalizability and clinical relevance.

5 Conclusion

KineFeet represents a promising innovation in clinical foot 

kinematics assessment. Its web-based architecture and use of 

depth camera technology make it a practical alternative to 

traditional gait labs. The system demonstrated strong usability in 

preliminary testing and holds potential for broader clinical 

adoption following further development.
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