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Background: Artificial intelligence (Al)-based models can augment clinical
decision-making, including prediction, diagnosis, and treatment, in all aspects
of medicine.

Research questions: The current systematic review aims to provide a summary
of existing data about the role of machine learning (ML) techniques in
predicting in-hospital cardiac arrest, life-threatening ventricular arrhythmias,
and respiratory arrest.

Methods: The study was conducted in compliance with the Preferred Reporting
ltems for Systematic Reviews and Meta-analyses (PRISMA) framework. PubMed,
Embase, and Web of Science without any restriction were searched to extract
relevant manuscripts until October 20, 2023. Additionally, the reference list of
all potential studies was searched to identify further relevant articles. Original
publications were regarded as eligible if they only recruited adult patients
(>18 years of age), employed Al/ML algorithms for predicting cardiac arrest,
life-threatening ventricular arrhythmias, and respiratory arrest in the setting of
critical care, used data gathered from wards with critically ill patients (ICUs,
cardiac ICUs, and emergency departments), and were published in English.
The following information was extracted: first author, journal, ward, sample
size, performance and features of ML and conventional models, and outcomes.
Results: ML algorithms have been used for cardiac arrest prediction using easily
obtained variables as inputs. ML algorithms showed promising results (AUC
0.73-0.96) in predicting cardiac arrest in different settings, including critically ill
ICU patients, patients in the emergency department and patients with sepsis,
they demonstrated variable performance (AUC 0.54-0.94) in predicting
respiratory arrest in COVID-19 patients, as well as other clinical settings.
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Conclusion: ML algorithms have shown promising results in predicting in-
hospital cardiac and respiratory arrest using readily available clinical data. These
algorithms may enhance early identification of high risk patients and support
timely interventions, thereby reducing mortality and morbidity rates. However,
the prospective validation of these algorithms and their integration into clinical
workflows need further exploration.

KEYWORDS

machine learning, artificial intelligence, cardiac arrest, respiratory arrest, intensive care unit

Introduction

Approximately 200,000 in-hospital cardiac (CA) and respiratory
arrests (RA) occur annually in US hospitals (1, 2); survival is ~25%,
and has improved only moderately over recent decades (3-5).
Identification of patients at risk for adverse events leading to CA
has been key to improving outcomes. Despite numerous efforts,
including early warning scores and rapid response protocols
(6-11), recognizing high-risk patients remains a limiting step in
providing pre-emptive care. Detection of patient deterioration
typically occurs
measurements at varying intervals (12, 13), depending on hospital

during clinical examination or vital sign

and intensive care unit (ICU) policy (14), which leaves significant
potential for unnoticed patient deterioration (15, 16).

Given the potential culmination in mortality and serious
neurological sequelae, timely detection of clinical deterioration is
essential (17). While current risk-stratification tools, such as Early
Warning Score (EWS) based methods, have aided in clinical
decision-making, they are limited in accuracy, sensitivity, and
user dependency (18). Accordingly, further improvements in the
performance of predictive tools are warranted for better clinical
judgment regarding in-hospital patient safety (19, 20) (Figure 1).

Artificial intelligence (AI)-based models can facilitate clinical
decision-making (21-28) via handling of complex massive datasets
(29-31). Considering the growing number of Al-based algorithms
developed for predicting life-threatening events (32-34), the current
systematic review aims to assess the role of machine learning (ML)
algorithms in predicting cardiac arrest, life-threatening ventricular
arrhythmias, and RA, in in-hospital, critically ill patients.

Methods

The current systematic review study was conducted in
compliance with the Preferred Reporting Items for Systematic
Reviews and Meta-analyses (PRISMA) framework. This review
was not registered and no protocol was prepared.

Eligibility criteria

This review focuses on peer-reviewed articles that applied
AI/ML methods to predict the occurrence of cardiac arrest, life-
fibrillation,
ventricular tachycardia, asystole, pulseless electrical activity), and

threatening ventricular arrhythmias (ventricular
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RA in critical care settings. Original publications were regarded
as eligible if they only recruited adult patients (>18 years of
age), employed AI/ML algorithms for predicting the above-
mentioned adverse events, used data gathered from wards with
critically ill patients (ICUs, cardiac ICUs, and emergency
departments), and were published in English. Publications were
excluded if they used data from general hospital wards. Apart
from original articles, other journal manuscript types were
excluded. Studies involving animals, in vitro, and in vivo
research projects were also excluded. Out-of-hospital cardiac
arrest patients were not included in this review.

Search strategy

The research databases, including PubMed, Embase, and Web
of Science, without any restriction, were used to extract relevant
manuscripts until October 20, 2023. Moreover, the reference list
of all potential studies was scrutinized and searched for
additional articles. An advanced search strategy was conducted,
structured around three groups of terms: critical care settings,
artificial intelligence/machine learning, and cardiac or RA. Each
group was searched using both exploded Emtree terms and
keywords in titles, abstracts, and keyword fields. Terms within
each group were combined using OR, and the three groups were
combined using AND, ensuring retrieval of articles containing
terms from all groups. Results were limited to publication types
“Article”, “Article in Press”, and “Preprint”. A detailed search
strategy is included in the Online Supplement.

Data extraction

First, the identified citations from each database
were uploaded into Endnote 20 and duplicates were eliminated.
Two independent authors (AG, GB) screened the titles and
abstracts of the remaining papers. Then, the selected full-text
articles were reviewed according to the eligibility criteria in the
same manner. Disagreements at any step were settled through
discussion. The following information was extracted: first author
name, journal, ward, sample size, performance and features of
ML and conventional models, and outcomes.

A Dbrief description of the reported AI/ML models in this

manuscript is provided in the Online Supplement.
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FIGURE 1

Practical measures to improve the outcomes of cardiac and respiratory arrest in clinical practice
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Quality assessment

Risk of bias and quality assessment were performed using the
QUADAS-2 tool. Two categories, risk of bias and concerns
regarding applicability, were assessed in the three domains of
patient selection, index test, and reference standard. With the
former being assessed in the domain of flow and timing, as well.
For assessing the risk of bias, the following criteria were applied
for each of the four domains: (1) when the answer to all
questions is “yes”, the overall bias risk of the domain is “low”;
(2) when the answer to more than one question is “no”, bias
risk was definitely identified, and the overall bias risk of the
domain is “high”; (3) deemed “unclear” when the data reported
is insufficient to make a judgment; (4) when any domain is high
risk, the overall bias risk score is “high”; (5) only when the bias
risk of one domain is unclear, the overall bias risk of the study
is “unclear”.

The recommendation of the QUADAS-2 tool was followed,
and the clinical applicability of each study was scored by
evaluating whether it matched the concerns of our review,
and rated as “low”, “high”, or “unclear”. An author (XL)
independently performed the data extraction and quality
assessment. Disagreements were resolved through discussion and
independent assessment by another researcher to reach a
consensus. The final study quality was classified as low risk of
bias, high risk of bias, or unclear (Supplementary Table SI).

Results
Search results

Initially, we obtained 1,594 articles for RA and 409 for CA
from three distinct databases, including PubMed, Embase, and
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Web of Science. Subsequently, we identified and removed
duplicates (107 for CA, 661 for RA), leaving us with 302 CA
articles and 933 RA articles. Finally, 14 CA studies and 22 RA
studies met the inclusion and exclusion criteria and were
included in the systematic review (Figures 2A,B, for CA and
RA, respectively).

Cardiac arrest

Prediction of cardiac arrest holds great importance in clinical
practice in order to activate timely preventive measures. ML
algorithms have been used to predict cardiac arrest using easily
obtained variables as inputs (Table 1).

Intensive Care Unit Yijing L et al., studied a cardiac arrest
prediction index in critically ill ICU patients (35). In this study,
bedside vital signs monitoring was used as inputs (heart rate,
systolic blood pressure, diastolic blood pressure, mean blood
pressure, SpO, and respiratory rate) (35). The cardiac arrest
prediction index predicted 95% of cardiac arrest events.
Interestingly, 80% of the cardiac arrest events were identified
more than 25 min in advance (35). In a study by Kim J et al,
the authors used bedside vital signs, underlying disease,
laboratory data, medication, and organ failure to predict cardiac
arrest in critically ill patients using ML models (36). The
proposed model showed a sensitivity between 0.846 and 0.909,
and a specificity between 0.923 and 0.946 (36).

Another deep learning model has been proposed for cardiac
arrest prediction in ICU patients using physiological and
demographic features. The proposed model outperformed the
Modified Early Warning Score (MEWS) and National Early
Warning Score (NEWS) scores in cardiac arrest prediction at
the tested time intervals (17). Tang Q et al.,, proposed another
deep learning model based on time series of vital signs from
electronic health records. In this model, features were captured
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FIGURE 2
Flowchart of the search strategy. (A) Cardiac arrest, (B) Respiratory arrest.
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by an efficient temporal convolutional network and explained
using the deep Taylor decomposition theoretical framework. The
results showed that the model demonstrated superior CA
prediction accuracy compared to the standard NEWS score (37).
An artificial neural network (ANN) has been developed to
predict ventricular tachycardia 1h before its onset, using
parameters obtained from heart rate variability and respiratory
(38).
prediction model achieved a sensitivity of 88%, specificity of
82%, and an AUC of 0.93 (38).

rate variability analysis The ventricular tachycardia

Emergency department

Another topic of interest is the prediction of in-hospital CA in
patients who presented to the emergency department. In this
setting, a ML model has been implemented using triage data. The
authors showed that Random Forest outperformed other ML
models (Gradient Boosting and Extra Trees classifier), achieving an
AUC of 0.931 (39). Interestingly, although the difference in AUC
between each ML model and logistic regression was not significant,
ML models performed significantly better than the NEWS scoring
system (39). An ML algorithm has also been proposed to predict
critical care outcomes, including CA, in patients with chest pain
presenting to the emergency department (40). Specifically, a
LASSO regression model was developed using easily obtained
features. The proposed model significantly outperformed the
HEART, GRACE, and TIMI scores achieving an AUC of 0.953
(95% CI: 0.922-0.984) (40). Liu N et al., aimed to identify the most
relevant variables for predicting major adverse cardiac events
including CA, in patients presented to the emergency department
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(41). The authors used a novel random forest-based method to
select the most relevant variables while a geometric distance-based
ML scoring system was implemented to derive the risk score. The
use of three variables (systolic blood pressure, the mean
electrocardiographic RR interval and the mean instantaneous heart
rate) demonstrated good performance in predicting adverse events
(AUC: 0.812), outperforming the model using 23 variables (AUC:
0.736), and the conventional TIMI (AUC: 0.637) and MEWS
(AUC: 0.622) scores (41).

An ML model incorporating heart rate variability was
proposed to predict CA in critically ill patients presenting to the
emergency department (42). The results showed that the ML
model outperformed the conventional methods in predicting CA
within 72h, with an AUC of 0.781 compared to 0.680 for
MEWS (42). ML models developed on triage data have also
been proposed to predict in-hospital CA or ICU admissions in
patients visiting the emergency department (43). The proposed
model demonstrated better sensitivity and accuracy in predicting
critical outcomes compared to the assessments made by
emergency physicians (43).

Sepsis

ML models have been implemented for the prediction of CA in
patients with sepsis. In this setting, the best results were obtained
using a stacking algorithm and multivariate dataset (44). The
proposed model predicted the arrest incidence with an accuracy
and sensitivity of over 70%, up to 6h earlier. Although ML
algorithms outperformed the conventional methods (APACHE II
and MEWS scoring variables) for determining the patients’
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health status, higher sensitivity and specificity are needed for
implementation in clinical practice (44). Baral S et al., proposed a
deep learning algorithm to reduce the false alarm rates and
increase the sensitivity of the previous models for CA prediction in
patients with sepsis (45). Specifically, a hybrid model using a
multilayer perceptron and enhanced bidirectional Long Short-
Term Memory (LSTM) was proposed to handle baseline features
and time-series vital signs (45). Compared to the state-of-the-art
algorithms, the proposed model improved accuracy, sensitivity,
specificity, and AUC, while reducing the false alarm rates.

Respiratory arrest

Prediction of RA and the need for mechanical ventilation can
help clinicians identify high-risk patients and implement timely
preventive measures (Table 2).

COVID-19

The random forest classifier, decision tree classifier, logistic
regression, K-nearest neighbors classifier, support vector
machine, and gradient boosted machine have been used for the
prediction of invasive ventilation in COVID-19 patients
admitted to the ICU (46). The random forest and Gradient
boosted machine showed the best performance, achieving mean
AUCs of 0.69 and 0.68, respectively (46). In the same setting,
commonly used clinical variables (heart rate, oxygen saturation,
respiratory rate, FIO,, and pH) were used as inputs in a deep
learning model for the prediction of mechanical ventilation in
hospitalized patients and in those with COVID-19 (47). The
proposed model showed good performance (AUC>0.88) in
predicting those needing mechanical ventilation 24 h in advance
(47). In addition, a two-step model has been used for the
prediction of respiratory failure and invasive mechanical
ventilation in critically ill patients suffering from COVID-19
(48). An Extreme Gradient Boosting (XGBoost) algorithm was
trained on data from the MIMIC-III database to predict if a
patient would require invasive mechanical ventilation within the
next 6, 12, 18 or 24 h. The proposed two-step model showed
good performance in both the general ICU population and
COVID-19 patients (48).

A 3D CT-based deep learning model has also been proposed for
the prediction of COVID-19 outcomes, including the need for
intubation (49). The prediction results improved when laboratory
data were included, while the model accuracy decreased when CT
images were excluded (49). A deep convolutional neural network
(dCNN) was evaluated to predict inpatient outcomes, including
intubation associated with COVID-19 pneumonia (50). Airspace
opacity scoring systems, defined by the extent of airspace opacity
in each lobe on chest CT scans, were estimated using the deep
learning algorithm and used to predict clinical outcomes. The
tested algorithm was found to be highly predictive of inpatient
outcomes, including intubation (50). De Godoy MF et al., studied
the role of CT imaging, assessed by dCNN, in predicting the need
for mechanical ventilation in the setting of COVID-19 (51). The

high specificity exhibited by the model enabled it to predict which
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patients may need mechanical ventilation due to COVID-19
infection (51). Bussen S et al., used an unsupervised ML algorithm
(the Gaussian mixture model) to predict intubation in COVID-19
patients (52). The algorithm achieved an accuracy of 87.8% for
intubation recognition wusing simple parameters (breathing
frequency and SpO,) (52). In addition, XGBoost and Categorical
Boosting (CatBoost) algorithms demonstrated high accuracy in
predicting the need for mechanical ventilation in COVID-19
patients, using vital signs and demographics for initial triage, in
the emergency department (53). In another study, XGBoost and
Random Forest outperformed Logistic regression in predicting
mechanical ventilation in COVID-19 patients using electronic
health records data, in the emergency department (54). Similarly,
another study showed that the XGBoost model had the highest
mean accuracy for predicting respiratory failure within 48 h of a
patient’s admission for COVID-19 (55). XGBoost outperformed
SMOTEENN XGBoost, Logistic regression, and the Modified Early
Warning Score (55). Easily obtained variables were used as inputs
including the type of oxygen delivery used in the emergency
department, patient age, the Emergency Severity Index level,
respiratory rate, serum lactate, and demographic characteristics. In
another study, Haimovich AD et al., showed that a bedside ML
model (quick COVID-19 Severity Index) that employed 3 variables
(respiratory rate, pulse oximetry, and oxygen flow rate), the
COVID-19 Severity Index can be used to predict critical
respiratory illness in COVID-19 patients (56). These models
outperformed the quick Sequential [Sepsis-related] Organ Failure
Assessment, CURB-65 and Elixhauser Furthermore,
another study showed that ML models (Neural Network, Random
Forest,

scores.
and Classification and Regression Decision Tree)
outperformed conventional tools, including the APACHE II score
in predicting critical COVID-19 based on clinical parameters on
admission (57).

Different clinical settings

Kim J et al,, proposed an artificial intelligence model to predict
acute respiratory failure 1h, 2h, 4h, and 6h prior to its
occurrence using physiological signatures and past medical history
(17). The AUC of this model was 0.869 for respiratory failure 6 h
before occurrence. Additionally, the model outperformed the
MEWS and NEWS scores (17). Xia M et al., used supervised ML
algorithms to predict hypoxemia after extubation in the ICU (58).
The authors found that from the tested algorithms (logistic
regression, random forest, K-nearest neighbors, support-vector
machine, XGBoost, Light Gradient Boosting Machine
(LightGBM)), random forest, and Light Gradient Boosting
Machine showed the best performance in hypoxemia prediction (58).

ML techniques have been used to predict intubation within 24 h
using commonly available bedside and laboratory variables taken at
critical care admission. Random forest and logistic regression
exhibited good performance for intubation prediction (AUC = 0.86
and 0.77 respectively) (59). Recurrent Neural Network models
have been developed to predict the failure of noninvasive
respiratory support using time series data (60). The authors
showed that a Long-short term memory model had the highest
accuracy and AUC compared to a Gated Recurrent Unit and a
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Gated Recurrent Unit with Trainable Decay (60). In another study,
an ML (CatBoost) model was developed to predict noninvasive
ventilation failure after extubation (61); fifteen parameters
(mechanical ventilation duration, RR, urine output, GCS, mean
airway pressure, temperature, age, heart rate, glucose, time from
extubation to NIV, mean blood pressure, input volume, SpO2,
Pa02, and pH) were used as inputs. The authors showed that the
proposed model showed better performance compared to the RF,
LR, XGBoost, KNN, Naive Bayes, Light GBM, SCM, AdaBoost,
and MLP (61). Furthermore, a temporal convolutional network-

Al methods
RF-based method was developed
system outperformed traditional | to select the most relevant
variables. A geometric distance-
based ML scoring system was
then implemented to derive a

risk score.

clinical practice, moving towards more proactive and precise
patient management.

Augmented Clinical Decision-Making and Early Intervention
AI/ML models offer a substantial opportunity to augment

(V]
N
w
9
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£
©
w

clinician  decision-making, particularly for initial risk

72
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g E £g the critical care setting (62).

S % g E An ML algorithm has been used to predict reintubation, prolonged
2cES mechanical ventilation and death in patients undergoing coronary
£z ; artery bypass surgery (63). Specifically, an artificial neural network

showed good performance in predicting these outcomes, with no
w
§ difference compared to the logistic regression model (63). Another
g ~ novel model for predicting intubation in critically ill patients (64),

o

E E < using data collected within the first hours of admission in the ICU,
S R outperformed the standard clinical benchmarks (64). Recently, a
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% <4 real-time warning algorithm for the prediction of invasive

. SE é mechanical ventilation in ICU patients was developed (65). The
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3 EELLEs £ Implications for clinical practice

S22 73T &
}?, o ;é 8§ 8% 24 The integration of AI/ML models into acute care
TEES52EE2 € settings carries significant implications for transforming
A S S»P o3 5> ac

stratification and triage in high-volume environments like
emergency departments. By providing early warnings of
impending CA or RA, these models can broaden the “diagnostic

collection

and therapeutic window” for intervention, allowing clinicians to

initiate preventive measures well before overt deterioration. This
proactive approach represents a marked improvement over
current reactive responses, which often occur after a critical

BMC Medical
Informatics and
Decision Making

event has already begun.

Potential for Reduced Morbidity and Mortality The core
clinical benefit derived from these models lies in their ability to
identify high-risk patients, prompting timely interventions that
could significantly reduce in-hospital morbidity and mortality

ACC, accuracy; ANN, artificial neural network; AUC, area under the curve; CRT, classification and regression decision tree; EHR, electronic health record; GBM, gradient boosting machine; ICU, intensive care unit; KNN k-nearest neighbor; LR, logistic regression;
LSTM, long short-term memory; MEWS, the modified early warning score; MLP, multilayer perceptron; NEWS, national early warning score; NPV, negative predictive value; PPV, positive predictive value; RF, random forest; SEN, sensitivity; SPE, specificity; SVM,

TABLE 2 Continued
support vector machine.

Nan Liu
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associated with CA/RA. This translates directly to improved
patient safety and better overall outcomes, as critical resources
and attention can be directed to those most in need, precisely
when it matters most.

Enhanced Monitoring and Proactive Care The seamless
integration of AI/ML with streaming vital signs and EHR can
enable continuous, intelligent monitoring. This capability allows
for the detection of subtle physiological shifts indicative of
worsening disease, often missed by intermittent manual checks.
Such a system moves clinical practice from periodic, interval-
based assessments to a more dynamic, real-time surveillance
system, fostering a culture of pre-emptive care where
interventions are initiated before a full-blown crisis develops.

Necessity of Clinician Education and Workflow Integration For
successful implementation, it is crucial that clinicians receive
adequate education on how to effectively use and interpret these
AI/ML models, “as labeled”. This implies the need for intuitive
user interfaces that present complex AI predictions in an
understandable format, clear guidelines on alert interpretation, and
thoughtful integration into existing clinical workflows to ensure
seamless adoption and avoid disruption to established care
processes. Without proper training and integration, even the most
accurate models may not achieve their full clinical potential.

Addressing Regulatory and Ethical Considerations Prior to
widespread clinical adoption, a robust framework must be
established to regulate critical issues such as liability for Al-
driven decisions, standardized adverse event reporting
mechanisms, protocols for system upgrading and maintenance,
and stringent cybersecurity measures to protect sensitive patient
data. These considerations are foundational for building trust
among clinicians and patients and ensuring the responsible and

equitable deployment of AI in healthcare.

Recommendations for future research

While the potential of AI/ML in acute care is evident,
several critical areas require focused future research to facilitate
their successful and safe translation into routine clinical practice.

Rigorous Prospective Validation and Demonstration of Clinical
Utility A paramount recommendation is the urgent need for
evaluation of AI/ML models. While
retrospective studies have shown considerable promise, future

rigorous prospective
research must move beyond these to large-scale prospective clinical
trials that confirm efficacy in real-world settings. Crucially, these
trials must demonstrate a tangible impact on clinical endpoints
such as patient mortality, reduced length of stay, or decreased
incidence of adverse events. Studies must explicitly show how these
approaches translate into “actionable care pathways and
workflows” that demonstrate clear clinical utility, rather than
merely improved statistical prediction.

Standardization of Datasets and Platforms A significant
challenge identified is the “lack of uniform datasets and of
parameters employed by the proposed AI/ML algorithms”, which
currently hinders the assessment of their generalizability and
comparability across different institutions. Future research should
focus on developing standardized data collection protocols and

creating standardized platforms for reporting predictions to
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clinicians, ensuring interoperability and facilitating broader
adoption. Such standardization would enable more robust multi-
center studies and foster a collaborative environment for Al
development and validation.

Improving Model Specificity to Mitigate Alarm Burden While
high sensitivity is highly desirable for life-threatening conditions to
ensure no critical event is missed, the specificity of a model must
also be high for implementation in clinical practice. A low
specificity leads to a high burden of false alarms, which can
significantly increase clinician workload, induce stress, and
potentially lead to alarm fatigue and desensitization. This
desensitization could paradoxically result in missed true events,
undermining the very goal of patient safety. The inherent tension
between maximizing sensitivity (to avoid missing a critical event)
and achieving high specificity (to minimize false alarms) in life-
threatening conditions presents a profound ethical and practical
dilemma for AI in healthcare. Clinicians are ethically bound to
prioritize patient safety, meaning they will naturally lean towards
higher sensitivity in predictive tools for conditions like cardiac or
RA. However, the consequence of high sensitivity without
commensurate specificity is an increased rate of false positives.
A high burden of false alarms results in increased workload and
stress for healthcare providers and eventually alarm fatigue.
Prioritizing the optimization of the balance between sensitivity and
specificity to ensure practical utility and avoid clinician burnout
necessitates interdisciplinary research involving not just Al
developers but also human factors specialists, such as clinicians
and healthcare administrators, to design systems that are both
statistically effective and clinically usable, perhaps through adaptive
alerting systems or tiered alert levels.

Addressing Data Quality, Noise, and Ground-Truth Labeling
Real-world clinical data often suffer from “noise” and variability
in quality, with some studies reporting valid data for as little as
half of the monitoring time. Future research must develop robust
methods for handling incomplete or noisy data to ensure model
reliability in diverse clinical environments. Furthermore, accurate
“ground-truth labels” are fundamental for effective AI/ML
algorithm training, and current methods like natural language
processing for label generation can be prone to errors, while
semi-supervised models remain in the research phase.

Ethical AI Development and Governance Beyond technical
performance, future AI/ML models must be developed with
explicit consideration of ethical principles, including equity,
accuracy, transparency, interpretability, accountability, data privacy,
and cybersecurity (32, 33). These considerations are not merely
regulatory hurdles but foundational requirements for building trust
and ensuring the responsible and equitable integration of Al into
clinical care. Furthermore, research into explainable AI and fairness
in algorithms will be crucial to address these concerns.

Larger Sample Sizes and Generalizability The current body of
evidence largely comprises studies with “relatively small sample
sizes”, which limits the generalizability of their findings. Future
research must prioritize larger-scale, multi-center studies to
validate model performance across diverse patient populations
and clinical environments, ensuring robust and generalizable
results that can be applied broadly.

frontiersin.org
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Systemic Redesign for Actionable Care Pathways The repeated
emphasis on the need for AI models to translate into “actionable
care pathways and workflows” signifies that the objective extends
far beyond merely developing a technically superior predictive
algorithm. An AI model, no matter how accurate, is an inert tool
if its predictions do not seamlessly integrate into and actively
inform clinical decision-making and subsequent actions. This
implies a need for a fundamental redesign of existing clinical
processes, rather than simply overlaying AI on top of current
practices. For example, an early warning from an AI system must
trigger a predefined, efficient, and well-rehearsed response
protocol  involving  specific  roles, responsibilities, and
interventions. This necessitates interdisciplinary research and
development involving not only Al specialists but also clinical
workflow experts, engineers, healthcare administrators, and even
policy-makers. The ultimate success of Al in healthcare will hinge
on its ability to catalyze and support these systemic changes,
transforming predictive insights into tangible improvements in

patient care delivery and outcomes.

Discussion

In-hospital CA and RA are catastrophic complications of any
admission. It is estimated that between 1 and 5 of every 1,000
admissions yearly will result in CA and RA (67), while the survival
rate for in-hospital CA remains between 23% and 24% (2, 3, 68).
However, efforts to develop early warning scores of deterioration
aiming to activate rapid response protocols (6-11), should
recognize that there is only a limited time-window to provide
pre-emptive care. Retrospective reviews frequently show that signs
of deterioration are unobserved or overlooked by medical staff (12,
13). Continuous telemetry monitoring is routine in the ICU and
some non-ICU units (69, 70), yet CAs and RAs are still frequent.

10.3389/fmedt.2025.1681059

To assess whether current developments on ML models can
improve outcomes in predicting CA and RA, a systematic search
of PubMed, Embase, and Web of Science was conducted. The
search strategy focused on critical care settings, AI/ML
techniques, and cardiac or RA outcomes. The selection process
is detailed in Figures 2A,B, resulting in 14 CA and 22 RA
studies included for analysis.

Improving not just survival but also the quality of care for in-
hospital CA patients requires a comprehensive set of programs and
actions, such as, first, plans and preparation for CA and RA,
second, delivery of high-quality, guideline-based resuscitation,
third, continuous evaluation and improvement itself within a
culture of person-centered care, and fourth, the potential for Al to
assist in the prediction and prevention of CA. Although the
prediction of cardiac and RA could reduce in-hospital morbidity
and mortality, further studies are needed to confirm this in clinical
practice. Identification of high-risk patients especially in the
emergency department is of great importance (Figure 3).
Furthermore, enhanced monitoring and early preventive measures
may help identify high-risk hospitalized patients, prevent adverse
clinical outcomes, and thus reduce morbidity and mortality. This
systematic review shows that ML models may be used for the
prediction of both cardiac and RA in the emergency department
and in the ICU. Furthermore, the retrospective studies show that
the proposed models have a good prediction performance using
easily obtained variables. Interestingly, in the prospective studies,
although it is not clearly mentioned, the results of the AI/ML
prediction models were not shared with the attending physicians,
and therefore they did not influence clinical outcomes.

While ML algorithms show a promising performance in
predicting in-hospital cardiac and RA, the integration of these
models into clinical workflows remains a significant challenge.
Practical considerations include integration with the electronic
health record systems, ensuring data interoperability, and

FIGURE 3

Summary of key findings from a systematic review on Al-based prediction of in-hospital cardiac and respiratory arrest.
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adequate staff training to effectively utilize the predictions from
these models to improve clinical-decision outcomes. However,
further research is needed to understand the real-world barriers
to designing and implementing ML tools in clinical practice.

Limitations

Most of the included studies were of relatively small sample
size, and therefore the results should be interpreted with
caution. There was also substantial heterogeneity across studies
in terms of study design, ML methodologies, and data sources,
which may affect the comparability and generalizability of the
results. In clinical practice, the quality of data that are required
as inputs cannot be identical. Although AI systems have been
shown to improve accuracy over traditional diagnostic systems,
albeit with a broad range of accuracy, prospective studies on the
clinical validation of these models for forecasting clinical
deterioration are important, yet they are relatively sparse. The
specificity of a model must be high for implementation in
clinical practice. A low specificity will lead in a high burden of
false alarms that will increase the workload and stress of
healthcare providers. Furthermore, prospective studies are
needed not only to further establish the accuracy and
generalizability of these approaches, but also their translation to

actionable care pathways, which can demonstrate clinical utility.

Conclusions

ML algorithms show promising results for the prediction of in-
patient cardiac and RA using easily obtained variables as inputs. If
successfully implemented in clinical practice, the ML models could
identify high-risk patients and reduce mortality and morbidity.
However, further validation and the design of clinical trials will
determine the efficacy of the ML models in each clinical setting.
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