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The rising global rates of metabolic disorders, such as obesity, type 2 diabetes, 

non-alcoholic fatty liver disease, and metabolic syndrome, call for new 

treatment methods beyond traditional drugs. The human gut microbiota, 

made up of trillions of microorganisms that plays a crucial role in maintaining 

metabolic balance through complex biochemical processes and interactions 

between hosts and microbes. Dysbiosis, which involves changes in microbial 

composition and a decrease in diversity, has become a major factor in 

metabolic problems. This disruption impacts the production of short-chain 

fatty acid, increase in permeability of intestine, and causes enduring low- 

grade inflammation. This review features into the potential of treatments 

based on microbiome for metabolic syndromes, focusing on probiotics, 

prebiotics, synbiotics, and postbiotics. It also encompasses innovative 

methods such as engineered microbial consortium, fecal microbiota 

transplantation (FMT), and vaginal microbiota transplantation (VMT). Probiotics 

show significant promise in improving blood sugar control and enhancing 

lipid levels. Prebiotics help bring about positive changes in microbial 

composition and the production of beneficial metabolites. Synbiotic 

combinations provide added benefits by helping good microbes thrive while 

supplying nutrients they can ferment. Postbiotics have recent research focus 

because they are safer, more stable, easier to store, and less likely to 

contribute to antibiotic resistance comparative to live probiotics. Even now 

there are substantial complications in translating microbiome research into 

standardized therapeutics despite of promising pre-clinical outcomes and 

some initial clinical data. These comprises individual variances, strain- 

specificity, dosage problems, regulation issues, and the necessity for 

personalised treatment strategies. Future success will depend upon 

personalized medicine, technological developments, and the incorporation of 

multi-omics strategy to generate metabolic health therapeutics depending on 

targeted microbiomes.
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1 Introduction

The universal upsurge in the metabolic disorders which 

encompasses obesity, type 2 diabetes mellitus, non-alcoholic 

fatty liver disease, metabolic syndrome, and cardiovascular 

diseases, presents one of the major challenges in health care in 

the 21st century which substantially impacts the modern 

medication and public health policy. The number of adult 

persons suffering from diabetes globally has surpassed 800 

million which is more than quadruple upsurge since 1990 (1). 

Furthermore, the prevalence of obesity among adults in the 

United States from August 2021 to August 2023 was 40.3% (2). 

This sharp intensification of the metabolic dysfunctions has 

sparked an urgent exploration for novel strategies of treatment 

beyond conventional drug therapies.

One of the greatest promising areas in this pursuit is the novel 

arena of treatments based on microbiome. This approach leverages 

the complex relationship between the gut microbiota and metabolic 

balance to create innovative treatment options. The human gut 

microbiota, made up of trillions of microorganisms in the 

gastrointestinal tract, is often referred to as a “forgotten organ.” 

When the microbiome is disturbed, it can greatly affect 

metabolism through various biochemical pathways and signalling 

networks (3). This microbial community contains about 100 

times more genes than the human genome. It serves as a 

dynamic link between environmental factors, dietary components, 

and host physiology, managing vital metabolic processes. These 

include energy extraction, nutrient absorption, immune response, 

and hormone regulation.

The changes in gut microbiota composition and function, known 

as dysbiosis, are closely related to the development of metabolic 

disorders. This shift has changed our perspective and they are no 

longer seen only as issues within the host but as complex ecosystem 

imbalances involving interactions between hosts and microbes. 

The mechanisms behind these associations involve multiple 

interconnected pathways, such as altered short-chain fatty acid 

production, increased intestinal permeability causing metabolic 

endotoxemia, disrupted bile acid processing, changed incretin 

hormone release, and persistent low-grade in3ammation (4).

The range of microbiome-based treatments includes probiotics 

(live helpful microorganisms), prebiotics (substances that support 

beneficial bacteria growth), synbiotics (mixtures of probiotics and 

prebiotics), and postbiotics (active compounds produced by 

probiotics). Advanced microbiome therapies that use engineered 

microbes have come forth as innovative solutions that can be 

programmed to generate specific therapeutic molecules on-site 

while responding to conditions within the gut environment (5).

Microbiome-based treatments have the potential to make a 

substantial economic difference by preventing disease 

progression, lowering reliance on medications, and promoting 

long-term metabolic health. This review summarizes the current 

understanding of microbiome-based therapies for metabolic 

disorders. It explores the vital connections among the metabolic 

health and gut microbiome which evaluates the therapeutic 

potential of several microbial intrusions, scrutinizes clinical trial 

outcomes, and looks forward to future advancements in this 

speedily changing arena. By evaluating both successes and 

challenges, this review enlighten researchers, healthcare 

providers, and policymakers about the immense potential of 

microbiome-based strategies while recognizing the considerable 

work needed to achieve their full therapeutic benefits in 

addressing the global rise in metabolic disorders.

2 Gut microbiota and its relation with 
metabolic disorders

The gastrointestinal tract of a human accommodates an intricate 

and dynamic ecosystem of microbes that are collectively labelled as 

the gut microbiota subsequently work as a crucial regulator of 

metabolism and health of the host. This complicated microbial 

community, encompassing more than 100 trillion microbial 

cells and rendering more than 1,000 distinct microbial species, 

sustains a sophisticated interdependent association with the 

human host (6). The gut microbiota has progressed to become a 

vital constituent of human physiology, prompting several 

metabolic processes involving immune function, metabolism of 

lipid, regulation of glucose, and energy homeostasis (7). Recent 

developments in microbiota study have discovered that 

modifications in composition and function of gut microbiota 

which is termed as dysbiosis, is intimately connected to various 

metabolic disorders pathogenesis, including type 2 diabetes, 

metabolic syndrome, obesity, and cardiovascular disease (7, 8).

Gut microbiota of the humans primarily comprises bacteria 

from four major phylum: Firmicutes, Bacteroidetes, 

Actinobacteria, and Proteobacteria. Firmicutes and Bacteroidetes 

constitutes 70%–90% of the overall microbial population (9). The 

phylum Firmicutes comprises microbial genera for instance 

Lactobacillus, Clostridium, Ruminococcus, and Enterococcus which 

generates short-chain fatty acids (SCFAs) (10). Bacteroidetes, 

primarily characterized by Bacteroides species, are specialized in 

breaking down complex carbohydrates and plant fibers (11).

The Firmicutes to Bacteroidetes (F/B) ratio has acquired 

recognition as a probable marker for metabolic health. Greater 

F/B ratios are usually found in individuals with obesity and 

metabolic problems (12). Dysbiosis associated with obesity is 

characterized by diminished microbial diversity, reduced 

abundance of beneficial taxa for instance Bifidobacterium species 

and Akkermansia muciniphila, and development of potentially 

harmful microbes (13). Type 2 diabetes is linked with decreased 

diversity of microbes and reduced abundance of butyrate 

producing microbes such as Faecalibacterium prausnitzii, 

Eubacterium rectale, and Roseburia species (7).

2.2 Factors influencing gut microbiota

The gut microbiome’s function and composition are affected 

by an intricate mix of interior and exterior aspects which act 

over dissimilar timeframes. Comprehending these features is 

significant for generating targeted treatments for metabolic 

syndromes and enhancing therapeutic methods (14).
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The most substantial changeable factor impacting the 

composition and metabolic results of the gut microbiota is diet. 

Fluctuations in diet can rapidly alter microbial communities 

within few hours to days (15). Western foods that are high in 

refined sugars, processed foods, and saturated fats, promotes the 

progression of potentially harmful microorganisms while 

restraining beneficial forms related to metabolic strength (16). 

Whereas, diets which consist of an assortment of dietary fiber, 

plant-based foods, and fermented products encourage microbial 

diversity and beneficial metabolites production (9). Dietary fiber 

serves as a chief food source for microbial fermentation, leads to 

synthesis of short-chain fatty acids (SCFAs) such as acetate, 

propionate, and butyrate (17). The mediterranean diet has 

unswervingly shown an association to superior microbial 

diversity and healthier metabolic consequences (7, 18).

Genetic factors of the host significantly impact the gut microbiota 

composition. Twin researches displays that around 10%–20% of 

microbial disparity comes from genetic factors (19, 20). The gut 

microbiome experiences momentous variations throughout 

an individual’s life, with initial establishment at birth and 

variations through childhood, adulthood, and elderly phase (21). 

Environmental aspects such as geographical position, sanitation, 

climate, and exposure to contaminants impacts composition of gut 

microbiota (22). Choices of lifestyle, for instance stress levels, 

physical activity, sleep habits, and social networks also form 

microbial communities (23). Medicines particularly antibiotics have 

a robust in3uence on the gut microbiota ’s composition and 

function, with effects that can sustain for months or even years (24).

2.3 Dysbiosis & metabolic disorders

Dysbiosis is an imbalance in the gut microbiome’s diversity, 

composition, or metabolic action (25). This imbalance in 

microbiota is manifested by declined diversity, altered bacterial 

ratios, loss of advantageous bacteria, overgrowth of potentially 

damaging species, and reduced synthesis of helpful metabolites (26). 

The relationship among dysbiosis and metabolic dysfunction is a 

two-way connection; metabolic disorders might cause dysbiosis and 

on the other hand dysbiosis might worsen metabolic disorders (27).

Dysbiosis associated with obesity is characterized by 

diminished microbial diversity, augmented F/B ratio, reduced 

abundance of beneficial taxa for instance Bifidobacterium species 

and Akkermansia muciniphila, and development of potentially 

harmful microbes (13). A. muciniphila is a mucin degrading 

bacterium which constitutes 1%–5% of the gut microbiota in 

healthy persons, is consistently abridged in obesity and 

metabolic syndrome. Clinical researches have exhibited that 

abundance of A. muciniphila inversely associates with body 

mass index, in3ammatory markers and resistance to insulin (28).

Type 2 diabetes is linked with distinctive variations in the 

composition and function of gut microbiome (29). Diabetic 

individuals show decreased diversity of microbes, changed 

representation of main bacterial taxa, and functional variations 

in metabolism of microbes (30). Specific changes encompass 

reduced abundance of butyrate producing microbes such as 

Faecalibacterium prausnitzii, Eubacterium rectale, and Roseburia 

species accompanied by augmented depiction of opportunistic 

pathogens and pro-in3ammatory microbes (7).

Non-alcoholic fatty liver disease (NAFLD) is connected to 

dysbiosis of gut microbiota via the gut-liver axis (31). Alterations 

by dysbiosis accord to pathogenesis of NAFLD through several 

mechanisms involving upsurged permeability of intestines causing 

the portal circulation of microbial LPS and other in3ammatory 

intermediaries, changed metabolism of bile acid, and dysregulated 

metabolite production (7). Novel pathways for therapeutic 

intercessions have been unlocked through understanding of the 

mechanisms of metabolic dysfunction allied with dysbiosis (27).

3 Role of probiotics, prebiotics, 
synbiotics and postbiotics in 
regulating gut microbiota and 
prevention of metabolic disorders

3.1 Probiotics, prebiotics, synbiotics and 
postbiotics

Kollath defined probiotics as active substances that perform 

critical functions for health (32). In 2001, the Food and 

Agriculture Organisation (FAO) and the World Health 

Organisation (WHO) given a definition, characterising probiotics 

as “live microorganisms which, when administered in adequate 

amounts, confer a health benefit to the host” (33, 34). Probiotic 

bacteria are often classified into two types: conventional and non- 

conventional. Lactobacillus, Streptococcus, Escherichia, and 

Bifidobacterium are examples of conventional strains, whereas 

non-conventional strains like Akkermansia, Faecalibacterium, 

Eubacterium, Roseburia, Christensenella, and Clostridium have 

recently received attention for their health-promoting potential (35).

Probiotics have a variety of beneficial effects, including 

competitive exclusion of pathogens, production of antimicrobial 

compounds, improvement in intestinal barrier functions, 

immunomodulation, and modulation of the gut-brain axis (36, 

37, 38). They compete for nutrients and adhesion sites, secrete 

antimicrobial compounds such as SCFAs, organic acids, 

hydrogen peroxide (39), and bacteriocins (40), and strengthen 

gut integrity by upregulating mucin and tight junction proteins 

such as occludin and claudin-1 (41, 42). Probiotics modulate 

innate and adaptive immunity by modifying dendritic cells, 

macrophages, B and T lymphocytes, and boosting anti- 

in3ammatory cytokines. While probiotics have long been 

acknowledged for their role in gut health, more emphasis is now 

being paid to prebiotics, which are dietary components that 

nourish and promote the activity of these beneficial microbes (43).

Gibson and Roberfroid created the notion of prebiotics in 

1995 (44). Prebiotics are defined as “substrates which are 

selectively utilised by host microbes conferring a health benefit” 

(45). Prebiotics are non-digestible dietary components which 

helps the host by selectively augmenting the growth and/or 

activity of certain intestinal 3ora. Inulin, fructooligosaccharides 

(FOS), galactooligosaccharides (GOS), and lactulose are 

Ahmed et al.                                                                                                                                                          10.3389/fmedt.2025.1695329 

Frontiers in Medical Technology 03 frontiersin.org



examples of common prebiotics (46, 47). Prebiotic fermentation 

synthesizes short-chain fatty acids (SCFAs) such as acetate, 

butyrate, and propionate. These SCFAs lower gut pH from ∼6.5 

to ∼5.5, inhibiting pathogenic bacteria and promoting beneficial 

microbes (48, 49).

Individual gut microbiota differences, dosing challenges, 

gastrointestinal side effects, short shelf life, and safety concerns 

for immunocompromised individuals, particularly under 

processing conditions such as pasteurisation or baking, limit 

probiotic effectiveness (50, 51).

To address the limits of standalone probiotics and prebiotics, 

synbiotics have emerged as a viable technique that mixes the two 

to provide greater health advantages. In 1955, Gibson and 

Roberfroid (44) proposed synbiotics, which are cooperative 

concoctions of probiotics and prebiotics envisioned to enhance 

survival, colonisation, and activity of the probiotic in the gut (52, 

53). Synbiotics enhance implantation and function by specifically 

stimulating helpful bacteria, overcoming difficulties like as pH and 

oxidative stress, both of which restrict probiotic viability (54).

Postbiotics have arisen as a current research focus because 

they are safer, more stable, easier to store, and less likely to 

contribute to antibiotic resistance than live probiotics. As stated 

by the International Scientific Association for Probiotics and 

Prebiotics (ISAPP), postbiotics are “preparations of inanimate 

microorganisms and/or their components that confers a health 

benefit on the host” (50). Postbiotics improve health by 

inhibiting microorganisms, improving the intestinal barrier, and 

modifying immune responses via interactions with host 

receptors such as TLRs and NLRs (55).

While probiotics and prebiotics each provide significant health 

benefits, synbiotics combine their strengths to produce synergistic 

effects, and postbiotics provide a safer, more stable alternative with 

bioactive components that in3uence host health without the risks 

associated with live microorganisms (55).

3.2 Impact of diet & probiotics, prebiotics, 
synbiotics and postbiotics on Gut 
Microbiota

The gut microbiota, with roughly 3.8 × 1013 microorganisms, 

outnumbers human cells and plays a crucial role in supporting 

host health (56, 57). This intricate micro ecology which includes 

bacteria, yeasts, viruses, and parasites categorised into five 

primary phyla: Firmicutes, Bacteroidetes, Actinobacteria, 

Proteobacteria, and Verrucomicrobia. Firmicutes and 

Bacteroidetes account for over 90% of the total microbial 

population (57, 58). Gut microbiota composition varies across 

individuals and is determined by factors such as age, genetics, 

birth mode, infant feeding practices, antibiotic usage, geography, 

and, most importantly, food (59). Diet has a bi-directional 

relationship with the microbiota, in3uencing nutrient absorption 

and metabolism (60).

Diet has a strong in3uence on the gut microbiome through 

macronutrients, micronutrients, and bioactive chemicals, 

in3uencing microbial composition, diversity, and function (61). 

Dietary fibre in3uences the gut microbiota, especially by 

boosting the abundance of SCFA-producing bacteria (62). Fibres 

like inulin, guar gum, resistant starch, galacto-oligosaccharides, 

fructo-oligosaccharides, and arabinoxylan oligosaccharides 

consistently promote beneficial microbes like Bifidobacterium, 

Faecalibacterium, Ruminococcus, Lactobacillus, Akkermansia, and 

Roseburia (63). Recent research indicates that high-protein diets 

increase gut microbial diversity and modify microbiota 

composition differently from normal-protein diets, enriching 

Akkermansia and Bifidobacterium while decreasing Prevotella 

(62, 58). High-fat diets, particularly those high in saturated fats, 

promote dysbiosis by boosting Firmicutes and Proteobacteria 

while lowering Bacteroidetes (63, 64, 57).

Probiotics regulate the synthesis of gastrointestinal hormones 

such as leptin, ghrelin, and GLP-1, which helps with hunger 

regulation and metabolic health (65). They create short-chain 

fatty acids from dietary fibre fermentation and produce organic 

acids and bacteriocins that inhibit infections (66). Bifidobacteria 

form acetate, which helps other gut microbes thrive. 

Bifidobacteria is one of the most profuse and substantially 

functional group of microbes in healthy individual’s microbiome, 

primarily in newborns where they encompass approximately 90% 

of total microbiota (67). Prebiotics have a good effect on gut 

health by suppressing type 2 T helper immune responses and 

boosting calcium absorption by creating SCFAs through 

fermentation (46, 47). Synbiotics can assist regulate the gut 

microbiota during weight loss and improve blood glucose, lipid 

profiles, and body weight in T2DM patients (68, 69). Postbiotics 

boost gut and metabolic health by regulating immunity and 

improving glucose and insulin metabolism while avoiding the 

hazards associated with live bacteria (50).

3.3 Microbiome based metabolic treatment

The gut microbiome is defined as the collective genomes of all 

bacteria living in the gut. A change in gut microbiome 

homeostasis caused by changes in genetics, nutrition status, 

lifestyle, and other factors can lead to microbiome dysbiosis, 

which in turn results in chronic diseases including in3ammatory 

bowel disease (IBD) (70), cardiovascular disease (71), 

neurological diseases such as autism and Parkinson’s, metabolic 

conditions such as obesity and diabetes, and certain cancers type 

2 diabetes (T2D), metabolic dysfunction-associated steatotic liver 

disease (MASLD), hypertension, and hyperlipidemia, all of 

which are increasingly prevalent worldwide (72). Several 

microbiome-based treatment techniques have emerged as viable 

approaches for treating metabolic and in3ammatory illnesses. 

These include probiotics, prebiotics, synbiotics, and faecal 

microbiota transplantation (FMT) as depicted in Figure 1.

3.3.1 Probiotics, prebiotics, and synbiotics 
treatment technique

Prebiotics, probiotics, synbiotics (combinations of the two), 

and postbiotics are important microbiome-based treatments for 

treating metabolic diseases as shown in Table 1. While they may 
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have potential benefits, such as enriching beneficial 

microorganisms, enhancing gut barrier function, and altering 

host metabolism, clinical evidence of their safety and efficacy is 

sparse. Probiotics frequently encounter colonisation resistance, 

exhibit strain and site-specific effects (73). Additionally, a study 

using an in vitro gut model with fecal samples from obese 

donors showed that synbiotic supplementation with 

Limosilactobacillus reuteri KUB-AC5 and Wolffia globosa powder 

increased beneficial bacteria, decreased Enterobacteriaceae, and 

enhanced levels of butyrate while lowering detrimental p-cresol 

(74). Postbiotics and synthetic microbes are developing 

alternatives with promising metabolic benefits, but they face 

challenges such as complex host-microbe interactions, unclear 

metabolic pathways, and tailored delivery.

3.3.2 Faecal microbiota transplantation technique
FMT includes introducing stool from a healthy donor into a 

patient’s gastrointestinal tract to restore gut bacteria equilibrium. 

It is now a well-established treatment for recurrent 

Clostridioides difficile infection (CDI), with cure rates of up to 

FIGURE 1 

Sources of dietary supplements and their mechanism in regulating gut-brain axis.

TABLE 1 Probiotics, prebiotics, synbiotics, and postbiotics in treating metabolic illness.

Supplements Target disease Doses Mechanisms and effects References

Bifidobacterium lactis LMG P-28149 and 

Lactobacillus rhamnosus LMG S-28148

Obesity and insulin resistance 108 CFU Rikenellaceae and Akkermansia muciniphila restoration. 

Lipoprotein lipase and PPARγ expression are upregulated. TG 
clearance and insulin sensitivity enhancement A reduction in 

Lactobacillaceae

(75)

Lactobacillus acidophilus, L. rhamnosus, 

Bifidobacterium bifidum, B. longum, 

Enterococcus faecium

Depression and Anxiety in 
pregnant women with Gestational 

Diabetes Mellitus (GDM)

— Gut-Brain Axis modulation, Anti-in3ammatory effect, 
Enhanced adherence to the Mediterranean diet

(76)

Lactiplantibacillus plantarum YC17 Fatty liver disease — Enhances FFAs esterification, increases IPA and IAA, activates 
Ahr pathway, promotes P53 degradation, Increases beneficial 

gut bacteria (Lactobacillus, Clostridium)

(77)

Phocaeicola dorei Metabolic dysfunction-associated 
steatotic liver disease (MASLD)

109 CFU Enhances β-oxidation gene expression, modulates bile acids, 
reduces TNF-α and CXCL10, inhibits in3ammation and cell 

proliferation, Reduces liver lipid accumulation, alleviates 
MASLD progression, lowers in3ammation, and improves liver 

histology

(78)

Lactobacillus pantheris TCP102 Cancer — Immune-enhancing activity and inhibition of cancer cell 

proliferation, EPSs stimulated NO, TNF-α, and IL-6 
production in macrophages

(79)

Lactobacillus and Bifidobacterium species Ulcerative colitis 3 × 1010 Increases IL-10, reduces C-reactive protein and IgA, 

modulates immune response and gut in3ammation

(80)

Lactobacillus acidophilus, Bifidobacterium 

bifidum, Bifidobacterium longum and 

selenium

Alzheimer’s disease — Regulation of metabolic abnormality and oxidative stress, 
Reduced serum hs-CRP, Reduced serum triglyceride, 

Increased GSH, Increased antioxidant.

(81)

Lactobacillus plantarum Lp62 Bacterial vaginosis — Reduced G. vaginalis load, no leucocyte recruitment, lowered 
vaginal cytokines, normalized cytokine gene expression

(82)
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90%. Beyond CDI, FMT is being studied for its therapeutic 

potential in in3ammatory bowel disease (IBD), with clinical 

studies indicating that it can reduce gut in3ammation and 

microbial composition (83, 84). Le et al. found that FMT 

resulted in durable increases in gut microbial diversity and 

decreased pathogenic taxa in paediatric ulcerative colitis (85). 

Similarly, Shekar et al. found that FMT may assist Parkinson’s 

patients by increasing the production of beneficial metabolites 

like short-chain fatty acids (SCFAs), promoting gut-brain axis 

activity, and potentially decreasing disease progression (86).

An important variable in mental health, the microbial-gut- 

brain (MGB) axis, is modulated by FMT, providing a novel 

treatment for depression. FMT restores a healthy microbial 

ecosystem by addressing dysbiosis in the gut microbiota milieu. 

This affects important targets such the NLRP3 in3ammasome 

and Sig-1R, which are linked to neuroin3ammatory and 

neurochemical pathways linked to depressive disorders. 

Furthermore, FMT can enhance the antidepressant potential by 

utilizing the medicinal qualities of advantageous herbs (87).

3.3.3 Vaginal microbiota transplantation
The vaginal microbiota has a somewhat lesser diversity of 

microorganisms compared to the intestinal tract. A wide variety 

of lactic acid bacteria largely control the vaginal environment in 

order to preserve homeostasis (88). In addition to 3uctuating 

throughout pregnancy and menopause, the vaginal microbiota’s 

composition can also alter dynamically over shorter timescales 

of days to months (89, 90).

The vaginal microbiota of pre-term birth (PTB) showed that 

the PTB group had a significantly higher proportion of harmful 

bacteria (such as Desulfovibrionaceae, Helicobacter, and 

Gardnerella) and a significantly lower proportion of beneficial 

bacteria (such as Lactobacillus, Ruminococcus, and 

Megamonas). This difference was closely linked to the blood’s 

biochemical parameters (white blood cells, neutrophils, NLR, 

and SIRI (91).

Vaginal Microbiota Transplantation (VMT) aids in sustaining 

the vaginal acidity and hinder the pathogenic bacteria by restoring 

the central Lactobacillus species. Inhibiting the NF-κB signaling 

pathway is one of its main strategies, which lowers in3ammatory 

cytokines like TNF-α, IL-1β, and IL-6. This promotes healing and 

lessens tissue in3ammation. In addition to being more 

biocompatible than antibiotics, VMT can work better when 

combined with other therapies. VMT is a promising noninvasive 

approach to the treatment of endometritis, with safety and 

microbial benefits. With its safety and microbiological advantages, 

VMT is a viable noninvasive treatment for endometritis (92).

The safety and effectiveness of VMT in treating bacterial 

vaginosis, recurring yeast infections, and other vaginal disorders 

have been shown in numerous studies. Additionally, the 

technique has demonstrated encouraging outcomes in lowering 

pregnant women’s risk of premature birth and sexually 

transmitted diseases. For women who have ongoing vaginal 

issues, VMT is a minimally invasive, safe, and effective therapy 

alternative (93).

Compared to babies born vaginally, babies born via cesarean 

section (C-section) frequently have a different gut 3ora and are 

more susceptible to atopic and immune-related disorders (94). 

Bifidobacterium, Bacteroides, and Parabacteroides are generally 

more abundant in vaginally born newborns than in C-section 

babies (95). Human milk oligosaccharide (HMO) breakdown is 

frequently accelerated by these first colonizers, leading to the 

generation of short-chain fatty acids (SCFA) and colonization 

resistance which shape the microbiome and immune system 

leading to a healthier life (96, 97). On the other hand, skin and 

hospital-associated bacteria such Staphylococcus, Enterococcus, 

Klebsiella, and Clostridium species (95, 98) frequently invade 

newborns born after cesarean section. These are more likely to 

have genes for antibiotic resistance and frequently lack the 

capacity to break down HMOs or generate SCFAs (99).

3.3.4 Artificial microbial consortia technique

Emerging personalized strategies such as engineered microbial 

consortia are gaining attention for targeted microbiome-based 

interventions in metabolic disorders. Artificial microbial 

consortia (AMCs) are precisely designed communities of 

microorganisms tailored to modulate the gut microbiota and 

address specific pathological states. These consortia could 

include naturally helpful microorganisms or genetically 

engineered strains with higher medicinal potential. AMCs 

involve the deliberate selection and assembly of microbial strains 

with specific metabolic, immunomodulatory, and ecological roles 

(100). A study found that co-administration of Bifidobacterium 

pseudocatenulatum JJ3 and the engineered strain BsS-RS06551 

significantly reduced obesity and associated metabolic 

dysfunctions in high-fat diet-induced obese mice (101).

3.3.5 Precision dietary modulation

Precision dietary modulation uses personalised nutritional 

therapies to target the gut microbiota and takes into account 

individual-specific characteristics such as genetics, dietary 

patterns, lifestyle behaviours, and metabolomic signatures 

(102). This approach tailors dietary advice to prevent and 

manage metabolic and gastrointestinal illnesses (103). Despite 

its potential, the application of precision nutrition is hampered 

by hurdles such as the complexities of microbiome analysis 

and an imperfect understanding of causative microbiome- 

health interactions.

3.3.6 Clinical trials: success and failure

Clinical trials are critical in turning preclinical microbiome 

research into therapeutic applications, providing a controlled 

environment to assess safety, effectiveness, and mechanistic 

outcomes in human populations. However, the effects of 

microbiome-based therapies in metabolic illnesses have varied, 

indicating the complex and individualised nature of host- 

microbe interactions.

Faecal microbiota transplantation (FMT) has showed 

promise for improving metabolic parameters. Wu et al. found 

that both FMT alone and FMT combined with metformin 

significantly improved insulin resistance (HOMA-IR), body 
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mass index (BMI), and glycaemic management in a randomised 

clinical trial comprising 31 newly diagnosed type 2 diabetic 

mellitus (T2DM) (104). These approaches resulted in successful 

donor microbiota colonisation, enhanced microbial diversity, 

and modification of more than 200 microbial species. Notably, 

Bifidobacterium adolescentis and Synechococcus sp. were 

adversely linked with HOMA-IR, which highlights the 

therapeutic potential of microbiota manipulation in T2DM 

therapy. Similarly, targeted probiotic and synbiotic 

formulations have shown moderate but significant 

improvements in metabolic health. Othman et al. conducted a 

clinical trial on obese people, comparing food alone to 

prebiotic (carob) or probiotic treatment in 45 participants. 

While all groups lost weight, the prebiotic and probiotic 

groups saw greater increases in fat mass loss, muscle strength, 

insulin sensitivity, sleep quality, and psychological well-being 

(105). In a randomized controlled trial, the FMT from healthy 

individual into a patient suffering from IBS with mild to 

modest depression and anxiety, exhibited alleviation in anxiety 

and depression after treatment along with IBS symptoms, 

leading to substantial improvement in the quality of life (106). 

Adult patients suffering from Major Depressive Disorder 

(MDD) on undergoing FMT from healthy donor showed 

significant augmentation in mean gastrointestinal symptom 

scores and demonstrated greater enhancements in quality of 

life measures (107).

Despite these positive findings, many restrictions remain. 

A randomised trial by (NCT03125564) evaluating FMT in 

diarrhoea-predominant IBS patients found no significant 

improvement in overall IBS severity, but showed notable 

improvement in bloating symptoms (72% vs. 30%, p = 0.005), 

linked to reduced hydrogen sulphide-producing bacteria and 

microbial changes (e.g., ↓Ruminococcus gnavus, 

↑Lawsonibacter) (108). Many clinical trials are unclear about 

probiotic strain specification, dosing regimen, and product 

formulation, with over 1,000 trials failing to publish 

standardised product information (109, 110).

4 Limitations, challenges and future 
outlook

The arena of microbiome-based therapeutics for metabolic 

disorders has observed remarkable advancement over the past 

decade, transitioning from conceptual bases to clinical realities 

with recent FDA approvals of live biotherapeutic products like 

RebyotaTM and VowstTM (111). However, despite these 

substantial milestones, the translation of microbiome research 

into therapeutic interventions for metabolic ailments faces 

several complex challenges spanning scientific, technological, 

regulatory, and clinical domains.

One of the biggest challenges in microbiome-based 

treatments is the large differences in gut microbiome 

composition and function among individuals (112). The 

human gut microbiota shows significant diversity, which is 

affected by genetics, diet, lifestyle, environmental factors, and 

medical history (6, 113). This variation makes it hard to 

create standardized therapies that work well for all patients. 

Although many studies show links between changes in the 

microbiome and metabolic disorders, proving direct cause- 

and-effect relationships is tough (5). The lack of standard 

methods in microbiome research creates major hurdles for 

applying findings clinically, as differences in sample collection, 

processing, sequencing methods, and analysis can in3uence 

results and hinder reproducibility (111).

The rules around microbiome-based therapies are complex 

and change often, creating serious issues for developing and 

selling products. Engineering microbiome-based therapies is 

tricky, especially when it comes to keeping live products 

viable, stable, and consistent. Quality control must ensure the 

identity, purity, strength, and safety of microbes, while also 

maintaining consistency between batches (111). Safety 

assessments need to thoroughly evaluate both direct and 

indirect risks to the host, which includes concerns about 

microbial transfer, development of antibiotic resistance, and 

reactions from the immune system (114).

Forming clinical trials for treatments based on microbiome 

presents exclusive operational complications (5). Patient 

stratification strategies are important for identifying those who 

are most expected to benefit from definite treatments, but 

discovering dependable biomarkers is still a difficulty (115). 

Educating healthcare providers and gaining patient acceptance 

are additional hurdles for implementation.

The future of microbiome-based treatments will be in3uenced 

by several new technological advancements. Artificial intelligence 

and machine learning can help spot complex patterns and create 

predictive models for treatment response and customized therapy 

selection (115). Precision medicine based on individual 

microbiome profiles, genetic factors, and metabolic status will 

likely take center stage in future development. Multi-omics 

approaches that combine microbiome, metabolomic, proteomic, 

and genomic data may provide better targeting for therapies (116).

The future success of microbiome-based therapies for 

metabolic disorders will rely on ongoing scientific innovation, 

changes in regulation, and cooperation across academia, 

industry, and healthcare (115).
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