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Transcytosis of proteins and hydrodynamic
flow of cytoplasm is a major mechanism
to sustain physiology in all cells, observ-
able from gametes (1) to mature adult
cells and tissues (2, 3). Mammalian cells
involved in secretion discretely need to
respond to the environment and move
components within the cells and position
them at appropriate locations for secretion
(4, 5). This process involves force gener-
ation using Gibbs free energy of hydroly-
sis of adenosine triphosphate (ATP). The
ATPase is most often myosin, a naturally
occurring cellular ATPase known for its
wide role in generation of cellular force (6).
The nanomechanics of transport involve
the necessary target cargoes, in association
with myosin and track on actin filaments,
which are ubiquitous cellular cytoskele-
tal scaffolds of metazoan cells (7). Cellu-
lar secretion encompasses multiple physi-
ological systems operating on wide range
of time scales including the processes of
exocrine and endocrine glandular secre-
tions and neuronal secretion in response to
discrete electrical field stimulation, com-
monly referred to as neurotransmission
(8, 9).

Here, similarity is outlined between
the mechanisms involved in gaseous nitric
oxide (NO) synthesis within the enteric
nerve terminals in response to an action
potential (10–15) and during glucose sens-
ing and insulin granule exocytosis by pan-
creatic beta cells (16–20) (Figure 1). These
comparisons provide new directions to
investigate physiology of insulin exocy-
tosis in health and potential dysfunction
as a pathophysiologic mechanism of dia-
betes mellitus. NO may perform physio-
logical functions during insulin exocyto-
sis from large dense core secretory vesicles

(LDCVs). Reasonable evidence and con-
sensus exist regarding the role of NO dur-
ing biphasic secretion of insulin under nor-
mal physiological conditions (16, 17, 21–
24). Though the exact contribution of NO
is not well defined, incipient convincing
evidence exists regarding de novo synthe-
sized NO by neuronal nitric oxide synthase
(nNOS) to maintain a pool of glucoki-
nase in association with insulin secretory
granules (25). Glucokinase, a form of low-
sensitive hexokinase, catalyzes the first and
rate-limiting step in conversion of glucose
to a hexose phosphate, which sets a feed-
back balance between sensing the extracel-
lular glucose concentration and operating
this as a stimulus for insulin granules’ exo-
cytosis. It was reported from early studies
that infusion of l-arginine increases insulin
release (26, 27), and this is disrupted in
patients with non-insulin-dependent dia-
betes mellitus (NIDDM) (28). Incipient
evidence also exists regarding the role of
l-citrulline in replenishing cellular levels
of l-arginine through arginosuccinate and
restoring beta cell function (29).

In the smooth muscle-en passant nerve
terminal junctions in the gastrointesti-
nal tract, inhibitory neurotransmission
involves release of vesicular ATP and
instantaneously synthesized gaseous NO
(30, 31). This kind of tandem transmission
involving precision release of a vesicular
and a non-vesicular neurotransmitter is the
one of its kind only example in the body.
Importantly, the contribution of nitrergic
component is critical to inhibitory neuro-
transmission, as loss of nitrergic synthesis
results in failure of mechanical relaxations
and manifestations of stasis of luminal
contents like gastroparesis. NO synthe-
sis is facilitated by the alpha isoform of

nNOS, which has the potential to bind
to membrane by cysteine dimerization of
its N-terminal domain with palmitoyl-
PSD95 (13). Examples from numerous sys-
tems suggest the general feature that mem-
brane localization of nNOSα is perhaps
critical for its function. Though cytosolic
nNOSα may exist as a dimer and tech-
nically can favor electron transfer during
oxidation of l-arginine for NO synthe-
sis, it seems that proximity to calcium
sources such as the calcium channel may be
an important requirement for membrane
transposition for optimal nNOSα enzy-
matic activity (13–15). Furthermore, it has
been demonstrated that cytosolic nNOS is
phosphorylated at serine847, which pre-
vents calmodulin interaction and positive
allostery during neurotransmission (13,
14). Recent evidence has shown the role of
unconventional motor proteins like myosin
Va in membrane transport of nNOSα

within nerve terminals (12). Hypomorphic
mutant DBA/2J mice lacking functional
myosin Va shows evidence of impaired pre-
junctional NO synthesis and NO-mediated
smooth muscle responses including slow
IJP and mechanical relaxations (11, 12).

Reliable evidence exists that in the beta
cells of the pancreas, nNOS alpha isoform
exists (17, 18). This is seen in rat, mice,
and human islets (32). nNOS alpha dimer
binds to the core of insulin granules and
also concentrated in the subterminal mem-
branes (17). The beta cells also contain the
light chain of dynein, LC8, earlier referred
to as protein inhibitor of nNOS (PIN) (17).
In enteric neuronal varicosities, LC8 facil-
itates nNOS-myosin Va protein interac-
tions, confirmed independently by the tra-
ditional co-immunoprecipitation experi-
ments and visually by proximity ligation
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FIGURE 1 | (A) (a) Imaging studies of colocalization of nNOS, LC8, and
myosin Va with insulin granules in pancreatic islets. Upper panel, pancreatic
islets stained for insulin colabel with neuronal nitric oxide synthase (nNOS).
Isolated islets colabel for insulin and LC8 (middle panel), nNOS and LC8 (third
panel), insulin and myosin Va (fourth panel), and LC8 and myosin Va (bottom
panel). (b) nNOS immunoblots in normal and diseased islets. Islets and INS1
cell line label for ~160 kDa nNOS band. Lower panels on the left show
increased nNOS bands on the western blots obtained from fa/fa Zucker obese
rats and obese human individuals, models of insulin hypersecretor
phenotypes. The right panels show that nNOS exists as a dimer, revealed by
cold SDS-PAGE. Dimer/monomer ratios are raised in the hypersecretor
phenotypes. (c) Electron micrographs of insulin LDCVs (secretory granules).
(a,e) Electron micrographs showing immune particles representing insulin and
nNOS. In (e), note nNOS on the membrane of the LDCV. (g,h) Of the electron
micrographs show nNOS-LC8 in the core and membrane of insulin LDCVs. (d)
Ionomycin and L-arginine enhances NO production in INS1 cell lines, imaged
by loaded diaminofluorescein. [Figures modified with permission from Lajoix
et al. (17), Mezghenna et al. (16) and Smukler et al. (22).] (B) (a–c) Imaging
studies of colocalization of nNOS, LC8, and myosin Va in isolated enteric

synaptosomes. (d) Proximity ligation assay (PLA) shows blobs of protein
interactions of nNOS, LC8, and myosin Va in isolated enteric synaptosomes.
(e) Upper panel shows co-immunoprecipitation of nNOS-myosin Va in mice
stomach lysate; lower panel shows intact nNOSα in whole varicosities of wild
type and DBA/2J dilute mice, but absence of membrane bound nNOSα in
DBA/2J, indicating the potential role of myosin Va in membrane transposition
of nNOS. (f) KCl stimulation of plated varicosities shows significantly reduced
DAF-NO signal in enteric synaptosomes obtained from DBA/2J mice, in
comparison to C57BL/6J mice. [Figures modified with permission from
Chaudhury et al. (11, 12).] (C) Cartoon depicting similarity in mechanisms of
transcytosis of insulin and nNOS by myosin Va in beta cells and enteric
synaptosomes. Note the similarity of organization of non-vesicular nNOS with
either SLC17A9 purinergic vesicles within nerve terminals or insulin granules
in beta cells of islets of pancreas. Genomic inhibition of myosin Va may be a
potential initial upstream pathophysiologic mechanism contributing to both
progression of diabetes by impairing insulin exocytosis, as well as causing
multiorgan dysfunction, for example, reduction of inhibitory nitrergic
neuromuscular transmission in the gut. Arrows are shown to indicate
directionality of movements.

assay (PLA) (11, 12). Myosin Va has been
demonstrated in the pancreatic beta cells,
colocalized with insulin and PIN (LC8)
(17). Given these comparative levels of
evidence, it may be reasonable to specu-
late that transcellular movements of nNOS
within beta cells of pancreatic islets and
translocation to the subcortical zone likely
involves myosin Va, though this has never
been directly demonstrated.

There are seven exonic regions (A–G) in
the N-terminal portion of the tail region
of myosin Va that facilitates cargo bind-
ing (33). For example, in the skin, the
melanocytes have ACDE and lacks B exon.
In neuronal cells, the exonic region is

represented as ABE. Notably, the B region
comprising only three bases, represent-
ing amino acids 1282–1284 of myosin Va,
which represents the region for interaction
of myosin Va with nNOS via LC8. In pan-
creatic beta cells, the exonic component is
similar to brain myosin Va (34), providing
the likelihood that nNOS-LC8 binds with
myosin Va, though any direct evidence for
this is lacking.

In DBA/2J mice, prejunctional nitr-
ergic synthesis during enteric nerve-
smooth muscle neurotransmission has
been demonstrated to be significantly
reduced (11, 12). It seems likely that NO
synthesis in pancreatic beta cells may be

diminished in DBA/2J mice, though this
remains to be tested. Whether inhibition
or reduction of NO synthesis results in
impaired glucose tolerance or frank dia-
betes is not known for DBA mice, though
streptozotocin injection in DBA/2J has
been used as a model of peripheral neu-
ropathy (35). The role of myosin Va in
secretory granule exocytosis (36), includ-
ing insulin granules (37, 38), has been
reported. It may be hypothesized that DBA
phenotype should predispose to a diabetic
state. As anticipated, it has been reported
that DBA loci confers increased risk of dia-
betes (39). In the initial phases, there is
a hypersecretor phenotype of C57BLKS/J
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mice created on a DBA background, with
increased secretion of insulin. This has
been reported to result from defects in
nicotinamide nucleotide transhydrogenase
(Nnt), resulting in diminution of reduc-
ing potentials and increased oxidative stress
(40, 41), as well as other defects like that of
amino acid l-arginine transporter SLC7A3,
which may result in defective NO synthesis.
The hypersecretor phenotype seen in the
early stages of DBA/2J mice (42) may
represent a prediabetic condition. This
may ultimately contribute to exhaustion
of insulin in the islets and frank mani-
festation of insulin-dependent diabetes in
DBA/2J mice. Myosin Va facilitates tran-
scellular movement of glucose transporters
like GLUT4, which are important compo-
nents for mobilization of glucose in the
peripheral organs like the skeletal muscles
and adipocytes (43–46). It is possible that
the initial phases of DBA/2J might repre-
sent a prediabetic state and a condition of
peripheral insulin resistance resulting from
impaired or suboptimal mobilization of
myosin Va-dependent glucose transporters
like GLUT4 results in the hypersecretor
phenotype of the pancreatic islets. Tempo-
ral studies using DBA mice shall provide
insights into the progression of predia-
betic state to one of frank diabetes mellitus
and complications arising as a result of
long-standing diabetes.

Myosin Va has been shown to facilitate
both the first phase of insulin release, as
well as during sustained phase when stor-
age pool vesicles are recruited to a readily
releasable pool in a non-linear dynamics
(45, 46). This may occur due to facili-
tator effect on insulin-containing LDCV
movement in the cell cortex. Though it
has not been specifically tested, it is likely
that myosin Va facilitates both secretory
granule vesicular movement, as well as
nNOS movement toward the cell periph-
ery for association with insulin granules.
In obese Zucker rats and islets derived from
obese humans, it has been shown that these
islets demonstrate a hypersecretor pheno-
type, and has been related to increased
nNOS dimers (16). Recent observation has
been made regarding significant reduc-
tion of myosin Va in myenteric neuronal
soma and nerve varicosities of jejunum
in streptozotocin-induced diabetes, likely
a result of inhibition of genomic tran-
scription of myosin Va (47). The reduction

in myosin Va may result from reduction
in its glucose-sensitive transcription fac-
tor Snail (48). It may be worthwhile to
examine whether hyperglycemia globally
affects this transcription factor, which in
turn may affect all myosin Va-related func-
tions including nNOS enzymatic activ-
ity during enteric nitrergic neurotransmis-
sion and insulin granule exocytosis and its
regulation in beta cells of pancreas.
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