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Background: Artificial intelligence (AI)-based models can augment clinical 

decision-making, including prediction, diagnosis, and treatment, in all aspects 

of medicine.

Research questions: The current systematic review aims to provide a summary 

of existing data about the role of machine learning (ML) techniques in 

predicting in-hospital cardiac arrest, life-threatening ventricular arrhythmias, 

and respiratory arrest.

Methods: The study was conducted in compliance with the Preferred Reporting 

Items for Systematic Reviews and Meta-analyses (PRISMA) framework. PubMed, 

Embase, and Web of Science without any restriction were searched to extract 

relevant manuscripts until October 20, 2023. Additionally, the reference list of 

all potential studies was searched to identify further relevant articles. Original 

publications were regarded as eligible if they only recruited adult patients 

(≥18 years of age), employed AI/ML algorithms for predicting cardiac arrest, 

life-threatening ventricular arrhythmias, and respiratory arrest in the setting of 

critical care, used data gathered from wards with critically ill patients (ICUs, 

cardiac ICUs, and emergency departments), and were published in English. 

The following information was extracted: first author, journal, ward, sample 

size, performance and features of ML and conventional models, and outcomes.

Results: ML algorithms have been used for cardiac arrest prediction using easily 

obtained variables as inputs. ML algorithms showed promising results (AUC 

0.73–0.96) in predicting cardiac arrest in different settings, including critically ill 

ICU patients, patients in the emergency department and patients with sepsis, 

they demonstrated variable performance (AUC 0.54–0.94) in predicting 

respiratory arrest in COVID-19 patients, as well as other clinical settings.
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Conclusion: ML algorithms have shown promising results in predicting in- 

hospital cardiac and respiratory arrest using readily available clinical data. These 

algorithms may enhance early identification of high risk patients and support 

timely interventions, thereby reducing mortality and morbidity rates. However, 

the prospective validation of these algorithms and their integration into clinical 

workflows need further exploration.
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Introduction

Approximately 200,000 in-hospital cardiac (CA) and respiratory 

arrests (RA) occur annually in US hospitals (1, 2); survival is ∼25%, 

and has improved only moderately over recent decades (3–5). 

Identification of patients at risk for adverse events leading to CA 

has been key to improving outcomes. Despite numerous efforts, 

including early warning scores and rapid response protocols 

(6–11), recognizing high-risk patients remains a limiting step in 

providing pre-emptive care. Detection of patient deterioration 

typically occurs during clinical examination or vital sign 

measurements at varying intervals (12, 13), depending on hospital 

and intensive care unit (ICU) policy (14), which leaves significant 

potential for unnoticed patient deterioration (15, 16).

Given the potential culmination in mortality and serious 

neurological sequelae, timely detection of clinical deterioration is 

essential (17). While current risk-stratification tools, such as Early 

Warning Score (EWS) based methods, have aided in clinical 

decision-making, they are limited in accuracy, sensitivity, and 

user dependency (18). Accordingly, further improvements in the 

performance of predictive tools are warranted for better clinical 

judgment regarding in-hospital patient safety (19, 20) (Figure 1).

Artificial intelligence (AI)-based models can facilitate clinical 

decision-making (21–28) via handling of complex massive datasets 

(29–31). Considering the growing number of AI-based algorithms 

developed for predicting life-threatening events (32–34), the current 

systematic review aims to assess the role of machine learning (ML) 

algorithms in predicting cardiac arrest, life-threatening ventricular 

arrhythmias, and RA, in in-hospital, critically ill patients.

Methods

The current systematic review study was conducted in 

compliance with the Preferred Reporting Items for Systematic 

Reviews and Meta-analyses (PRISMA) framework. This review 

was not registered and no protocol was prepared.

Eligibility criteria

This review focuses on peer-reviewed articles that applied 

AI/ML methods to predict the occurrence of cardiac arrest, life- 

threatening ventricular arrhythmias (ventricular fibrillation, 

ventricular tachycardia, asystole, pulseless electrical activity), and 

RA in critical care settings. Original publications were regarded 

as eligible if they only recruited adult patients (≥18 years of 

age), employed AI/ML algorithms for predicting the above- 

mentioned adverse events, used data gathered from wards with 

critically ill patients (ICUs, cardiac ICUs, and emergency 

departments), and were published in English. Publications were 

excluded if they used data from general hospital wards. Apart 

from original articles, other journal manuscript types were 

excluded. Studies involving animals, in vitro, and in vivo 

research projects were also excluded. Out-of-hospital cardiac 

arrest patients were not included in this review.

Search strategy

The research databases, including PubMed, Embase, and Web 

of Science, without any restriction, were used to extract relevant 

manuscripts until October 20, 2023. Moreover, the reference list 

of all potential studies was scrutinized and searched for 

additional articles. An advanced search strategy was conducted, 

structured around three groups of terms: critical care settings, 

artificial intelligence/machine learning, and cardiac or RA. Each 

group was searched using both exploded Emtree terms and 

keywords in titles, abstracts, and keyword fields. Terms within 

each group were combined using OR, and the three groups were 

combined using AND, ensuring retrieval of articles containing 

terms from all groups. Results were limited to publication types 

“Article”, “Article in Press”, and “Preprint”. A detailed search 

strategy is included in the Online Supplement.

Data extraction

First, the identified citations from each database 

were uploaded into Endnote 20 and duplicates were eliminated. 

Two independent authors (AG, GB) screened the titles and 

abstracts of the remaining papers. Then, the selected full-text 

articles were reviewed according to the eligibility criteria in the 

same manner. Disagreements at any step were settled through 

discussion. The following information was extracted: first author 

name, journal, ward, sample size, performance and features of 

ML and conventional models, and outcomes.

A brief description of the reported AI/ML models in this 

manuscript is provided in the Online Supplement.
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Quality assessment

Risk of bias and quality assessment were performed using the 

QUADAS-2 tool. Two categories, risk of bias and concerns 

regarding applicability, were assessed in the three domains of 

patient selection, index test, and reference standard. With the 

former being assessed in the domain of Fow and timing, as well. 

For assessing the risk of bias, the following criteria were applied 

for each of the four domains: (1) when the answer to all 

questions is “yes”, the overall bias risk of the domain is “low”; 

(2) when the answer to more than one question is “no”, bias 

risk was definitely identified, and the overall bias risk of the 

domain is “high”; (3) deemed “unclear” when the data reported 

is insufficient to make a judgment; (4) when any domain is high 

risk, the overall bias risk score is “high”; (5) only when the bias 

risk of one domain is unclear, the overall bias risk of the study 

is “unclear”.

The recommendation of the QUADAS-2 tool was followed, 

and the clinical applicability of each study was scored by 

evaluating whether it matched the concerns of our review, 

and rated as “low”, “high”, or “unclear”. An author (XL) 

independently performed the data extraction and quality 

assessment. Disagreements were resolved through discussion and 

independent assessment by another researcher to reach a 

consensus. The final study quality was classified as low risk of 

bias, high risk of bias, or unclear (Supplementary Table S1).

Results

Search results

Initially, we obtained 1,594 articles for RA and 409 for CA 

from three distinct databases, including PubMed, Embase, and 

Web of Science. Subsequently, we identified and removed 

duplicates (107 for CA, 661 for RA), leaving us with 302 CA 

articles and 933 RA articles. Finally, 14 CA studies and 22 RA 

studies met the inclusion and exclusion criteria and were 

included in the systematic review (Figures 2A,B, for CA and 

RA, respectively).

Cardiac arrest

Prediction of cardiac arrest holds great importance in clinical 

practice in order to activate timely preventive measures. ML 

algorithms have been used to predict cardiac arrest using easily 

obtained variables as inputs (Table 1).

Intensive Care Unit Yijing L et al., studied a cardiac arrest 

prediction index in critically ill ICU patients (35). In this study, 

bedside vital signs monitoring was used as inputs (heart rate, 

systolic blood pressure, diastolic blood pressure, mean blood 

pressure, SpO2, and respiratory rate) (35). The cardiac arrest 

prediction index predicted 95% of cardiac arrest events. 

Interestingly, 80% of the cardiac arrest events were identified 

more than 25 min in advance (35). In a study by Kim J et al., 

the authors used bedside vital signs, underlying disease, 

laboratory data, medication, and organ failure to predict cardiac 

arrest in critically ill patients using ML models (36). The 

proposed model showed a sensitivity between 0.846 and 0.909, 

and a specificity between 0.923 and 0.946 (36).

Another deep learning model has been proposed for cardiac 

arrest prediction in ICU patients using physiological and 

demographic features. The proposed model outperformed the 

Modified Early Warning Score (MEWS) and National Early 

Warning Score (NEWS) scores in cardiac arrest prediction at 

the tested time intervals (17). Tang Q et al., proposed another 

deep learning model based on time series of vital signs from 

electronic health records. In this model, features were captured 

FIGURE 1 

Practical measures to improve the outcomes of cardiac and respiratory arrest in clinical practice.
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by an efficient temporal convolutional network and explained 

using the deep Taylor decomposition theoretical framework. The 

results showed that the model demonstrated superior CA 

prediction accuracy compared to the standard NEWS score (37). 

An artificial neural network (ANN) has been developed to 

predict ventricular tachycardia 1 h before its onset, using 

parameters obtained from heart rate variability and respiratory 

rate variability analysis (38). The ventricular tachycardia 

prediction model achieved a sensitivity of 88%, specificity of 

82%, and an AUC of 0.93 (38).

Emergency department

Another topic of interest is the prediction of in-hospital CA in 

patients who presented to the emergency department. In this 

setting, a ML model has been implemented using triage data. The 

authors showed that Random Forest outperformed other ML 

models (Gradient Boosting and Extra Trees classifier), achieving an 

AUC of 0.931 (39). Interestingly, although the difference in AUC 

between each ML model and logistic regression was not significant, 

ML models performed significantly better than the NEWS scoring 

system (39). An ML algorithm has also been proposed to predict 

critical care outcomes, including CA, in patients with chest pain 

presenting to the emergency department (40). Specifically, a 

LASSO regression model was developed using easily obtained 

features. The proposed model significantly outperformed the 

HEART, GRACE, and TIMI scores achieving an AUC of 0.953 

(95% CI: 0.922–0.984) (40). Liu N et al., aimed to identify the most 

relevant variables for predicting major adverse cardiac events 

including CA, in patients presented to the emergency department 

(41). The authors used a novel random forest-based method to 

select the most relevant variables while a geometric distance-based 

ML scoring system was implemented to derive the risk score. The 

use of three variables (systolic blood pressure, the mean 

electrocardiographic RR interval and the mean instantaneous heart 

rate) demonstrated good performance in predicting adverse events 

(AUC: 0.812), outperforming the model using 23 variables (AUC: 

0.736), and the conventional TIMI (AUC: 0.637) and MEWS 

(AUC: 0.622) scores (41).

An ML model incorporating heart rate variability was 

proposed to predict CA in critically ill patients presenting to the 

emergency department (42). The results showed that the ML 

model outperformed the conventional methods in predicting CA 

within 72 h, with an AUC of 0.781 compared to 0.680 for 

MEWS (42). ML models developed on triage data have also 

been proposed to predict in-hospital CA or ICU admissions in 

patients visiting the emergency department (43). The proposed 

model demonstrated better sensitivity and accuracy in predicting 

critical outcomes compared to the assessments made by 

emergency physicians (43).

Sepsis

ML models have been implemented for the prediction of CA in 

patients with sepsis. In this setting, the best results were obtained 

using a stacking algorithm and multivariate dataset (44). The 

proposed model predicted the arrest incidence with an accuracy 

and sensitivity of over 70%, up to 6 h earlier. Although ML 

algorithms outperformed the conventional methods (APACHE II 

and MEWS scoring variables) for determining the patients’ 

FIGURE 2 

Flowchart of the search strategy. (A) Cardiac arrest, (B) Respiratory arrest.
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health status, higher sensitivity and specificity are needed for 

implementation in clinical practice (44). Baral S et al., proposed a 

deep learning algorithm to reduce the false alarm rates and 

increase the sensitivity of the previous models for CA prediction in 

patients with sepsis (45). Specifically, a hybrid model using a 

multilayer perceptron and enhanced bidirectional Long Short- 

Term Memory (LSTM) was proposed to handle baseline features 

and time-series vital signs (45). Compared to the state-of-the-art 

algorithms, the proposed model improved accuracy, sensitivity, 

specificity, and AUC, while reducing the false alarm rates.

Respiratory arrest

Prediction of RA and the need for mechanical ventilation can 

help clinicians identify high-risk patients and implement timely 

preventive measures (Table 2).

COVID-19
The random forest classifier, decision tree classifier, logistic 

regression, K-nearest neighbors classifier, support vector 

machine, and gradient boosted machine have been used for the 

prediction of invasive ventilation in COVID-19 patients 

admitted to the ICU (46). The random forest and Gradient 

boosted machine showed the best performance, achieving mean 

AUCs of 0.69 and 0.68, respectively (46). In the same setting, 

commonly used clinical variables (heart rate, oxygen saturation, 

respiratory rate, FIO2, and pH) were used as inputs in a deep 

learning model for the prediction of mechanical ventilation in 

hospitalized patients and in those with COVID-19 (47). The 

proposed model showed good performance (AUC > 0.88) in 

predicting those needing mechanical ventilation 24 h in advance 

(47). In addition, a two-step model has been used for the 

prediction of respiratory failure and invasive mechanical 

ventilation in critically ill patients suffering from COVID-19 

(48). An Extreme Gradient Boosting (XGBoost) algorithm was 

trained on data from the MIMIC-III database to predict if a 

patient would require invasive mechanical ventilation within the 

next 6, 12, 18 or 24 h. The proposed two-step model showed 

good performance in both the general ICU population and 

COVID-19 patients (48).

A 3D CT-based deep learning model has also been proposed for 

the prediction of COVID-19 outcomes, including the need for 

intubation (49). The prediction results improved when laboratory 

data were included, while the model accuracy decreased when CT 

images were excluded (49). A deep convolutional neural network 

(dCNN) was evaluated to predict inpatient outcomes, including 

intubation associated with COVID-19 pneumonia (50). Airspace 

opacity scoring systems, defined by the extent of airspace opacity 

in each lobe on chest CT scans, were estimated using the deep 

learning algorithm and used to predict clinical outcomes. Τhe 

tested algorithm was found to be highly predictive of inpatient 

outcomes, including intubation (50). De Godoy MF et al., studied 

the role of CT imaging, assessed by dCNN, in predicting the need 

for mechanical ventilation in the setting of COVID-19 (51). The 

high specificity exhibited by the model enabled it to predict which 

patients may need mechanical ventilation due to COVID-19 

infection (51). Bussen S et al., used an unsupervised ML algorithm 

(the Gaussian mixture model) to predict intubation in COVID-19 

patients (52). The algorithm achieved an accuracy of 87.8% for 

intubation recognition using simple parameters (breathing 

frequency and SpO2) (52). In addition, XGBoost and Categorical 

Boosting (CatBoost) algorithms demonstrated high accuracy in 

predicting the need for mechanical ventilation in COVID-19 

patients, using vital signs and demographics for initial triage, in 

the emergency department (53). In another study, XGBoost and 

Random Forest outperformed Logistic regression in predicting 

mechanical ventilation in COVID-19 patients using electronic 

health records data, in the emergency department (54). Similarly, 

another study showed that the XGBoost model had the highest 

mean accuracy for predicting respiratory failure within 48 h of a 

patient’s admission for COVID-19 (55). XGBoost outperformed 

SMOTEENN XGBoost, Logistic regression, and the Modified Early 

Warning Score (55). Easily obtained variables were used as inputs 

including the type of oxygen delivery used in the emergency 

department, patient age, the Emergency Severity Index level, 

respiratory rate, serum lactate, and demographic characteristics. In 

another study, Haimovich AD et al., showed that a bedside ML 

model (quick COVID-19 Severity Index) that employed 3 variables 

(respiratory rate, pulse oximetry, and oxygen Fow rate), the 

COVID-19 Severity Index can be used to predict critical 

respiratory illness in COVID-19 patients (56). These models 

outperformed the quick Sequential [Sepsis-related] Organ Failure 

Assessment, CURB-65 and Elixhauser scores. Furthermore, 

another study showed that ML models (Neural Network, Random 

Forest, and Classification and Regression Decision Tree) 

outperformed conventional tools, including the APACHE II score 

in predicting critical COVID-19 based on clinical parameters on 

admission (57).

Different clinical settings

Kim J et al., proposed an artificial intelligence model to predict 

acute respiratory failure 1 h, 2 h, 4 h, and 6 h prior to its 

occurrence using physiological signatures and past medical history 

(17). The AUC of this model was 0.869 for respiratory failure 6 h 

before occurrence. Additionally, the model outperformed the 

MEWS and NEWS scores (17). Xia M et al., used supervised ML 

algorithms to predict hypoxemia after extubation in the ICU (58). 

The authors found that from the tested algorithms (logistic 

regression, random forest, K-nearest neighbors, support-vector 

machine, XGBoost, Light Gradient Boosting Machine 

(LightGBM)), random forest, and Light Gradient Boosting 

Machine showed the best performance in hypoxemia prediction (58).

ML techniques have been used to predict intubation within 24 h 

using commonly available bedside and laboratory variables taken at 

critical care admission. Random forest and logistic regression 

exhibited good performance for intubation prediction (AUC = 0.86 

and 0.77 respectively) (59). Recurrent Neural Network models 

have been developed to predict the failure of noninvasive 

respiratory support using time series data (60). The authors 

showed that a Long-short term memory model had the highest 

accuracy and AUC compared to a Gated Recurrent Unit and a 

Thambiraj et al.                                                                                                                                                      10.3389/fmedt.2025.1681059 

Frontiers in Medical Technology 09 frontiersin.org



T
A

B
L

E
 2

 
P

re
d

ic
ti

o
n

 o
f 

re
sp

ir
a

to
ry

 a
rr

e
st

.

A
u

th
o

r
J

o
u

rn
a

l
D

a
ta

 

c
o

ll
e

c
ti

o
n

 

W
a

rd

S
a

m
p

le
 s

iz
e

O
u

tc
o

m
e

S
tu

d
y
 r

e
su

lt
s

C
o

n
c

lu
si

o
n

A
I 

m
e

th
o

d
s

A
I/

M
L

C
o

n
v
e

n
ti

o
n

a
l 

m
e

th
o

d
s

L
i 

Y
ij

in
g

C
o

m
p

u
te

r 

M
et

h
o

d
s 

an
d

 

P
ro

gr
am

s 
in

 

B
io

m
ed

ic
in

e

IC
U

 

(M
IM

IC
-I

II
 

d
at

ab
as

e)

1,
86

0 
p

at
ie

n
ts

 (
16

9 

C
A

 p
at

ie
n

ts
 a

n
d

 

1,
69

1 
n

o
n

-C
A

 

p
at

ie
n

ts
)

T
h

e 
ri

sk
 o

f 
d

ev
el

o
p

in
g 

C
A

 

w
it

h
in

 t
h

e 
n

ex
t 

1 
h

, 
ev

er
y 

5 
m

in
, 

b
as

ed
 o

n
 t

h
e 

fe
at

u
re

s 

ge
n

er
at

ed
 f

ro
m

 p
re

vi
o

u
s 

2 
h

 

d
at

a.

T
es

t 
se

t:
 A

U
C

 =
 0

.9
4 

SE
N

 =
 0

.8
6 

SP
E

 =
 0

.8
5 

A
C

C
 =

 0
.9

6 

Id
en

ti
fy

in
g 

C
A

 p
at

ie
n

ts
 

(S
E

N
 =

 9
5%

) 

F
1 

=
 0

.0
5 

n
o

n
-C

A
 p

at
ie

n
ts

: 
E

rr
o

r 
ra

te
 =

 3
7%

, 

SP
E

 =
 0

.6
3

T
h

e 
m

o
d

el
 c

an
 a

id
 i

n
 p

re
d

ic
ti

n
g 

C
A

 v
ia

 v
it

al
 s

ig
n

s 
m

o
n

it
o

ri
n

g.
 

F
al

se
 p

o
si

ti
ve

 p
re

d
ic

ti
o

n
 w

as
 

re
la

ti
ve

ly
 h

ig
h

 (
37

%
),

 w
h

ic
h

 

m
an

d
at

es
 e

m
p

lo
yi

n
g 

a 
fa

ls
e 

al
ar

m
 r

ed
u

ct
io

n
 s

tr
at

eg
y.

E
xt

re
m

e 
gr

ad
ie

n
t 

b
o

o
st

in
g 

(X
G

- 

B
o

o
st

) 
th

re
e-

fo
ld

 c
ro

ss
 v

al
id

at
io

n

Ju
n

et
ae

 

K
im

JM
IR

 M
ed

ic
al

 

In
fo

rm
at

ic
s

IC
U

75
9 

p
at

ie
n

ts
 (

37
 C

A
 

p
at

ie
n

ts
 a

n
d

 7
22

 

n
o

n
-C

A
 p

at
ie

n
ts

) 

80
%

 m
o

d
el

 

d
ev

el
o

p
m

en
t 

20
%

 t
es

ti
n

g

T
h

e 
ri

sk
 o

f 
C

A
 i

n
 c

ri
ti

ca
ll

y 
il

l 

p
at

ie
n

ts

M
ed

ia
n

 v
al

u
e 

o
f 

th
e 

p
er

fo
rm

an
ce

 o
f 

th
e 

5-
cr

o
ss

 v
al

id
at

io
n

 s
et

: 

1 
h

 b
ef

o
re

 C
A

: 
A

U
C

 =
 0

.9
6,

 

A
C

C
 =

 0
.9

7,
 S

E
N

 =
 0

.8
8,

 S
P

E
 =

 0
.9

7 

4 
h

 b
ef

o
re

 C
A

: 
A

U
C

 =
 0

.9
4,

 

A
C

C
 =

 0
.9

8,
 S

E
N

 =
 0

.8
5,

 S
P

E
 =

 0
.9

8 

48
 h

 b
ef

o
re

 C
A

 =
 A

U
C

 =
 0

.7
4,

 

A
C

C
 =

 0
.5

7,
 S

E
N

 =
 0

.9
2,

 S
P

E
 =

 0
.5

5

T
h

e 
m

o
d

el
 p

er
fo

rm
an

ce
 

d
ec

re
as

ed
 i

n
 a

cc
o

rd
an

ce
 w

it
h

 

in
cr

ea
si

n
g 

ti
m

e 
to

 e
ve

n
t.

D
ee

p
 l

ea
rn

in
g 

(C
h

ar
ac

te
r-

le
ve

l 

ga
te

d
 r

ec
u

rr
en

t 
u

n
it

 w
it

h
 a

 

W
ei

b
u

ll
 d

is
tr

ib
u

ti
o

n
 a

lg
o

ri
th

m
) 

F
iv

ef
o

ld
 c

ro
ss

-v
al

id
at

io
n

T
su

n
g-

 

C
h

ie
n

 L
u

In
te

rn
al

 a
n

d
 

E
m

er
ge

n
cy

 

M
ed

ic
in

e

E
D

31
6,

46
5 

p
at

ie
n

ts
P

re
d

ic
ti

n
g 

lo
ss

 o
f 

a 
p

al
p

ab
le

 

p
u

ls
e 

w
it

h
 a

tt
em

p
te

d
 

re
su

sc
it

at
io

n
 i

n
 t

h
e 

E
D

R
F

: 
A

U
C

 =
 0

.9
3 

(9
5%

 C
I 

0.
91

–
0.

95
),

 A
C

C
 =

 0
.9

2,
 S

E
N

 =
 0

.7
5,

 

SP
E

 =
 0

.9
2,

 p
re

ci
si

o
n

 =
 0

.0
19

, 

B
ri

er
 =

 0
.0

66
, 

A
U

P
R

C
 =

 0
.1

16
 

G
B

: 
A

U
C

 =
 0

.9
3 

(9
5%

 C
I 

0.
91

–
 

0.
95

),
 A

C
C

 =
 0

.9
3,

 S
E

N
 =

 0
.7

4,
 

SP
E

 =
 0

.9
3,

 p
re

ci
si

o
n

 =
 0

.0
2,

 

B
ri

er
 =

 0
.0

7,
 A

U
P

R
C

 =
 0

.0
57

 

E
T

: 
A

U
C

 =
 0

.9
2 

(9
5%

 C
I 

0.
89

–
0.

94
),

 

A
C

C
 =

 0
.9

1,
 S

E
N

 =
 0

.7
6,

 S
P

E
 =

 0
.9

1,
 

p
re

ci
si

o
n

 =
 0

.0
17

, 
B

ri
er

 =
 0

.0
75

, 

A
U

P
R

C
 =

 0
.0

45

L
R

: 
A

U
C

 =
 0

.9
1 

(9
5%

 

C
I 

=
 0

.8
8–

0.
93

),
 A

C
C

 =
 0

.9
98

, 

SE
N

 =
 0

.0
0,

 S
P

E
 =

 1
.0

0,
 

p
re

ci
si

o
n

 =
 0

.0
0,

 

B
ri

er
 =

 0
.0

02
, A

U
P

R
C

 =
 0

.0
26

 

N
E

W
S2

 s
co

ri
n

g 
sy

st
em

 

(c
o

m
p

ar
ed

 t
o

 M
L

/ 

L
R

 =
 P

 <
 0

.0
5)

: 
A

U
C

 =
 0

.6
78

 

(9
5%

 C
I 

0.
67

5–
0.

68
1)

, 

A
C

C
 =

 0
.9

1,
 S

E
N

 =
 0

.2
6,

 

SP
E

 =
 0

.9
1,

 p
re

ci
si

o
n

 =
 0

.0
06

, 

A
U

P
R

C
 =

 0
.0

04

M
L

 m
o

d
el

s 
st

at
is

ti
ca

ll
y 

si
gn

ifi
ca

n
tl

y 
o

u
tp

er
fo

rm
ed

 

N
E

W
S2

 s
co

ri
n

g 
sy

st
em

. 

H
o

w
ev

er
, 

th
e 

d
if

fe
re

n
ce

s 

b
et

w
ee

n
 e

ac
h

 o
f 

M
L

 m
o

d
el

s 
an

d
 

L
R

 w
er

e 
n

o
t 

si
gn

ifi
ca

n
t.

Su
p

er
vi

se
d

 M
L

 a
lg

o
ri

th
m

s 
u

si
n

g 

R
F

, 
G

ra
d

ie
n

t 
B

o
o

st
in

g 
(G

B
),

 a
n

d
 

E
xt

ra
 T

re
es

 (
E

T
) 

cl
as

si
fi

er
s 

n
in

e-
 

fo
ld

 c
ro

ss
 v

al
id

at
io

n

(C
on

ti
n

u
ed

) 

Thambiraj et al.                                                                                                                                                      10.3389/fmedt.2025.1681059 

Frontiers in Medical Technology 10 frontiersin.org



T
A

B
L

E
 2

 
C

o
n

ti
n

u
e

d

A
u

th
o

r
J

o
u

rn
a

l
D

a
ta

 

c
o

ll
e

c
ti

o
n

 

W
a

rd

S
a

m
p

le
 s

iz
e

O
u

tc
o

m
e

S
tu

d
y
 r

e
su

lt
s

C
o

n
c

lu
si

o
n

A
I 

m
e

th
o

d
s

A
I/

M
L

C
o

n
v
e

n
ti

o
n

a
l 

m
e

th
o

d
s

Je
o

n
gm

in
 

K
im

Jo
u

rn
al

 o
f 

C
li

n
ic

al
 

M
ed

ic
in

e

IC
U

27
,7

08
 p

at
ie

n
ts

P
re

d
ic

ti
n

g 
C

A
 a

n
d

 

re
sp

ir
at

o
ry

 f
ai

lu
re

 i
n

 I
C

U
 

p
at

ie
n

ts
 i

n
 a

 r
ea

l-
w

o
rl

d
 

se
tt

in
g

D
L

: 
1 

h
 b

ef
o

re
 C

A
: 

A
U

C
 =

 0
.8

96
, 

SE
N

 =
 0

.8
4,

 S
P

E
 =

 0
.7

8,
 P

P
V

 =
 0

.1
0,

 

N
P

V
 =

 0
.9

9 
A

C
C

 =
 0

.7
8 

F
2-

sc
o

re
 =

 0
.1

78
 

2 
h

 b
ef

o
re

 C
A

: 
A

U
C

 =
 0

.8
9,

 

SE
N

 =
 0

.8
7,

 S
P

E
 =

 0
.7

4,
 P

P
V

 =
 0

.0
9,

 

N
P

V
 =

 0
.9

95
 A

C
C

 =
 0

.7
5,

 

F
2-

sc
o

re
 =

 0
.1

6 

6 
h

 b
ef

o
re

 C
A

: 
A

U
C

 =
 0

.8
9,

 

SE
N

 =
 0

.8
6,

 S
P

E
 =

 0
.7

5 
P

P
V

 =
 0

.0
8,

 

N
P

V
 =

 0
.9

95
, 

A
C

C
 =

 0
.7

5 

F
2-

sc
o

re
 =

 0
.1

5

M
E

W
S:

 1
 h

 b
ef

o
re

 C
A

: 

A
U

C
 =

 0
.7

5,
 S

E
N

 =
 0

.4
1,

 

SP
E

 =
 0

.8
8,

 P
P

V
 =

 0
.0

9,
 

N
P

V
 =

 0
.9

8,
 A

C
C

 =
 0

.8
6,

 

F
2-

sc
o

re
 =

 0
.1

5 

2 
h

 b
ef

o
re

 C
A

: 
A

U
C

 =
 0

.7
5,

 

SE
N

 =
 0

.4
1 

SP
E

 =
 0

.8
8 

P
P

V
 =

 0
.0

9,
 N

P
V

 =
 0

.9
9,

 

A
C

C
 =

 0
.8

6 
F

2-
sc

o
re

 =
 0

.1
4 

6 
h

 b
ef

o
re

 C
A

: 
A

U
C

 =
 0

.7
4,

 

SE
N

 =
 0

.3
9,

 S
P

E
 =

 0
.8

8,
 

P
P

V
 =

 0
.0

8,
 N

P
V

 =
 0

.9
8,

 

A
C

C
 =

 0
.8

6,
 F

2-
sc

o
re

 =
 0

.1
3 

N
E

W
S:

 1
 h

 b
ef

o
re

 C
A

: 

A
U

C
 =

 0
.7

6,
 S

E
N

 =
 0

.7
0,

 

SP
E

 =
 0

.7
1,

 P
P

V
 =

 0
.0

7,
 

N
P

V
 =

 0
.9

9,
 A

C
C

 =
 0

.7
1,

 

F
2-

sc
o

re
 =

 0
.1

2 

2 
h

 b
ef

o
re

 C
A

: 
A

U
C

 =
 0

.7
6,

 

SE
N

 =
 0

.7
0,

 S
P

E
 =

 0
.7

1,
 

P
P

V
 =

 0
.0

6,
 N

P
V

 =
 0

.9
9,

 

A
C

C
 =

 0
.7

1,
 F

2-
sc

o
re

 =
 0

.1
2 

6 
h

 b
ef

o
re

 C
A

: 
A

U
C

 =
 0

.7
5,

 

SE
N

 =
 0

.6
9,

 S
P

E
 =

 0
.7

1,
 

P
P

V
 =

 0
.0

6,
 N

P
V

 =
 0

.9
9,

 

A
C

C
 =

 0
.7

1,
 F

2-
sc

o
re

 =
 0

.1
0 

 

D
L

 m
o

d
el

 a
ch

ie
ve

s 
st

at
is

ti
ca

ll
y 

si
gn

ifi
ca

n
t 

h
ig

h
er

 p
er

fo
rm

an
ce

 

in
 t

er
m

s 
o

f 
A

U
C

 t
h

an
 M

E
W

S 
o

r 

N
E

W
S 

fo
r 

C
A

 p
re

d
ic

ti
o

n
 1

–
6 

h
 

b
ef

o
re

 t
h

e 
in

ci
d

en
t.

D
ee

p
 l

ea
rn

in
g

(C
on

ti
n

u
ed

) 

Thambiraj et al.                                                                                                                                                      10.3389/fmedt.2025.1681059 

Frontiers in Medical Technology 11 frontiersin.org



T
A

B
L

E
 2

 
C

o
n

ti
n

u
e

d

A
u

th
o

r
J

o
u

rn
a

l
D

a
ta

 

c
o

ll
e

c
ti

o
n

 

W
a

rd

S
a

m
p

le
 s

iz
e

O
u

tc
o

m
e

S
tu

d
y
 r

e
su

lt
s

C
o

n
c

lu
si

o
n

A
I 

m
e

th
o

d
s

A
I/

M
L

C
o

n
v
e

n
ti

o
n

a
l 

m
e

th
o

d
s

Q
in

h
u

a 

T
an

g

M
at

h
em

at
ic

al
 

b
io

sc
ie

n
ce

s 
an

d
 

en
gi

n
ee

ri
n

g

IC
U

 

(M
IM

IC
-I

II
 

d
at

ab
as

e)

48
6 

p
at

ie
n

ts
 1

07
 C

A
 

p
o

si
ti

ve

P
re

d
ic

ti
n

g 
C

A
 i

n
 I

C
U

 

p
at

ie
n

ts

R
F

: 
1 

h
 b

ef
o

re
 C

A
: 

A
U

C
 =

 0
.7

5,
 

SE
N

 =
 0

.6
7 

SP
E

 =
 0

.8
7,

 P
P

V
 =

 0
.5

7,
 

N
P

V
 =

 0
.9

1,
 F

1-
sc

o
re

 =
 0

.6
2.

 

2 
h

 b
ef

o
re

 C
A

: 
A

U
C

 =
 0

.7
5,

 

SE
N

 =
 0

.7
3,

 S
P

E
 =

 0
.8

6,
 P

P
V

 =
 0

.5
2,

 

N
P

V
 =

 0
.9

4,
 F

1-
sc

o
re

 =
 0

.6
1.

 

5 
h

 b
ef

o
re

 C
A

: 
A

U
C

 =
 0

.7
5,

 

SE
N

 =
 0

.6
1 

SP
E

 =
 0

.8
6,

 P
P

V
 =

 0
.5

2,
 

N
P

V
 =

 0
.8

9,
 F

1-
sc

o
re

 =
 0

.5
6 

G
R

U
: 

1 
h

 b
ef

o
re

 C
A

: 
A

U
C

 =
 0

.7
6,

 

SE
N

 =
 0

.5
3,

 S
P

E
 =

 0
.9

0,
 P

P
V

 =
 0

.7
8,

 

N
P

V
 =

 0
.7

4,
 F

1-
sc

o
re

 =
 0

.6
3.

 

2 
h

 b
ef

o
re

 C
A

: 
A

U
C

 =
 0

.7
5,

 

SE
N

 =
 0

.5
3,

 S
P

E
 =

 0
.8

7,
 P

P
V

 =
 0

.7
1,

 

N
P

V
 =

 0
.7

6,
 F

1-
sc

o
re

 =
 0

.6
1.

 

5 
h

 b
ef

o
re

 C
A

: 
A

U
C

 =
 0

.6
9,

 

SE
N

 =
 0

.4
4,

 S
P

E
 =

 0
.8

7,
 P

P
V

 =
 0

.7
5,

 

N
P

V
 =

 0
.6

3,
 F

1-
sc

o
re

 =
 0

.5
5 

L
ST

M
: 

1 
h

 b
ef

o
re

 C
A

: 
A

U
C

 =
 0

.8
3,

 

SE
N

 =
 0

.5
5 

SP
E

 =
 0

.9
8,

 P
P

V
 =

 0
.9

6,
 

N
P

V
 =

 0
.7

1,
 F

1-
sc

o
re

 =
 0

.7
0.

 2
 h

 

b
ef

o
re

 C
A

: 
A

U
C

 =
 0

.7
7,

 S
E

N
 =

 0
.5

3,
 

SP
E

 =
 0

.9
3,

 P
P

V
 =

 0
.8

8,
 N

P
V

 =
 0

.6
9,

 

F
1-

sc
o

re
 =

 0
.6

6.
 5

 h
 b

ef
o

re
 C

A
: 

A
U

C
 =

 0
.7

6,
 S

E
N

 =
 0

.5
0 

SP
E

 =
 0

.8
9,

 

P
P

V
 =

 0
.8

0,
 N

P
V

 =
 0

.6
7,

 

F
1-

sc
o

re
 =

 0
.6

2 

T
C

N
 m

o
d

el
: 

1 
h

 b
ef

o
re

 C
A

: 

A
U

C
 =

 0
.8

5,
 S

E
N

 =
 0

.7
5 

SP
E

 =
 0

.9
0,

 

P
P

V
 =

 0
.7

5,
 N

P
V

 =
 0

.9
0,

 

F
1-

sc
o

re
 =

 0
.7

5.
 

2 
h

 b
ef

o
re

 C
A

: 
A

U
C

 =
 0

.8
3,

 

SE
N

 =
 0

.7
1,

 S
P

E
 =

 0
.8

7,
 P

P
V

 =
 0

.6
8,

 

N
P

V
 =

 0
.8

8,
 F

1-
sc

o
re

 =
 0

.6
9.

 

5 
h

 b
ef

o
re

 C
A

: 
A

U
C

 =
 0

.8
0,

 

SE
N

 =
 0

.6
8 

SP
E

 =
 0

.8
7,

 P
P

V
 =

 0
.6

8,
 

N
P

V
 =

 0
.8

7,
 F

1-
sc

o
re

 =
 0

.6
8

N
E

W
S:

 1
 h

 b
ef

o
re

 C
A

: 

A
U

C
 =

 0
.6

2,
 S

E
N

 =
 0

.6
2 

SP
E

 =
 0

.6
8,

 P
P

V
 =

 0
.3

8,
 

N
P

V
 =

 0
.8

5,
 F

1-
sc

o
re

 =
 0

.4
7 

2 
h

 b
ef

o
re

 C
A

:A
U

C
 =

 0
.5

7,
 

SE
N

 =
 0

.5
5 

SP
E

 =
 0

.6
5,

 

P
P

V
 =

 0
.3

3,
 N

P
V

 =
 0

.8
2,

 

F
1-

sc
o

re
 =

 0
.4

1 

5 
h

 b
ef

o
re

 C
A

: 
A

U
C

 =
 0

.5
8,

 

SE
N

 =
 0

.5
3 

SP
E

 =
 0

.6
7,

 

P
P

V
 =

 0
.3

4,
 N

P
V

 =
 0

.8
2,

 

F
1-

sc
o

re
 =

 0
.4

1

T
h

e 
T

C
M

 m
o

d
el

 a
ch

ie
ve

d
 

su
p

er
io

r 
C

A
 p

re
d

ic
ti

o
n

 A
C

C
 

co
m

p
ar

ed
 w

it
h

 N
E

W
S,

 i
n

 t
er

m
s 

o
f 

o
ve

ra
ll

 A
U

C
 a

n
d

 F
1-

Sc
o

re
. 

T
h

e 
m

o
d

el
 h

ad
 a

n
 o

ve
ra

ll
 b

et
te

r 

p
er

fo
rm

an
ce

 c
o

m
p

ar
ed

 t
o

 

tr
ad

it
io

n
al

 D
L

 m
o

d
el

s.

T
C

M
 (

ex
p

la
in

ed
 b

y 
D

ee
p

 T
ay

lo
r 

d
ec

o
m

p
o

si
ti

o
n

)

(C
on

ti
n

u
ed

) 

Thambiraj et al.                                                                                                                                                      10.3389/fmedt.2025.1681059 

Frontiers in Medical Technology 12 frontiersin.org



T
A

B
L

E
 2

 
C

o
n

ti
n

u
e

d

A
u

th
o

r
J

o
u

rn
a

l
D

a
ta

 

c
o

ll
e

c
ti

o
n

 

W
a

rd

S
a

m
p

le
 s

iz
e

O
u

tc
o

m
e

S
tu

d
y
 r

e
su

lt
s

C
o

n
c

lu
si

o
n

A
I 

m
e

th
o

d
s

A
I/

M
L

C
o

n
v
e

n
ti

o
n

a
l 

m
e

th
o

d
s

Sa
m

an
eh

 

L
ay

eg
h

ia
n

 

Ja
va

n

C
o

m
p

u
te

r 

M
et

h
o

d
s 

an
d

 

P
ro

gr
am

s 
in

 

B
io

m
ed

ic
in

e

IC
U

 

(M
IM

IC
-I

II
 

d
at

ab
as

e)

4,
61

1 
p

at
ie

n
ts

 7
9 

C
A

 c
as

es
 4

,5
32

P
re

d
ic

ti
n

g 
C

A
 f

o
r 

ad
u

lt
 

p
at

ie
n

ts
 w

it
h

 s
ep

si
s 

u
p

 t
o

 6
 h

 

ea
rl

ie
r

B
es

t 
m

o
d

el
 u

si
n

g 
m

u
lt

iv
ar

ia
te

 

d
at

as
et

: 
St

ac
k

in
g 

m
o

d
el

 (
b

al
an

ce
d

 

b
y 

K
-m

ed
o

id
) 

1 
h

 b
ef

o
re

 C
A

: 

A
U

C
 =

 0
.8

2,
 S

E
N

 =
 0

.7
7,

 S
P

E
 =

 0
.7

6,
 

A
C

C
 =

 0
.7

6,
 p

re
ci

si
o

n
 =

 0
.1

9,
 F

1 

sc
o

re
 =

 0
.3

1,
 F

P
R

 =
 0

.2
4 

B
es

t 
m

o
d

el
 u

si
n

g 
ti

m
e 

se
ri

es
: 

K
er

n
el

 

SV
M

 (
b

al
an

ce
d

 b
y 

SM
O

T
E

) 
1 

h
 

b
ef

o
re

 C
A

: 
A

U
C

 =
 0

.8
1,

 S
E

N
 =

 0
.7

0,
 

SP
E

 =
 0

.7
6,

 A
C

C
 =

 0
.7

6,
 

p
re

ci
si

o
n

 =
 0

.1
7,

 F
1 

sc
o

re
 =

 0
.2

7,
 

F
P

R
 =

 0
.2

4 

B
es

t 
m

o
d

el
 u

si
n

g 
co

m
b

in
ed

 d
at

as
et

 

L
R

 (
b

al
an

ce
d

 b
y 

w
ei

gh
ti

n
g)

 1
 h

 

b
ef

o
re

 C
A

: 
A

U
C

 =
 0

.7
8,

 S
E

N
 =

 0
.7

0,
 

SP
E

 =
 0

.7
8,

 A
C

C
 =

 0
.7

7,
 

p
re

ci
si

o
n

 =
 0

.1
8,

 F
1 

sc
o

re
 =

 0
.2

8,
 

F
P

R
 =

 0
.2

2

A
P

A
C

H
E

 I
I 

1 
h

 b
ef

o
re

 C
A

: 

A
U

C
 =

 0
.7

1,
 S

E
N

 =
 0

.6
7,

 

SP
E

 =
 0

.7
5,

 A
C

C
 =

 0
.7

4,
 

p
re

ci
si

o
n

 =
 0

.1
8,

 F
1 

sc
o

re
 =

 0
.2

8,
 F

P
R

 =
 0

.2
5 

M
E

W
S:

 1
 h

 b
ef

o
re

 C
A

: 

A
U

C
 =

 0
.7

0,
 S

E
N

 =
 0

.6
2,

 

SP
E

 =
 0

.7
8,

 A
C

C
 =

 0
.7

7,
 

p
re

ci
si

o
n

 =
 0

.2
0,

 F
1 

sc
o

re
 =

 0
.3

0,
 F

P
R

 =
 0

.2
2

T
h

e 
b

es
t 

re
su

lt
s 

w
er

e 
o

b
ta

in
ed

 

u
si

n
g 

a 
st

ac
k

in
g 

al
go

ri
th

m
. 

T
h

e 

m
o

d
el

 p
ro

d
u

ce
d

 a
 s

ig
n

ifi
ca

n
t 

im
p

ro
ve

m
en

t 
in

 t
h

e 
SE

N
 a

n
d

 

A
U

C
 v

al
u

es
 c

o
m

p
ar

ed
 t

o
 

A
P

A
C

H
E

 I
I 

an
d

 M
E

W
S.

cl
as

si
ca

l 
m

et
h

o
d

s 
(S

V
M

, 
D

T
, 

L
R

, 

K
N

N
, 

G
au

ss
ia

n
 N

B
),

 a
n

d
 

en
se

m
b

le
 m

et
h

o
d

s 
(g

ra
d

ie
n

t 

b
o

o
st

in
g,

 X
G

B
o

o
st

, 
R

F
, 

b
al

an
ce

d
 

b
ag

gi
n

g 
cl

as
si

fi
er

 a
n

d
 s

ta
ck

in
g)

. 

T
h

re
e 

d
at

as
et

s 
(m

u
lt

iv
ar

ia
te

, t
im

e 

se
ri

es
 a

n
d

 c
o

m
b

in
ed

) 
w

er
e 

cr
ea

te
d

 a
n

d
 c

o
m

p
ar

ed
 i

n
 6

 

d
if

fe
re

n
t 

cl
as

s-
h

o
u

r 
gr

o
u

p
s.

Sa
m

it
 B

ar
al

M
u

lt
im

ed
ia

 

T
o

o
ls

 a
n

d
 

A
p

p
li

ca
ti

o
n

s

IC
U

7,
61

1 
p

at
ie

n
ts

 

M
IM

IC
 I

II
 d

at
ab

as
e

P
re

d
ic

ti
o

n
 o

f 
ca

rd
ia

c 
ar

re
st

 

in
 p

at
ie

n
ts

 w
it

h
 s

ep
si

s

P
ro

p
o

se
d

 s
o

lu
ti

o
n

 

A
C

C
 =

 0
.9

26
, 

SE
N

S 
=

 0
.9

43
, 

SP
E

 =
 0

.9
36

 a
n

d
 A

U
C

 =
 0

.9
4

St
at

e 
o

f 
A

rt
 s

o
lu

ti
o

n
 

A
C

C
 =

 0
.8

57
, 

SE
N

S 
=

 0
.8

77
, 

SP
E

 =
 0

.8
49

, 
an

d
 A

U
C

 =
 0

.8
6

T
h

e 
p

ro
p

o
se

d
 s

ys
te

m
 i

s 

re
d

u
ci

n
g 

th
e 

fa
ls

e 
al

ar
m

 r
at

e 
an

d
 

in
cr

ea
si

n
g 

ac
cu

ra
cy

, 
se

n
si

ti
vi

ty
, 

sp
ec

ifi
ci

ty
, 

an
d

 t
h

e 
ar

ea
 u

n
d

er
 

cu
rv

e 
fo

r 
th

e 
p

re
d

ic
ti

o
n

 o
f 

ca
rd

ia
c 

ar
re

st
 u

si
n

g 
en

h
an

ce
d

 

B
id

ir
ec

ti
o

n
al

 L
ST

M
 m

o
d

el

M
L

P
 

E
n

h
an

ce
d

 B
id

ir
ec

ti
o

n
al

 L
ST

M

(C
on

ti
n

u
ed

) 

Thambiraj et al.                                                                                                                                                      10.3389/fmedt.2025.1681059 

Frontiers in Medical Technology 13 frontiersin.org



T
A

B
L

E
 2

 
C

o
n

ti
n

u
e

d

A
u

th
o

r
J

o
u

rn
a

l
D

a
ta

 

c
o

ll
e

c
ti

o
n

 

W
a

rd

S
a

m
p

le
 s

iz
e

O
u

tc
o

m
e

S
tu

d
y
 r

e
su

lt
s

C
o

n
c

lu
si

o
n

A
I 

m
e

th
o

d
s

A
I/

M
L

C
o

n
v
e

n
ti

o
n

a
l 

m
e

th
o

d
s

T
in

g 
T

in
g 

W
u

B
M

C
 E

m
er

ge
n

cy
 

M
ed

ic
in

e

E
D

48
3 

p
at

ie
n

ts
 

(7
1 

C
A

 p
at

ie
n

ts
, 

13
8 

IC
U

 a
d

m
is

si
o

n
, 

10
 m

o
rt

al
it

y)

p
re

d
ic

ti
n

g 
cr

it
ic

al
 c

ar
e 

o
u

tc
o

m
es

 (
C

A
, 

IC
U

 

ad
m

is
si

o
n

, 
d

ea
th

) 
in

 E
D

 

p
at

ie
n

ts
 w

it
h

 c
h

es
t 

p
ai

n

L
A

SS
O

:A
C

C
 =

 0
.8

9,
 S

E
N

 =
 0

.8
6,

 

SP
E

 =
 0

.9
1,

 P
P

V
 =

 0
.8

9,
 N

P
V

 =
 0

.8
9,

 

F
1 

=
 0

.8
8,

 A
U

C
 =

 0
.9

5

G
R

A
C

E
: 

A
C

C
 =

 0
.7

2,
 

SE
N

 =
 0

.6
1,

 S
P

E
 =

 0
.8

1,
 

P
P

V
 =

 0
.7

3,
 N

P
V

 =
 0

.7
1,

 

F
1 

=
 0

.6
6,

 A
U

C
 =

 0
.7

5 

H
E

A
R

T
: 

A
C

C
 =

 0
.7

1,
 

SE
N

 =
 0

.7
7,

 S
P

E
 =

 0
.6

6,
 

P
P

V
 =

 0
.6

5,
 N

P
V

 =
 0

.7
8,

 

F
1 

=
 0

.7
1,

 A
U

C
 =

 0
.7

5 

T
IM

I:
 A

C
C

 =
 0

.6
8,

 

SE
N

 =
 0

.5
0,

 S
P

E
 =

 0
.8

4,
 

P
P

V
 =

 0
.7

2,
 N

P
V

 =
 0

.6
7,

 

F
1 

=
 0

.5
9,

 A
U

C
 =

 0
.7

4

T
h

e 
m

o
d

el
 s

ig
n

ifi
ca

n
tl

y 

o
u

tp
er

fo
rm

ed
 t

h
e 

H
E

A
R

T
, 

G
R

A
C

E
, 

T
IM

I 
sc

o
re

L
A

SS
O

 r
eg

re
ss

io
n

 m
o

d
el

M
ar

cu
s 

E
n

g 

H
o

ck
 O

n
g

C
ri

ti
ca

l 
C

ar
e

E
D

92
5 

p
at

ie
n

ts
 

43
 C

A
 p

at
ie

n
ts

P
re

d
ic

ti
n

g 
C

A
 i

n
 c

ri
ti

ca
ll

y 
il

l 

p
at

ie
n

ts
 w

it
h

in
 7

2 
h

 o
f 

p
re

se
n

ta
ti

o
n

 t
o

 t
h

e 
E

D

M
L

:A
U

C
 =

 0
.7

8,
 S

E
N

 =
 0

.8
1,

 

SP
E

 =
 0

.7
2,

 P
P

V
 =

 0
.1

3,
 N

P
V

 =
 0

.9
9

M
E

W
S:

A
U

C
 =

 0
.6

, 

SE
N

 =
 0

.7
4,

 S
P

E
 =

 0
.5

4,
 

P
P

V
 =

 0
.0

, 
N

P
V

 =
 0

.9
8

T
h

e 
M

L
 m

o
d

el
 o

u
tp

er
fo

rm
ed

 

th
e 

M
E

W
S

M
u

lt
iv

ar
ia

te
, 

n
o

n
p

ar
am

et
ri

c 

b
la

ck
b

o
x 

ap
p

ro
ac

h

D
o

n
g-

 

H
yu

n
 J

an
g

A
m

er
ic

an
 

Jo
u

rn
al

 o
f 

E
m

er
ge

n
cy

 

M
ed

ic
in

e

E
D

37
4,

60
5

P
re

d
ic

ti
n

g 
th

e 
d

ev
el

o
p

m
en

t 

o
f 

ca
rd

ia
c 

ar
re

st
 w

it
h

in
 2

4 
h

 

o
f 

E
D

 p
re

se
n

ta
ti

o
n

ΑΝ
Ν

-M
L

P
: 

A
U

C
 =

 0
.9

29
 (

0.
92

6–
 

0.
93

2)
 

ΑΝ
Ν

-L
ST

M
:A

U
C

 =
 0

.9
33

 (
0.

93
0–

 

0.
93

6)
 

ΑΝ
Ν

-H
yb

ri
d

: 
A

U
C

 =
 0

.9
36

 (
0.

93
3–

 

0.
93

9)

M
E

W
S:

 A
U

C
 =

 0
.8

86
 (

0.
88

2–
 

0.
89

1)
 

L
R

: 
A

U
C

 =
 0

.9
14

 (
0.

91
0–

 

0.
91

8)
 

R
F

: 
A

U
C

 =
 0

.9
23

 (
0.

91
9–

 

0.
92

6)

A
lt

h
o

u
gh

 a
ll

 m
o

d
el

s 
ac

h
ie

ve
d

 

h
ig

h
 p

er
fo

rm
an

ce
 i

n
 t

er
m

s 
o

f 

A
U

C
, 

th
e 

A
N

N
 m

o
d

el
s 

st
at

is
ti

ca
ll

y 
si

gn
ifi

ca
n

tl
y 

o
u

tp
er

fo
rm

ed
 n

o
n

-A
N

N
 m

o
d

el
s 

(P
 <

 0
.0

01
).

 T
h

e 
h

yb
ri

d
 A

N
N

 

m
o

d
el

 u
ti

li
zi

n
g 

b
o

th
 b

as
el

in
e 

an
d

 s
eq

u
en

ce
 i

n
fo

rm
at

io
n

 

ac
h

ie
ve

d
 t

h
e 

b
es

t 
p

er
fo

rm
an

ce
.

T
h

re
e 

A
N

N
 m

o
d

el
s 

=
 M

L
P

 

m
o

d
el

, 
L

ST
M

 m
o

d
el

, 
th

e 
h

yb
ri

d
 

m
o

d
el

 (
b

as
el

in
e 

va
ri

ab
le

s 
ar

e 

p
ro

ce
ss

ed
 v

ia
 M

L
P

 a
n

d
 s

eq
u

en
ce

 

d
at

a 
ar

e 
p

ro
ce

ss
ed

 v
ia

 L
ST

M
) 

co
m

p
ar

ed
 t

o
 n

o
n

-A
N

N
 m

o
d

el
s 

(R
F

, 
L

R
) 

an
d

 M
E

W
S

Ji
 H

o
o

n
 

K
im

Sc
ie

n
ti

fi
c 

re
p

o
rt

s
E

D
1,

35
0,

69
3 

C
A

 

in
ci

d
en

ce
 =

 0
.4

%

th
e 

o
cc

u
rr

en
ce

 o
f 

C
A

 i
n

 t
h

e 

E
D

 o
f 

p
at

ie
n

ts
 a

rr
iv

in
g 

vi
a 

E
M

S

L
R

:A
U

C
 =

 0
.9

1 

X
G

B
: 

A
U

C
 =

 0
.9

2 

M
L

P
:A

U
C

 =
 0

.9
1

T
h

e 
m

ac
h

in
e-

le
ar

n
in

g 
p

re
d

ic
ti

ve
 

m
o

d
el

 u
si

n
g 

th
e 

in
te

gr
at

ed
 

in
fo

rm
at

io
n

 a
cq

u
ir

ed
 i

n
 t

h
e 

p
re

h
o

sp
it

al
 s

ta
ge

 e
ff

ec
ti

ve
ly

 

p
re

d
ic

te
d

 i
n

-h
o

sp
it

al
 c

ar
d

ia
c 

ar
re

st
 i

n
 t

h
e 

E
D

.

L
R

, 
ex

tr
em

e 
gr

ad
ie

n
t 

b
o

o
st

in
g 

(X
G

B
, 

X
G

B
o

o
st

),
 a

n
d

 M
L

P

M
in

-C
h

en
 

C
h

en

Jo
u

rn
al

 o
f 

B
io

m
ed

ic
al

 

In
fo

rm
at

ic
s

E
D

17
1,

27
5

P
re

d
ic

ti
n

g 
cr

it
ic

al
 o

u
tc

o
m

es
 

(i
n

-h
o

sp
it

al
 c

ar
d

ia
c 

ar
re

st
 

an
d

 I
C

U
 a

d
m

is
si

o
n

) 
b

as
ed

 

o
n

 t
h

e 
h

is
to

ry
 a

n
d

 v
it

al
 s

ig
n

s 

ro
u

ti
n

el
y 

co
ll

ec
te

d
 a

t 
tr

ia
ge

.

P
ro

p
o

se
d

 D
L

 m
o

d
el

: 
A

U
C

 =
 0

.8
7,

 

SE
N

 =
 0

.5
0,

 S
P

E
 =

 0
.9

3,
 P

P
V

 =
 0

.1
6,

 

N
P

V
 =

 0
.9

9 

B
iL

ST
M

 +
 T

R
: 

A
U

C
 =

 0
.8

4,
 

SE
N

 =
 0

.4
5,

 S
P

E
 =

 0
.9

4,
 P

P
V

 =
 0

.1
6,

 

N
P

V
 =

 0
.9

9 

R
F

: 
A

U
C

 =
 0

.7
9,

 S
E

N
 =

 0
.1

2,
 

SP
E

 =
 0

.9
9,

 P
P

V
 =

 0
.2

2,
 N

P
V

 =
 0

.9
8

F
o

r 
30

 r
an

d
o

m
 v

is
it

s:
 d

o
ct

o
r’

s 

p
re

d
ic

ti
o

n
: 

SE
N

 =
 0

.4
1,

 

SP
E

 =
 0

.7
8,

 P
P

V
 =

 0
.4

7,
 

N
P

V
 =

 0
.7

4,
 A

C
C

 =
 0

.6
7 

P
ro

p
o

se
d

 d
ee

p
 l

ea
rn

in
g 

m
o

d
el

: 
SE

N
 =

 0
.9

5,
 

SP
E

 =
 0

.7
7,

 P
P

V
 =

 0
.9

, 

N
P

V
 =

 0
.8

7,
 A

C
C

 =
 0

.9
0

T
h

e 
m

o
d

el
 s

h
o

w
ed

 b
et

te
r 

se
n

si
ti

vi
ty

 a
n

d
 a

cc
u

ra
cy

 i
n

 

p
re

d
ic

ti
n

g 
cr

it
ic

al
 o

u
tc

o
m

es
 

th
an

 t
h

e 
em

er
ge

n
cy

 p
h

ys
ic

ia
n

s 

an
d

 a
va

il
ab

le
 A

I 
m

et
h

o
d

s.

C
li

n
ic

al
 n

ar
ra

ti
ve

-a
w

ar
e 

d
ee

p
 

le
ar

n
in

g 
ap

p
ro

ac
h

H
yo

je
o

n
g 

L
ee

Sc
ie

n
ti

fi
c 

re
p

o
rt

s
IC

U
P

re
d

ic
ti

n
g 

V
T

 o
n

e 
h

o
u

r 

b
ef

o
re

 i
ts

 o
n

se
t 

u
si

n
g 

p
ar

am
et

er
s 

o
b

ta
in

ed
 f

ro
m

 

h
ea

rt
 r

at
e 

va
ri

ab
il

it
y 

an
d

 

re
sp

ir
at

o
ry

 r
at

e 
va

ri
ab

il
it

y 

an
al

ys
is

A
N

N
: 

SE
N

 =
 0

.8
8,

 S
P

E
 =

 0
.8

2,
 

A
C

C
 =

 0
.8

5,
 P

P
V

 =
 0

.8
3,

 

N
P

V
 =

 0
.8

7,
 A

U
C

 =
 0

.9
3

em
p

lo
yi

n
g 

b
o

th
 E

C
G

 a
n

d
 

re
sp

ir
at

o
ry

 s
ig

n
al

s 
ca

n
 i

n
cr

ea
se

 

th
e 

p
er

fo
rm

an
ce

 o
f 

d
et

ec
ti

n
g 

V
T

 o
n

e 
h

o
u

r 
b

ef
o

re
 i

ts
 

o
cc

u
rr

en
ce

.

A
N

N

(C
on

ti
n

u
ed

) 

Thambiraj et al.                                                                                                                                                      10.3389/fmedt.2025.1681059 

Frontiers in Medical Technology 14 frontiersin.org



Gated Recurrent Unit with Trainable Decay (60). In another study, 

an ML (CatBoost) model was developed to predict noninvasive 

ventilation failure after extubation (61); fifteen parameters 

(mechanical ventilation duration, RR, urine output, GCS, mean 

airway pressure, temperature, age, heart rate, glucose, time from 

extubation to NIV, mean blood pressure, input volume, SpO2, 

PaO2, and pH) were used as inputs. The authors showed that the 

proposed model showed better performance compared to the RF, 

LR, XGBoost, KNN, Naïve Bayes, Light GBM, SCM, AdaBoost, 

and MLP (61). Furthermore, a temporal convolutional network- 

feedforward neural network outperformed the LSTM, feedforward 

neural networks, and logistic regression in predicting intubation in 

the critical care setting (62).

An ML algorithm has been used to predict reintubation, prolonged 

mechanical ventilation and death in patients undergoing coronary 

artery bypass surgery (63). Specifically, an artificial neural network 

showed good performance in predicting these outcomes, with no 

difference compared to the logistic regression model (63). Another 

novel model for predicting intubation in critically ill patients (64), 

using data collected within the first hours of admission in the ICU, 

outperformed the standard clinical benchmarks (64). Recently, a 

real-time warning algorithm for the prediction of invasive 

mechanical ventilation in ICU patients was developed (65). The 

proposed algorithm used seven ML models (LightGBM, Random 

Forest, Naive Bayes, Neural Networks, Logistic regression, Support 

Vector Machines, K-Nearest Neighbor), exhibiting improved 

performance compared to traditional adjustment risk algorithms 

(65). Interestingly, the model using only non-invasive parameters 

provided excellent predictive performance, compared to the model 

using both non-invasive and invasive parameters (65). The Time 

Updated Light Gradient Boosting Machine model has also been 

proposed to predict late noninvasive ventilation failure (66), showing 

better performance in comparison with common models (logistic 

regression, random forest, LightGBM, XGBoost, artificial neural 

network, and LSTM) (66).

Implications for clinical practice

The integration of AI/ML models into acute care 

settings carries significant implications for transforming 

clinical practice, moving towards more proactive and precise 

patient management.

Augmented Clinical Decision-Making and Early Intervention 

AI/ML models offer a substantial opportunity to augment 

clinician decision-making, particularly for initial risk 

stratification and triage in high-volume environments like 

emergency departments. By providing early warnings of 

impending CA or RA, these models can broaden the “diagnostic 

and therapeutic window” for intervention, allowing clinicians to 

initiate preventive measures well before overt deterioration. This 

proactive approach represents a marked improvement over 

current reactive responses, which often occur after a critical 

event has already begun.

Potential for Reduced Morbidity and Mortality The core 

clinical benefit derived from these models lies in their ability to 

identify high-risk patients, prompting timely interventions that 

could significantly reduce in-hospital morbidity and mortality T
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associated with CA/RA. This translates directly to improved 

patient safety and better overall outcomes, as critical resources 

and attention can be directed to those most in need, precisely 

when it matters most.

Enhanced Monitoring and Proactive Care The seamless 

integration of AI/ML with streaming vital signs and EHR can 

enable continuous, intelligent monitoring. This capability allows 

for the detection of subtle physiological shifts indicative of 

worsening disease, often missed by intermittent manual checks. 

Such a system moves clinical practice from periodic, interval- 

based assessments to a more dynamic, real-time surveillance 

system, fostering a culture of pre-emptive care where 

interventions are initiated before a full-blown crisis develops.

Necessity of Clinician Education and Work!ow Integration For 

successful implementation, it is crucial that clinicians receive 

adequate education on how to effectively use and interpret these 

AI/ML models, “as labeled”. This implies the need for intuitive 

user interfaces that present complex AI predictions in an 

understandable format, clear guidelines on alert interpretation, and 

thoughtful integration into existing clinical workFows to ensure 

seamless adoption and avoid disruption to established care 

processes. Without proper training and integration, even the most 

accurate models may not achieve their full clinical potential.

Addressing Regulatory and Ethical Considerations Prior to 

widespread clinical adoption, a robust framework must be 

established to regulate critical issues such as liability for AI- 

driven decisions, standardized adverse event reporting 

mechanisms, protocols for system upgrading and maintenance, 

and stringent cybersecurity measures to protect sensitive patient 

data. These considerations are foundational for building trust 

among clinicians and patients and ensuring the responsible and 

equitable deployment of AI in healthcare.

Recommendations for future research
While the potential of AI/ML in acute care is evident, 

several critical areas require focused future research to facilitate 

their successful and safe translation into routine clinical practice.

Rigorous Prospective Validation and Demonstration of Clinical 

Utility A paramount recommendation is the urgent need for 

rigorous prospective evaluation of AI/ML models. While 

retrospective studies have shown considerable promise, future 

research must move beyond these to large-scale prospective clinical 

trials that confirm efficacy in real-world settings. Crucially, these 

trials must demonstrate a tangible impact on clinical endpoints 

such as patient mortality, reduced length of stay, or decreased 

incidence of adverse events. Studies must explicitly show how these 

approaches translate into “actionable care pathways and 

workFows” that demonstrate clear clinical utility, rather than 

merely improved statistical prediction.

Standardization of Datasets and Platforms A significant 

challenge identified is the “lack of uniform datasets and of 

parameters employed by the proposed AI/ML algorithms”, which 

currently hinders the assessment of their generalizability and 

comparability across different institutions. Future research should 

focus on developing standardized data collection protocols and 

creating standardized platforms for reporting predictions to 

clinicians, ensuring interoperability and facilitating broader 

adoption. Such standardization would enable more robust multi- 

center studies and foster a collaborative environment for AI 

development and validation.

Improving Model Specificity to Mitigate Alarm Burden While 

high sensitivity is highly desirable for life-threatening conditions to 

ensure no critical event is missed, the specificity of a model must 

also be high for implementation in clinical practice. A low 

specificity leads to a high burden of false alarms, which can 

significantly increase clinician workload, induce stress, and 

potentially lead to alarm fatigue and desensitization. This 

desensitization could paradoxically result in missed true events, 

undermining the very goal of patient safety. The inherent tension 

between maximizing sensitivity (to avoid missing a critical event) 

and achieving high specificity (to minimize false alarms) in life- 

threatening conditions presents a profound ethical and practical 

dilemma for AI in healthcare. Clinicians are ethically bound to 

prioritize patient safety, meaning they will naturally lean towards 

higher sensitivity in predictive tools for conditions like cardiac or 

RA. However, the consequence of high sensitivity without 

commensurate specificity is an increased rate of false positives. 

A high burden of false alarms results in increased workload and 

stress for healthcare providers and eventually alarm fatigue. 

Prioritizing the optimization of the balance between sensitivity and 

specificity to ensure practical utility and avoid clinician burnout 

necessitates interdisciplinary research involving not just AI 

developers but also human factors specialists, such as clinicians 

and healthcare administrators, to design systems that are both 

statistically effective and clinically usable, perhaps through adaptive 

alerting systems or tiered alert levels.

Addressing Data Quality, Noise, and Ground-Truth Labeling 

Real-world clinical data often suffer from “noise” and variability 

in quality, with some studies reporting valid data for as little as 

half of the monitoring time. Future research must develop robust 

methods for handling incomplete or noisy data to ensure model 

reliability in diverse clinical environments. Furthermore, accurate 

“ground-truth labels” are fundamental for effective AI/ML 

algorithm training, and current methods like natural language 

processing for label generation can be prone to errors, while 

semi-supervised models remain in the research phase.

Ethical AI Development and Governance Beyond technical 

performance, future AI/ML models must be developed with 

explicit consideration of ethical principles, including equity, 

accuracy, transparency, interpretability, accountability, data privacy, 

and cybersecurity (32, 33). These considerations are not merely 

regulatory hurdles but foundational requirements for building trust 

and ensuring the responsible and equitable integration of AI into 

clinical care. Furthermore, research into explainable AI and fairness 

in algorithms will be crucial to address these concerns.

Larger Sample Sizes and Generalizability The current body of 

evidence largely comprises studies with “relatively small sample 

sizes”, which limits the generalizability of their findings. Future 

research must prioritize larger-scale, multi-center studies to 

validate model performance across diverse patient populations 

and clinical environments, ensuring robust and generalizable 

results that can be applied broadly.
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Systemic Redesign for Actionable Care Pathways The repeated 

emphasis on the need for AI models to translate into “actionable 

care pathways and workFows” signifies that the objective extends 

far beyond merely developing a technically superior predictive 

algorithm. An AI model, no matter how accurate, is an inert tool 

if its predictions do not seamlessly integrate into and actively 

inform clinical decision-making and subsequent actions. This 

implies a need for a fundamental redesign of existing clinical 

processes, rather than simply overlaying AI on top of current 

practices. For example, an early warning from an AI system must 

trigger a predefined, efficient, and well-rehearsed response 

protocol involving specific roles, responsibilities, and 

interventions. This necessitates interdisciplinary research and 

development involving not only AI specialists but also clinical 

workFow experts, engineers, healthcare administrators, and even 

policy-makers. The ultimate success of AI in healthcare will hinge 

on its ability to catalyze and support these systemic changes, 

transforming predictive insights into tangible improvements in 

patient care delivery and outcomes.

Discussion

In-hospital CA and RA are catastrophic complications of any 

admission. It is estimated that between 1 and 5 of every 1,000 

admissions yearly will result in CA and RA (67), while the survival 

rate for in-hospital CA remains between 23% and 24% (2, 3, 68). 

However, efforts to develop early warning scores of deterioration 

aiming to activate rapid response protocols (6–11), should 

recognize that there is only a limited time-window to provide 

pre-emptive care. Retrospective reviews frequently show that signs 

of deterioration are unobserved or overlooked by medical staff (12, 

13). Continuous telemetry monitoring is routine in the ICU and 

some non-ICU units (69, 70), yet CAs and RAs are still frequent.

To assess whether current developments on ML models can 

improve outcomes in predicting CA and RA, a systematic search 

of PubMed, Embase, and Web of Science was conducted. The 

search strategy focused on critical care settings, AI/ML 

techniques, and cardiac or RA outcomes. The selection process 

is detailed in Figures 2A,B, resulting in 14 CA and 22 RA 

studies included for analysis.

Improving not just survival but also the quality of care for in- 

hospital CA patients requires a comprehensive set of programs and 

actions, such as, first, plans and preparation for CA and RA, 

second, delivery of high-quality, guideline-based resuscitation, 

third, continuous evaluation and improvement itself within a 

culture of person-centered care, and fourth, the potential for AI to 

assist in the prediction and prevention of CA. Although the 

prediction of cardiac and RA could reduce in-hospital morbidity 

and mortality, further studies are needed to confirm this in clinical 

practice. Identification of high-risk patients especially in the 

emergency department is of great importance (Figure 3). 

Furthermore, enhanced monitoring and early preventive measures 

may help identify high-risk hospitalized patients, prevent adverse 

clinical outcomes, and thus reduce morbidity and mortality. This 

systematic review shows that ML models may be used for the 

prediction of both cardiac and RA in the emergency department 

and in the ICU. Furthermore, the retrospective studies show that 

the proposed models have a good prediction performance using 

easily obtained variables. Interestingly, in the prospective studies, 

although it is not clearly mentioned, the results of the AI/ML 

prediction models were not shared with the attending physicians, 

and therefore they did not inFuence clinical outcomes.

While ML algorithms show a promising performance in 

predicting in-hospital cardiac and RA, the integration of these 

models into clinical workFows remains a significant challenge. 

Practical considerations include integration with the electronic 

health record systems, ensuring data interoperability, and 

FIGURE 3 

Summary of key findings from a systematic review on AI-based prediction of in-hospital cardiac and respiratory arrest.
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adequate staff training to effectively utilize the predictions from 

these models to improve clinical-decision outcomes. However, 

further research is needed to understand the real-world barriers 

to designing and implementing ML tools in clinical practice.

Limitations

Most of the included studies were of relatively small sample 

size, and therefore the results should be interpreted with 

caution. There was also substantial heterogeneity across studies 

in terms of study design, ML methodologies, and data sources, 

which may affect the comparability and generalizability of the 

results. In clinical practice, the quality of data that are required 

as inputs cannot be identical. Although AI systems have been 

shown to improve accuracy over traditional diagnostic systems, 

albeit with a broad range of accuracy, prospective studies on the 

clinical validation of these models for forecasting clinical 

deterioration are important, yet they are relatively sparse. The 

specificity of a model must be high for implementation in 

clinical practice. A low specificity will lead in a high burden of 

false alarms that will increase the workload and stress of 

healthcare providers. Furthermore, prospective studies are 

needed not only to further establish the accuracy and 

generalizability of these approaches, but also their translation to 

actionable care pathways, which can demonstrate clinical utility.

Conclusions

ML algorithms show promising results for the prediction of in- 

patient cardiac and RA using easily obtained variables as inputs. If 

successfully implemented in clinical practice, the ML models could 

identify high-risk patients and reduce mortality and morbidity. 

However, further validation and the design of clinical trials will 

determine the efficacy of the ML models in each clinical setting.
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