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Hepatocellular carcinoma (HCC) is a primary malignancy of the liver with poor prognosis 
and limited therapeutic options. Over the past few years, many studies have evaluated 
the role of non-coding RNAs (ncRNAs) in hepatocarcinogenesis and tumor progression. 
ncRNAs were shown to have diagnostic, prognostic, and therapeutic potential in HCC. 
In this manuscript, we review the latest major discoveries concerning microRNAs and 
long ncRNAs in HCC pathogenesis, and discuss the potentials and the limitations for 
their use in clinical practice.
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Hepatocellular carcinoma

Hepatocellular carcinoma (HCC) is a primary tumor of the liver and represents the third cause of 
cancer deaths worldwide (1). Only few patients are eligible for curative treatments, while majority of 
cases are diagnosed at later stages (1). HCCs often arise on a background of liver cirrhosis and, as such, 
early diagnosis is frequently missed. Local ablative therapies, such as transarterial chemoembolization 
(TACE) and radiofrequency ablation (RFA), are used when the tumor is localized within the liver, 
while the multikinase-inhibitor sorafenib is the only approved systemic therapy for advanced HCC 
(2, 3). However, overall survival (OS) of patients affected by HCC remains poor. A growing effort 
has been addressed toward the study of genomics and molecular biology in order to unravel the 
mechanisms of liver carcinogenesis and therefore identifying novel targets of therapies as well as early 
diagnostic and prognostic markers to improve the clinical management of HCC patients. Along with 
an extensive characterization of the protein-coding genome of liver tumors (4–7), there has been a 
great interest in the study of non-coding RNAs (ncRNA). Hereby, we will review the role of ncRNA 
in liver carcinogenesis and their clinical implication.

non-coding RnAs in Hcc

Most of the eukaryotic genome is transcribed into RNA transcripts that do not translate into proteins. 
These RNA transcripts can be generally divided into two classes according to their size (with 200 nt 
as cut-off): short ncRNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). 
Although they are not translated into protein products, they exert essential functions within the cell 
by modulating the expression of protein-coding mRNAs, interacting with proteins to affect their 
function, and interacting one with each other to finely tune their expression (8).

microRnAs
microRNAs are 18–24  nt long and represent key actors in the processes of tumor development, 
progression, and resistance to anti-tumor agents (9). Many studies have identified alterations in 
miRNAs in HCC (10–12). Some miRNAs, such as miR-21 and miR-221/222, were found increased 
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in expression, and acting as oncogenes by affecting several cancer-
related pathways (13–18). On the other hand, selected miRNAs, 
such as miR-26, miR-29, miR-122, miR-148a, and miR-199a, were 
reported to be reduced in HCC and to promote cancer by the lack 
of their oncosuppressive activity (19–24).

Data on the expression of miRNAs have mainly come from real 
time PCR-based and microarray-based profiling. More recently, the 
introduction of novel technologies, such as RNA next generation 
sequence (NGS) (RNA-seq), has led to the identification of novel 
miRNAs. NGS analysis produces miRNA expression profile that is 
reproducible and comparable to that produced by microarray, but 
has the advantage of discovering novel miRNAs (as for the case of 
miR-9986 for HCC), and of providing a detailed profile of expression 
of miRNA isoforms (25, 26). If down-regulation of miR-199a-3p in 

HCC was a solid data achieved through old technologies (27, 28), 
Wojcicka et al. showed through NGS that there are nine different 
isoforms of miR-199a-3p, which include three different seed regions. 
All the miR-199a-3p isoforms are lower in HCC tumors, and appar-
ently the gene targeting is conserved across the isoforms (26). These 
findings add interesting insights into the understanding of miRNAs, 
because they imply that the message delivered by each miRNA may 
be amplified according to the expression of their isoforms, and probe 
designing should take into account the variability among these.

Several reports have confirmed that the aberrant expression 
of miRNAs in HCC cells is associated with the derangement of a 
number of pathways and processes, which all together initiate and 
maintain cancer, promote cell growth, mediate apoptosis escape, 
and induce migration and invasion (Table 1). An example among 

TAble 1 | microRnAs involved in Hcc pathogenesis and development.

microRnA expression in 
Hcc compared  
to normal liver

Target cell phenotype source Reference

miR-21 Up PTEN, PDCD4, RECK, TIMP-3, Pellino-1 Growth, proliferation, invasion, 
and migration

Human tissues and cell lines (13, 14, 
29–31, 34)Mouse tissues and cell lines

miR-155 Up STAT-3, C/EBPbeta, SOX6, APC Growth, progression, and 
invasion

Human tissues and cell lines (138–142)
Mouse tissues and cell lines

miR-221/222 Up CDKN1C/p57, MET, Bmf,  
PI3K-AKT-mTOR, PPP2R2A, DDIT4, p27, 
p57, ARNT

Growth, cell-cycle progression, 
proliferation, invasion, and 
survival

Human tissues and cell lines (15–18, 70, 
143–146)Mouse tissues

miR-517 Up NF-kB, MAPK/ERK Proliferation, migration, and 
invasion

Human tissues (36)

miR-331-3p Up PHLPP Proliferation, migration, and 
invasion

Mouse tissues (68)

miR-664, miR-485, 
miR-495

Up MAT1A Growth, migration, and invasion Human cell lines (147)
Mouse tissues

miR-193b Down in HCC,  
Up in HCV-HCC  
cells

Mcl-1, Cyclin D1, ETS1 Apoptosis, invasion, migration, 
cell-cycle progression response 
to sorafenib

Human tissues and cell lines (79, 80, 
148)Mouse tissues

miR-199a-3p Down MET, ERK2, CD44 Motility, invasion, and survival Human tissues and cell lines (27, 28, 93)
Mouse tissues and cell lines

miR-26a Down Bcl-2, Mcl-1, Cyclins D1/E2/D2, CDK6, 
MMP2, MET, VEGFA, VEGFR-2, LOXL-2, 
IL6, TAK1, TAB3

Proliferation, migration, cell-cycle 
progression, invasion, motility, 
and survival

Human tissues and cell lines (19, 92, 
149–151)Mouse tissues

miR-29 Down DNMT3A, LOXL-2, MEG3, Bcl-2, Mcl-1, 
SIRT1

Cell growth, survival, and 
proliferation

Human tissues and cell lines (20, 41, 69, 
104)Mouse tissues

miR-148a Down DNMT1, MET, Myc, Snail, ACVR1/BMPs Growth, cell-cycle progression, 
invasion, and migration

Human tissues and cell lines (24, 40, 
152–154)Mouse tissues and cell lines

miR-122 Down Cyclin G1, ADAM10, SRF, IGFR1, Myc, 
CUTL1

Growth, cell-cycle, progression, 
proliferation, migration, invasion, 
and survival

Human tissues, cell lines and 
sera

(21, 38, 57, 
155–160)

Mouse tissues and cell lines

let-7 family Down Bcl-x, Type 1 collagen α, Myc, p16INK4A Proliferation, migration, and 
invasion

Human tissues and cell lines (161, 162)

ACVR1/BMPs, activin A receptor, type 1/bone morphogenetic proteins; ADAM10, a disintegrin and metalloproteinase domain-containing protein 10; APC, adenomatous polyposis 
coli; ARNT, Aryl hydrocarbon receptor nuclear translocator; Bcl-2, B-cell lymphoma 2; C/EBPbeta, CCAT/enhancer binding protein beta; CDKN1C, cyclin-dependent kinase inhibitor 
1C; DDIT4, DNA-damage inducible transcript 4; ERK, extracellular signal-regulated kinases; ETS1, v-ets avian erythroblastosis virus E26 oncogene homolog 1; IGFR-1, insulin 
growth factor receptor-1; LOXL2, lysil oxidase-like 2; MAPK, mitogen-activated protein kinase; MAT1A, methionine adenosyltransferase I, alpha; PHLPP, PH domain and leucine rich 
repeat protein phospathases; PPP2R2A, protein phosphatase 2, regulatory subunit B, alpha; SIRT-1, sirtuin-1; SRF, serum response factor; STAT-3, signal transducer and activator 
of transcription-3; TAB3, TGF-beta-activated kinase 1/MAP3K7 binding protein 3; TAK1, transforming growth factor beta-activated kinase 1; VEGFA, vascular endothelial growth 
factor A; VEGFR-2, vascular endothelial growth factor receptor-2.
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all is miR-21, whose over-expression results into the silencing of 
several targets including phosphatase and tensin homolog (PTEN), 
programed cell death protein 4 (PDCD4), reversion-inducing-
cysteine-rich protein with kazal motifs (RECK), metalloproteinase 
inhibitor 3 (TIMP-3), and Pellino-1 (13, 14, 29–31), but is concomi-
tantly finely tuned by a plethora of factors whose source can either 
be the tumor cell itself [nuclear factor kinase B (NF-KB), hepatitis 
B virus X protein (HBV x)] (32, 33), or microenvironment cells 
[interleukin-6 (IL-6) or monocyte chemotactic protein-1 (MCP-
1)] (33, 34). It is interesting to note that normal liver tissue seems 
to express a limited number of miRNAs, including miR-199a and 
miR-122 (35). Thus, it is not surprising that HCC tissues exhibit 
loss of these miRNAs along with over-expression of others, such 
as miR-21, miR-221/222, and miR-517 (13, 18, 36).

The mechanisms through which miRNA expression is modu-
lated during liver carcinogenesis are variable, and include chromo-
somal rearrangements, promoter methylation, and transcriptional 
induction through direct control of transcription factors such as 
Myc (9, 37–40). Recent evidence suggests that alpha-feto-protein 
(AFP) can alter miR-29 expression and can induce changes in the 
methylome of liver cancer cells that are responsible for the more 
aggressive behavior of AFP + HCC (41). Growing evidence show 
that nanovesicles-mediated delivery of miRNAs is another way of 
miRNA regulation and intercellular communication. Tumor cells 
were shown to actively secrete miRNAs through exosomes, which 
can then be internalized by other cells altering miRNA profiling, 
and modulating gene expression in donor cells (42, 43). Vacuolar 
protein sorting-associated protein 4A (Vps4A) has been identified 
as one of the regulators of exosome bioactivity, as it facilitates 
the release of exosome containing onco-miRs and alters the 
accumulation of those containing oncosuppressor miRNAs (44). 
miRNAs are highly conserved genes, and therefore, alterations of 
their sequence have been studied as potential causes of aberrant 
miRNA expression. It was observed that selected polymorphisms 
in miRNA genes might result in increased production of mature 
miRNA forms and therefore induce miRNA-dependent liver 
carcinogenesis. For instance, a G > C polymorphism located in the 
stem region of miR-146a is associated with increased predisposi-
tion to develop HCC (45). To date, polymorphisms in a number of 
miRNAs have been associated to increased risk of HCC (46–51). 
However, these studies have been carried out mainly in Chinese 
or Turkish populations, and their extrapolation to other ethnicities 
is not clear.

Clinical Implications of miRNAs in HCC
Diagnostic role
As previously discussed early diagnosis is one of the main 
challenges in the clinical management of HCC. miRNAs have 
shown to distinguish HCC from adjacent normal or cirrhotic 
tissues (18, 22, 36, 52). However, the main advances have been 
achieved through the detection of circulating miRNAs. Tissutal 
analyses are indeed a limitation in this field given HCC diagnosis 
is made on a combination of blood tests and imaging with no 
recommendation for mandatory biopsy in most of cases (1). 
Conversely, miRNAs can be detected in sera and plasma (53). 
They can circulate as free RNAs, which are bound to Argonaut 
RISC catalytic component 2 (Ago2) or included in exosomes; in 

either case, they are protected by RNases and remain stable after 
harsh conditions (54, 55). There are now a number of reports 
that showed miRNAs are detectable in the plasma and sera of 
HCC patients and their expression profile is different between 
patients with HCC and patients with cirrhosis, as reviewed by 
Roderburg et al. (56). The larger study includes a series of 934 
participants among healthy controls, and patients with chronic 
hepatitis B, cirrhosis, and hepatitis B virus (HBV)-related HCC 
(57). A panel of seven plasma miRNAs (miR-122, miR-192, miR-
21, miR-223, miR-26a, miR-27a, and miR-801) was shown to have 
a high-diagnostic accuracy of HCC. The diagnostic performance 
persisted regardless of disease stage and was able to differentiate 
HCC from healthy controls, chronic hepatitis B, and cirrhosis 
(57), suggesting a potential use of this panel in the early diagnosis 
of HBV-related HCC. However, it looks like circulating miRNA 
profiles differ according to the etiology, and therefore, these data 
cannot be extrapolated to all cases of HCC. Indeed, circulating 
miRNAs not only can distinguish patients who have developed 
HCC among all the HBV carriers but can also distinguish between 
patients with HBV and those with hepatitis C virus (HCV) (58), 
suggesting that specific miRNAs may be identified in each sub-
type of HCC. These data are not surprising given that (1) miRNA 
expression profiles were shown to be different in tissues from 
HBV-related versus HCV-related HCC (59), (2) miRNAs can 
facilitate replication of hepatitis viruses (60, 61), and (3) circulat-
ing miRNAs can reflect the status of liver injury in inflammatory 
diseases (62). Nonetheless, we need to remember that circulating 
miRNAs may also originate from blood cells, and therefore, an 
appropriate sample collection and processing, which excludes 
contamination by leukocytes and erythrocytes, is mandatory in 
this kind of analysis (63, 64). To date, lack of standardization 
of sample collection and data normalization, along with limited 
sample size in most of the reports impair the reproducibility and 
comparability across the studies. Thus, despite the interesting 
potential of circulating miRNAs as biomarker in HCC, further 
investigations are still warranted before they can be taken into 
clinical practice.

Prognostic role
microRNAs induce malignant phenotypic changes in liver cancer 
cells and contribute to the acquisition of invasive and metastatic 
properties (65, 66). Therefore, it comes with no surprise that their 
prognostic value has been widely investigated in HCC patients 
undergoing either curative treatments or local ablative therapies. 
Despite, Jiang et al. have initially postulated that a global loss of 
miRNA expression is associated with poorer clinical outcome (67), 
subsequent analyses in larger cohorts of patients identified single 
miRNAs as potential prognostic markers. Over-expression of 
oncogenic miRNAs, such as miR-331-3p (68) or down-regulation 
of oncosuppressive miRNAs, such as miR-29 (20, 69) has been 
associated to poor prognosis in unselected cohorts of human 
HCC tissues. High miR-221 levels were associated with tumor 
multifocality (15) and reduced time to recurrence after surgery 
(70). In addition, miR-221 was shown to have a prognostic value, 
with a significantly lower OS in patients with high-serum miRNA 
expression (71). Sato et  al. looked at miRNA expression in 73 
human resected HCCs that had not received any pre-operative 

http://www.frontiersin.org/Medicine/archive
http://www.frontiersin.org/Medicine
www.frontiersin.org


May 2015 | Volume 2 | Article 364

Ghidini and Braconi Non-coding RNAs in HCC

Frontiers in Medicine | www.frontiersin.org

therapy and observed that miRNAs expression recapitulates the 
risk of early or late recurrence in analogy to mRNA profiles (6, 
72). The miRNA profile of tumoral tissue could predict early 
recurrence, while the miRNA profile of non-tumoral tissue was 
predictive of late recurrence and of de novo carcinogenesis. Ji 
et al. studied miRNA expression in a large (>400 cases) cohort of 
resected human HCC and observed a remarkable down-regulation 
of miR-26, which correlated with poor prognosis (19). Patients 
with high miR-26a expression had longer time to recurrence and 
longer OS. Despite having worse OS, patients with low miR-26 
expressing tumors had an increased benefit from adjuvant therapy 
with interferon (IFN)-alpha compared to those with tumors with 
high miR-26a. This was due to the parallel predominant activation 
of the signaling pathway NF-KB and IL-6 in this cohort of patients, 
with enhanced oncogenic potential. Thus, miR-26 expression acts 
not only as a prognostic factor but also as an independent predictor 
of the response to IFN-alpha (19). On the bases of these findings, 
a clinical trial is undergoing to look at the effect of adjuvant IFN 
in patients with HBV-related HCC and low miR-26 expression, 
and to our knowledge, this is the only clinical trial including 
miRNA expression as inclusion criteria or stratifying factor, to 
date. The possibility to detect circulating miRNAs in the sera/
plasma of liver cancer patients has recently increased the potential 
of studying the prognostic values of miRNAs in the clinical setting, 
resulting in a growing number of reports on the role of circulating 
miRNAs in predicting relapse after curative treatment. Sugimachi 
et al. observed that low expression of circulating exosome-related 
miR-718 was associated to poor histological differentiation, high 
incidence of tumors beyond the Milan criteria, and a trend to 
increased recurrence after liver transplantation (73). Some authors 
have suggested that serum miRNAs levels can be monitored after 
radical resection to assess disease relapse (74, 75), while others 
have noticed a correlation between serum levels of miR-200 and 
response to TACE (76). In addition, some studies have shown 
that miRNAs can affect survival by modulating invasiveness and 
metastasis, i.e., miR-135a was found over-expressed in portal vein 
thrombus tissues and was related to poor clinical outcome (77). 
Luk et al. (78) found that all miRNAs included in the DLK1–DIO3 
cluster at 14q32.2 are coordinately up-regulated in a subset of HCC 
patients with stem-like features, vascular invasion, and shorter 
survival. However, the limited sample size of these studies warrants 
further confirmations before these findings can be incorporated 
into clinical management.

Predictive role
Some miRNAs were found to be predictors of response to anti-
cancer therapy in HCC both in vitro and in vivo. We have shown 
that miR-193b can facilitate sorafenib-induced apoptosis through 
modulation of myeloid leukemia cell differentiation protein 
(Mcl-1) in human HCC cell lines (79). Similarly, restoration of 
miR-193b was shown to sensitize HBV+ HCC cells to sorafenib 
(80). However, expression of this miRNA in patient samples has 
not been investigated yet. Loss of miR-122 was associated to lower 
sensitivity of HCC cells to sorafenib in in vitro experiments (81). 
A retrospective analysis showed that high levels of miR-425-3p in 
HCC bioptic tissues were associated with longer time to progres-
sion and OS in patients treated with sorafenib (82). However, 

further prospective evaluation is needed before miRNAs can be 
used as stratifying factors for first line treatment. Moreover, given 
the lack of liver biopsies in the routine clinical setting studies on 
the role of circulating miRNAs on the prediction of response to 
sorafenib are likely to represent more useful tools to customize 
treatment.

Therapeutic role
Several approaches to normalize ncRNA expression have been 
described to date. Therapeutic inhibition of oncogenic miRNAs 
can be managed through different technologies. Antisense oli-
gonucleotides (ASO) are single-strand DNA molecules that pair 
to complementary RNA. They may be delivered intravenously 
but have poor stability (83). On the contrary, locked nucleic acid 
antimiRs (LNA-antimiRs) seem to be more stable and specific 
than ASO as they are composed of DNA and a phosphorothioate 
backbone (84). miRNA sponges contain binding site for several 
miRNAs and act as competitive inhibitors. They are potentially 
useful to inhibit a plethora of miRNAs that finally act on the same 
pathways, or a number of isoforms of the same miRNA (85). The 
best example of effective anti-miRNA therapy comes from the 
Miraversen studies. Miravirsen is a LNA-antimiR against miR-122, 
which is known to promote HCV RNA accumulation within the 
cells. Miraversen was tested in 36 patients with HCV genotype 
1 infection within a phase II clinical trial. Treatment resulted 
in a dose dependent and prolonged decrease of HCV RNA that 
lasted beyond the end of active therapy and was not associated 
with viral resistance and dose-limiting adverse events (86). Given 
the association noticed between reduced levels of miR-122 and 
development of liver cancer, the safety of anti-miR-122 therapy 
has been carefully evaluated, and none of the patients treated 
with Miravirsen were reported to have developed HCC or other 
liver-related complications (87).

With regards to HCC treatment, preclinical studies have been 
successful in achieving tumor growth inhibition through silenc-
ing of miR-221/222. MiR-221 and -222 are encoded in tandem 
from a gene cluster on the chromosome X (Xp11.3) and share the 
same 5′ region. They regulate and promote cell-cycle progression 
through down-regulation of cyclin-dependent kinase inhibitors 
(p27Kip1 and CDKN1C/p57) (88), and pro-apoptotic proteins 
Bcl-2-modifying factor (Bmf) (15), and can also modulate cell sur-
vival through controlling the phosphoinositide 3-kinase–protein 
kinase B–mammalian target of rapamycin (PI3K–AKT–mTOR) 
pathway (18). miR-221/222 is frequently up-regulated in human 
HCC and it was found to be associated with aggressive clinical 
features. Some reports suggest that MET induces miR-221/222 
transcription through the activator protein-1 (AP-1) transcrip-
tion factor, and that miR-221/222 can account for the aggressive 
biology of the “high MET” liver cancers (89). Intravenous delivery 
of cholesterol- and 2′-O-methyl phosphorothioate-modified anti-
miR-221 oligonucleotide (anti-miR oligonucleotide, AMO) led to 
reduced tumor cell proliferation, increased apoptosis, cell-cycle 
arrest, and increased survival in an orthotopic mouse model of 
HCC (90). Delivery of AMO anti-miR-221 confirmed anti-tumor 
effects in a transgenic mouse model over-expressing miR-221 in 
the liver, which spontaneously develops HCC and accelerates 
diethylnitrosamine-induced HCC growth (17). Interestingly, 
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lncRnA expression in Hcc  
compared to normal liver

cell phenotype source Reference

MEG3 Down Growth, reduced apoptosis Human tissues and cell lines (104–106)
Mouse tissues

MALAT-1 Up Growth, reduced apoptosis Human tissues, cell lines, plasma and sera (107, 108, 132, 137)
Mouse tissues

HOTAIR Up Progression, migration, invasion Human tissues (109, 110)
HOTTIP Up Progression, invasion Human tissues and cell lines (111)
HULC Up Proliferation Human tissues and cell lines (112, 134)
MVIH Up Invasion, migration Human tissues and cell lines (116)
RERT Up Hepatocarcinogenesis Human tissues and cell lines (117)
LincRNA-RoR Up Survival Human cell lines (118)

Mouse tissues
HEIH Up Cell-cycle progression Human tissues (119)
TUC338 Up Cell-cycle progression, cell growth Human tissues and cell lines (125)

Mouse cell lines
H19 Up Cells differentiation Human tissues (135)

Mouse tissues and cell lines
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three injections over a period of 30 days were sufficient to inhibit 
miR-221 expression and to cause HCC growth inhibition in this 
model (17). More recently, Callegari et al. have provided evidence 
that adeno-associated viruses (AAV) genetically modified to drive 
the expression of multiple binding sites for miR-221 can act as 
sponges that sequester miR-221 cellular molecules and exhibit 
anti-tumor activity in HCC cells and may be tested for in vivo 
miRNA inhibition (91).

miRNA-based therapeutics have also been developed to restore 
the expression of miRNAs, which are down-regulated in liver cancer. 
Delivery of miR-26 was attempted trough viral delivery in a mouse 
model of HCC and proved to be successful in inhibiting cancer 
cell proliferation, inducing of tumor-specific apoptosis, and block-
ing disease progression without liver toxicities (92). Intrahepatic 
delivery of an adenovirus expressing miR-199a in newborn mice 
led to virus replication and fast removal of implanted HepG2 liver 
cancer cells, as well as reduced tumor growth in different HCC 
mouse models (93). Selected evidences showed miR34a is lost in 
HCC and its expression has been linked to the status of p53 (94, 
95). Thus, attempts to over-express miR-34 have been pursued 
for the treatment of liver cancer. On one hand, a small molecular 
modulator termed Rubone, was shown to induce miR34a expres-
sion specifically in HCC cells by enhancing the occupancy of p53 
on the miR34a promoter, and showed anti-tumor activity in a xeno-
graft HCC mouse model (96). In p53 non-deleted HCC, Rubone 
exhibited a preclinical anti-HCC potency comparable to sorafenib 
without showing any additional toxicity (96). Therapeutics based 
on the restoration of miR-34 expression has also been pursued 
through liposome-mediated miRNA delivery technologies. Indeed, 
one ongoing phase I study is evaluating the safety of MRX34, a 
liposomal formulation of miR-34, in patients with primary HCC 
or those with liver metastases from other cancers (97). This is the 
first and only example of clinical trial, which assess miRNA-based 
therapeutics in humans, and results are highly expected from the 
scientific community. Therapies aiming at blocking or restoring 
miRNAs are promising and could become a new cornerstone in 
the treatment of HCC, either in monotherapy or in combination 
with sorafenib. However, additional investigations are needed to 

establish the real therapeutic benefit of these approaches, leading 
eventually to an improvement of survival in HCC.

long non-coding RnAs
Long non-coding RNAs can vary in length from 200 nt to 100 kb. 
Although the majority of lncRNAs have yet to be characterized 
thoroughly, they have been shown to exhibit cell type-specific 
expression, localization to subcellular compartments, and asso-
ciation with cancer. lncRNAs can be intronic or intergenic and 
can be transcribed either in sense or antisense. Their sequence is 
characterized by a paucity of introns and low-cytosine–guanine 
(CG) content, which may account for the low level of expression of 
these transcripts (98). In vitro analyses have shown that antisense 
and intergenic lncRNAs are more stable than others (99). Growing 
evidence is supporting the involvement of lncRNAs in carcino-
genesis. They may modulate cancer initiation and progression by 
affecting several biological pathways (100). However, their actual 
mechanism of function is not yet clear. Some evidence suggests 
that lncRNAs can modulate gene activity and affect the expression 
of other protein-coding genes. For instance, X-inactive specific 
transcript (XIST) was shown to modulate gene transcription by 
“coating Chromosome X” and creating a nuclear compartment 
that excludes RNA Polymerase-II (RNAPol-II) (101). Interaction 
with proteins has also been postulated, i.e., lncRNAs interact with 
the histone modification proteins and act as scaffold molecules for 
chromatin remodeling complexes (102). Growing evidence is now 
suggesting that lncRNAs can modulate the microRNome by bind-
ing one or multiple miRNAs and act like miRNA sponges (103).

Long Non-Coding RNAs in HCC
Long non-coding RNAs have been found to be aberrantly expressed 
in HCC and to play a role in modulating malignant phenotypes 
(Table 2). Maternally expressed gene 3 (MEG3) is an imprinted 
ncRNA located on chromosome 14q32.3 within the DLK-1 locus. 
We observed down-regulation of MEG3 in human HCC tissues in 
comparison to cirrhotic tissues secondary to hypermethylation of 
its promoter. In vitro experiments confirmed its oncosuppressive 
properties as over-expression of MEG3 reduced tumor cell growth 
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and induced apoptosis (104). A recent report confirmed down-
regulation of MEG3 in more than 70 cases of human HCC and 
found an association between low levels of MEG3 and poor clinical 
outcome with reduced overall and relapse-free survival (105). 
MEG3 was found to be the most frequently deregulated ncRNA in 
primary HCC when a set of 16 expression profiles from Oncomine 
comprising altogether 953 primary human HCC specimens was 
analyzed (106). Indeed, it was down-regulated in 60% of cases and 
there was correlation between increased DNA methylation and 
reduced MEG3 expression. Interestingly, no alterations in DNA 
methylation at the DLK1-MEG3 imprinting locus were found in 
hepatocellular adenomas or focal nodular hyperplasia. The meta-
static lung adenocarcinoma transcript 1 (MALAT-1) is a lncRNA 
located on chromosome 11q13.1 that was initially identified in 
metastatic lung cancer and was then found increased in a mouse 
model of HCC as well as in human HCC cell lines and tissues (107, 
108). MALAT-1 seems to mediate carcinogenesis by modulating 
apoptosis and cell growth in HCC cell lines and its expression 
correlates with risk of recurrence after liver transplantation (107). 
HOX transcript antisense RNA (HOTAIR) is expressed from the 
developmental HOX-C locus located on chromosome 12q13.13. 
HOTAIR expression was found increased in patients with large 
primary HCC and those with nodal involvement (109, 110). It acts 
as an oncogene, which may positively regulate the expression levels 
of multiple genes involved in the promotion of metastatic process, 
such as vascular endothelial growth factor (VEGF) and matrix 
metallopeptidase 9 (MMP9) (109). HOTAIR acts as a scaffolding 
molecule that binds polycomb repressive complex 2 (PRC2) and 
lysine-specific demethylase 1 (LSD1) and increases recruitment of 
enzymes involved in the epigenetic modification, with subsequent 
repression of tumor suppressor genes (102). HOXA transcript at 
the distal tip (HOTTIP) is another lncRNA located in physical 
contiguity with a HOX locus. HOTTIP is located at the distal tip 
of the HOXA13 gene, which encodes transcription factors regulat-
ing embryonic development. HOTTIP directly controls HOXA 
locus gene expression, but is also controlled by HOXA13 showing 
that a fine regulatory feedback loop is necessary for its activation 
(111). HOTTIP is remarkably increased in human HCC tissues 
from liver biopsies and its expression predicts clinical outcome 
in patients who had not received any HCC treatments, suggest-
ing that liver biopsy may be an important source of information 
for the understanding of molecular biology of inoperable HCC 
and for the definition of molecular prognostic markers. Highly 
up-regulated in liver cancer (HULC) is a <500 nt lncRNA, which 
show high conservation across species (112). It is present in the 
cytoplasm of liver cancer cells, where it localizes within the ribo-
somes, suggesting it may modulate translational activity. Indeed, 
silencing of HULC in HCC cells-induced global mRNA changes 
in genes involved in hepatocarcinogenesis (112). Interestingly, 
not only HULC increased in liver cancer tissues but was also 
found to be increased in cells from peripheral bloods of HCC 
patients, suggesting that its involvement in liver cancer may be 
exerted also through a modulation of the immune system. HULC 
expression positively correlates with that of HBV x. HBV x was 
shown to upregulate HULC, which in turn promotes proliferation 
of hepatoma cells by suppressing the oncosuppressor p18 (113). 
In other studies, HULC was shown to promote hepatoma cells 

proliferation by modulation of lipid metabolism (114). Moreover, a 
particular variant genotype (rs 7763881) in HULC has been found 
to contribute to decreased HCC development in HBV+ patients 
(115). Microvascular invasion in HCC (MVIH) is a long ncRNA 
independently transcribed in human HBV-related HCC tissues 
compared to adjacent normal counterparts (116). Over-expression 
of MVIH correlated to microvessel invasion, advanced stage, and 
poorer OS in a large and unselected cohort of human HBV–HCC 
patients. Interestingly, MVIH could also significantly predict 
relapse in patients with early HCC who underwent radical treat-
ment. In vitro experiments have shown that MVIH can physically 
interact with the protein phosphoglycerate kinase 1 (PGK1), an 
anti-angiogenic protein. It looks like the interaction results in 
reduced secretion of PGK1, and enhancement of angiogenesis 
and tumor growth. Indeed, MVIH expression in the primary 
tumor inversely correlated with PGK1 levels in serum of HCC 
patients (116). RERT is an lncRNA whose sequence overlaps with 
that of Prolyl-hydroxylase 1 (EGLN2) (117). EGLN2 is one of the 
three enzymes able to determine degradation of hypoxia inducible 
factor (HIF) by poly-ubiquitylation and proteasomal degradation. 
It was shown that a 4-bp deletion polymorphism (rs10680577) 
within RERT significantly correlated with higher expression of 
RERT and subsequent up-regulation of EGLN2 in human HCC 
(117). Finally, EGLN2 over-expression made cells more sensitive 
to hypoxia stress, leading to less HIF-alpha stabilization and HIF 
activation, which were detrimental for hepatic cell survival. These 
findings provided an example of how up-regulation of lncRNA can 
promote hepatocarcinogenesis through regulation of transcription 
of close genes and modulation of cell response to stress (117). Long 
intergenic ncRNA regulator of reprograming (lincRNA-RoR) is 
another hypoxia-responsive lncRNA, which is increased in malig-
nant human liver cancer cells, and in the hypoxic regions of tumor 
cell xenografts in vivo (118). Interestingly, linc-ROR was detected 
in extracellular vesicles released by tumor cells during hypoxia, 
suggesting that this lncRNA may contribute to the intercellular 
signaling promoting cell survival in hypoxic stress (118). High 
expression in HCC (HEIH) is an lncRNA identified in human 
liver tissues and was named after its over-expression in human 
HBV–HCC compared to cirrhotic samples (119). It was shown 
to act as an oncogene in vitro and in vivo models and was found 
to interact with the enhancer of zeste homolog 2, an essential 
subunit of PRC2 complex. HEIH over-expression was found 
significantly associated with higher recurrence in HBV–HCC 
patients and was an independent prognostic factor for OS (119). 
lincRNA–UFC1 was found over-expressed in HCC tissues and 
associated with advanced stages and poor clinical outcome (120). 
lincRNA–UFC1 seems to control expression of beta-catenin not 
by direct interaction but through the binding to HuR, a RNA-
binding proteins that can in turn interact with beta-catenin mRNA. 
Interestingly, lincRNA–UFC1 was also found to be a direct target 
of miR-34, whose loss in HCC was postulated to be the driver of 
lincRNA–UFC1 over-expression (120).

Transcribed Ultra-Conserved Regions
Ultra-conserved regions (UCRs) comprise 481 genomic sequences 
longer than 200 bp, which are totally conserved among mouse, 
rat, and human genomes (121). SNPs and mutations are normally 
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under-represented in UCR genes (122). Many UCRs are tran-
scribed (T-UCRs) in normal human tissue (123). Some of them 
have a ubiquitous expression, while others are tissue-specific (124). 
T-UCRs were shown to have distinct genome-wide expression 
profiles in different human cancers and this evidence supports their 
role in human carcinogenesis (123–127). The function of T-UCRs 
is still partly unknown, but they seem to modify the microRNome 
of the cell (128). Several mechanisms may be responsible for 
the deregulation of T-UCRs, including promoter methylation 
(127) and transcriptional activation (123). T-UCRs have been 
investigated in HCC and their expression profile was found to be 
deregulated in malignant compared to normal hepatocytes (125). 
The ultra-conserved element 338 (uc.338) is partly overlapping a 
protein-coding gene but was found to be transcribed as part of an 
independent lncRNA (TUC338). TUC338 expression is increased 
in human and murine malignant hepatocytes as well as in human 
HCC tissues in comparison to normal liver. Interestingly, not 
only the sequence but also the functional activity in promoting 
cellular growth is conserved across the species, suggesting that 
TUC338 is essential for the normal homeostasis of liver cells and 
that its aberrant over-expression may be responsible for driving 
carcinogenesis (125). Kogure et al. have also demonstrated that 
T-UCRs can be found in extracellular vesicles secreted by cancer 
cells, strengthening the hypothesis that they exert an important 
role in modulating tumor cell growth and they are part of the 
intercellular signaling through which HCC may grow and spread 
(129). Growing evidence is supporting the role of T-UCRs also in 
other types of cancer (124, 126, 130), and given their conservation 
it is likely that they play an essential part in driving carcinogenesis 
and may therefore represent valuable targets for novel therapeutics.

interactions between lncRnAs and miRnAs
Recent evidence suggests that miRNAs and lncRNAs are likely to 
modulate each other by acting in a complex network. miRNAs can 
directly or indirectly regulate the expression of lncRNAs. Calin 
et al. showed that miRNAs can bind to the sequence of lncRNAs 
and negatively regulate their expression (123). MALAT-1 was 
found to be a target of miR-125b, which can directly bind the 
lncRNA and control its expression in bladder cancer (131). Over-
expression of MALAT-1 (107) and down-regulation of miR-125 
(132) have been separately reported in human HCC, suggesting 
that this mechanism may account for up-regulation of MALAT-1 
in liver cancer as well. miRNAs were shown to control lncRNA 
expression also through indirect mechanisms. For instance, the 
miRNA-dependent control of the methylation machinery may 
have implications on the oncogenic role of selected lncRNAs in 
HCC. This is the case of MEG3 and miR-29. MiR-29 can modulate 
de novo methyltranferase (DMNT) 1 and 3. In case of low expres-
sion of miR-29, methylation-dependent tissue-specific regulation 
of MEG3 does not occur, and the lncRNA is suppressed (104).

If miRNAs can regulate lncRNAs, there is also evidence that 
lncRNAs may, in turn, regulate miRNAs by acting as competing 
endogenous RNAs or by being processed into small RNAs (133). 
HULC was shown to have binding sites for miR-372 and therefore 
to act as an endogenous “sponge.” HULC-mediated inhibition 
of miR-372 leads to reduction in repression of the target gene 
PRKACB and subsequent phosphorylation of the proto-oncogene 

c-AMP response element-binding protein (CREB) in HCC cells 
(134). Linc-RoR, a hypoxia-induced lncRNA, was shown to deplete 
HCC cells from miR-145 in hypoxic conditions and to mediate its 
biological effect through the interaction with miRNAs (118). Liz 
et al. have recently provided solid evidence that T-UCR can affect 
miRNA processing by preventing the release of mature forms. 
Indeed, uc.283 was shown to interact with the lower stem region 
of pri-miR-195 transcript preventing the miRNA cleavage by 
Drosha (128). Some authors have reported that the lncRNA H19, 
observed to be up-regulated in HCC (135), can mediate muscle 
differentiation by releasing miR-675, which is encoded within its 
sequence (136). Ren et  al. have speculated that MALAT-1 can 
be fragmented in several small RNAs that can then be released 
from cancer cells and found in the plasma of HCC patients (137). 
Despite growing evidence is reported on the interplay between 
different classes of ncRNAs, further investigation is warranted in 
order to better understand the function of ncRNA and exploit 
their potential as therapeutic targets.

conclusion

Non-coding RNAs participate in genomic regulation from 
transcription, post-transcription, and epigenetic modification. 
They can interact with each other and create networks of signal 
transduction that have a crucial role in hepatocarcinogenesis and 
disease progression. Moreover, they may modulate cell response 
to anticancer agents and have an intrinsic antineoplastic effect 
complementary to that of systemic therapies. In recent years, a 
large number of ncRNAs have been identified and several studies 
have investigated the role of ncRNA in HCC providing valuable 
knowledge for the understanding of liver carcinogenesis. However, 
despite the increasing knowledge on ncRNAs in liver cancer, none 
of them has entered clinical practice, and only few phase I and II 
trials have been conducted up to now. The process of translation 
of preclinical results into clinic seems challenging and hard to 
pursue. Indeed, the safety of ncRNAs as clinical therapeutic targets 
needs to be established with certainty. For example, the use of 
viral delivery systems may activate the innate immune responses 
with subsequent serious adverse events, while targeting ncRNAs 
involved in regulation of gene expression could bring to unex-
pected off target gene effects. Moreover, modulation of miRNA 
expression and competition with endogenous miRNAs may have 
unexpected effects on cellular physiology.

Hepatocellular carcinoma has still poor prognosis and limited 
therapeutic options. To date, only one drug, sorafenib, has been 
approved for first line treatment, and several trials investigating 
novel drugs have failed. Several ncRNAs directly involved in 
HCC promotion and progression have been effectively targeted 
in preclinical studies. It is hoped that these efforts will be soon 
translated into clinical practice.

Acknowledgments

CB is currently funded by an Institute of Cancer Research 
Clinician-Scientist Fellowship, a Marie Curie Career Integration 
Grant (European Union), and a Research Innovation Fund by 
Pancreatic Cancer UK.

http://www.frontiersin.org/Medicine/archive
http://www.frontiersin.org/Medicine
www.frontiersin.org


May 2015 | Volume 2 | Article 368

Ghidini and Braconi Non-coding RNAs in HCC

Frontiers in Medicine | www.frontiersin.org

References

 1. Llovet JM, Lok A. Hepatitis B virus genotype and mutants: risk factors for 
hepatocellular carcinoma. J Natl Cancer Inst (2008) 100(16):1121–3. doi:10.1093/
jnci/djn261 

 2. Bruix J, Llovet JM, Castells A, Montana X, Bru C, Ayuso MC, et al.  Transarterial 
embolization versus symptomatic treatment in patients with advanced hepatocel-
lular carcinoma: results of a randomized, controlled trial in a single institution. 
Hepatology (1998) 27(6):1578–83. doi:10.1002/hep.510270617 

 3. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al.  Sorafenib 
in advanced hepatocellular carcinoma. N Engl J Med (2008) 359(4):378–90. 
doi:10.1056/NEJMoa0708857 

 4. Guichard C, Amaddeo G, Imbeaud S, Ladeiro Y, Pelletier L, Maad IB, et al.  
Integrated analysis of somatic mutations and focal copy-number changes 
identifies key genes and pathways in hepatocellular carcinoma. Nat Genet (2012) 
44(6):694–8. doi:10.1038/ng.2256 

 5. Villanueva A, Portela A, Sayols S, Battiston C, Hoshida Y, Méndez-González 
J, et al.  DNA methylation-based prognosis and epidrivers in hepatocellular 
carcinoma. Hepatology (2015) 61(6):1945–56. doi:10.1002/hep.27732 

 6. Hoshida Y, Villanueva A, Kobayashi M, Peix J, Chiang DY, Camargo A, et al.  
Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N 
Engl J Med (2008) 359(19):1995–2004. doi:10.1056/NEJMoa0804525 

 7. Marquardt JU, Seo D, Andersen JB, Gillen MC, Kim MS, Conner EA, et al.  
Sequential transcriptome analysis of human liver cancer indicates late stage 
acquisition of malignant traits. J Hepatol (2014) 60(2):346–53. doi:10.1016/j.
jhep.2013.10.014 

 8. Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets 
for anticancer drug development. Nat Rev Drug Discov (2013) 12(11):847–65. 
doi:10.1038/nrd4140 

 9. Croce CM. Causes and consequences of microRNA dysregulation in cancer. 
Nat Rev Genet (2009) 10(10):704–14. doi:10.1038/nrg2634 

 10. Braconi C, Henry JC, Kogure T, Schmittgen T, Patel T. The role of microRNAs 
in human liver cancers. Semin Oncol (2011) 38(6):752–63. doi:10.1053/j.
seminoncol.2011.08.001 

 11. Braconi C, Patel T. MicroRNA expression profiling: a molecular tool for defining 
the phenotype of hepatocellular tumors. Hepatology (2008) 47(6):1807–9. 
doi:10.1002/hep.22326 

 12. Braconi C, Patel T. Non-coding RNAs as therapeutic targets in hepa-
tocellular cancer. Curr Cancer Drug Targets (2012) 12(9):1073–80. 
doi:10.2174/156800912803987904 

 13. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 
regulates expression of the PTEN tumor suppressor gene in human hepatocellular 
cancer. Gastroenterology (2007) 133(2):647–58. doi:10.1053/j.gastro.2007.05.022 

 14. Zhou L, Yang ZX, Song WJ, Li QJ, Yang F, Wang DS, et al.  MicroRNA-21 regulates 
the migration and invasion of a stem-like population in hepatocellular carcinoma. 
Int J Oncol (2013) 43(2):661–9. doi:10.3892/ijo.2013.1965 

 15. Gramantieri L, Fornari F, Ferracin M, Veronese A, Sabbioni S, Calin GA, et al.  
MicroRNA-221 targets Bmf in hepatocellular carcinoma and correlates with 
tumor multifocality. Clin Cancer Res (2009) 15(16):5073–81. doi:10.1158/1078-
0432.CCR-09-0092 

 16. Wong QW, Ching AK, Chan AW, Choy KW, To KF, Lai PB, et al.  MiR-222 
overexpression confers cell migratory advantages in hepatocellular carcinoma 
through enhancing AKT signaling. Clin Cancer Res (2010) 16(3):867–75. 
doi:10.1158/1078-0432.CCR-09-1840 

 17. Callegari E, Elamin BK, Giannone F, Milazzo M, Altavilla G, Fornari F, et al.  
Liver tumorigenicity promoted by microRNA-221 in a mouse transgenic model. 
Hepatology (2012) 56(3):1025–33. doi:10.1002/hep.25747 

 18. Pineau P, Volinia S, McJunkin K, Marchio A, Battiston C, Terris B, et al.  miR-221 
overexpression contributes to liver tumorigenesis. Proc Natl Acad Sci U S A (2010) 
107(1):264–9. doi:10.1073/pnas.0907904107 

 19. Ji J, Shi J, Budhu A, Yu Z, Forgues M, Roessler S, et al.  MicroRNA expression, 
survival, and response to interferon in liver cancer. N Engl J Med (2009) 
361(15):1437–47. doi:10.1056/NEJMoa0901282 

 20. Xiong Y, Fang JH, Yun JP, Yang J, Zhang Y, Jia WH, et al.  Effects of microRNA-29 
on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. 
Hepatology (2010) 51(3):836–45. doi:10.1002/hep.23380 

 21. Coulouarn C, Factor VM, Andersen JB, Durkin ME, Thorgeirsson SS. Loss of 
miR-122 expression in liver cancer correlates with suppression of the hepatic 

phenotype and gain of metastatic properties. Oncogene (2009) 28(40):3526–36. 
doi:10.1038/onc.2009.211 

 22. Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H, Okanoue T, et al.  
Comprehensive analysis of microRNA expression patterns in hepatocellular 
carcinoma and non-tumorous tissues. Oncogene (2006) 25(17):2537–45. 
doi:10.1038/sj.onc.1209283 

 23. Yang X, Zhang XF, Lu X, Jia HL, Liang L, Dong QZ, et al.  MicroRNA-26a suppresses 
angiogenesis in human hepatocellular carcinoma by targeting hepatocyte growth 
factor-cMet pathway. Hepatology (2014) 59(5):1874–85. doi:10.1002/hep.26941 

 24. Gailhouste L, Gomez-Santos L, Hagiwara K, Hatada I, Kitagawa N, Kawaharada 
K, et al.  miR-148a plays a pivotal role in the liver by promoting the hepatospecific 
phenotype and suppressing the invasiveness of transformed cells. Hepatology 
(2013) 58(3):1153–65. doi:10.1002/hep.26422 

 25. Murakami Y, Tanahashi T, Okada R, Toyoda H, Kumada T, Enomoto M, et 
al.  Comparison of hepatocellular carcinoma miRNA expression profiling as 
evaluated by next generation sequencing and microarray. PLoS One (2014) 
9(9):e106314. doi:10.1371/journal.pone.0106314 

 26. Wojcicka A, Swierniak M, Kornasiewicz O, Gierlikowski W, Maciag M, 
Kolanowska M, et al.  Next generation sequencing reveals microRNA isoforms 
in liver cirrhosis and hepatocellular carcinoma. Int J Biochem Cell Biol (2014) 
53:208–17. doi:10.1016/j.biocel.2014.05.020 

 27. Murakami Y, Aly HH, Tajima A, Inoue I, Shimotohno K. Regulation of the 
hepatitis C virus genome replication by miR-199a. J Hepatol (2009) 50(3):453–60. 
doi:10.1016/j.jhep.2008.06.010 

 28. Henry JC, Park JK, Jiang J, Kim JH, Nagorney DM, Roberts LR, et al.  miR-199a-3p 
targets CD44 and reduces proliferation of CD44 positive hepatocellular carcinoma 
cell lines. Biochem Biophys Res Commun (2010) 403(1):120–5. doi:10.1016/j.
bbrc.2010.10.130 

 29. Qiu X, Dong S, Qiao F, Lu S, Song Y, Lao Y, et al.  HBx-mediated miR-21 
upregulation represses tumor-suppressor function of PDCD4 in hepatocellular 
carcinoma. Oncogene (2013) 32(27):3296–305. doi:10.1038/onc.2013.150 

 30. Marquez RT, Wendlandt E, Galle CS, Keck K, McCaffrey AP. MicroRNA-21 is 
upregulated during the proliferative phase of liver regeneration, targets Pellino-1, 
and inhibits NF-kappaB signaling. Am J Physiol Gastrointest Liver Physiol (2010) 
298(4):G535–41. doi:10.1152/ajpgi.00338.2009 

 31. Chen M, Liu Y, Varley P, Chang Y, He XX, Huang H, et al.  High mobility group 
box-1 promotes hepatocellular carcinoma progression through miR-21-me-
diated matrix metalloproteinase activity. Cancer Res (2015) 75(8):1645–56. 
doi:10.1158/0008-5472.CAN-14-2147 

 32. Ning BF, Ding J, Liu J, Yin C, Xu WP, Cong WM, et al.  Hepatocyte nuclear 
factor 4alpha-nuclear factor-kappaB feedback circuit modulates liver cancer 
progression. Hepatology (2014) 60(5):1607–19. doi:10.1002/hep.27177 

 33. Li CH, Xu F, Chow S, Feng L, Yin D, Ng TB, et al.  Hepatitis B virus X protein 
promotes hepatocellular carcinoma transformation through interleukin-6 
activation of microRNA-21 expression. Eur J Cancer (2014) 50(15):2560–9. 
doi:10.1016/j.ejca.2014.07.008 

 34. Shih YT, Wang MC, Zhou J, Peng HH, Lee DY, Chiu JJ. Endothelial progen-
itors promote hepatocarcinoma intrahepatic metastasis through monocyte 
chemotactic protein-1 induction of microRNA-21. Gut (2014). doi:10.1136/
gutjnl-2013-306302 

 35. Hou J, Lin L, Zhou W, Wang Z, Ding G, Dong Q, et al.  Identification of miRNomes 
in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as ther-
apeutic target for hepatocellular carcinoma. Cancer Cell (2011) 19(2):232–43. 
doi:10.1016/j.ccr.2011.01.001 

 36. Toffanin S, Hoshida Y, Lachenmayer A, Villanueva A, Cabellos L, Minguez 
B, et al.  MicroRNA-based classification of hepatocellular carcinoma and 
oncogenic role of miR-517a. Gastroenterology (2011) 140(5):e–28. doi:10.1053/j.
gastro.2011.02.009 

 37. Lopez-Serra P, Esteller M. DNA methylation-associated silencing of tumor-sup-
pressor microRNAs in cancer. Oncogene (2012) 31(13):1609–22. doi:10.1038/
onc.2011.354 

 38. Wang B, Hsu SH, Wang X, Kutay H, Bid HK, Yu J, et al.  Reciprocal regulation 
of microRNA-122 and c-Myc in hepatocellular cancer: role of E2F1 and 
transcription factor dimerization partner 2. Hepatology (2014) 59(2):555–66. 
doi:10.1002/hep.26712 

 39. Calin GA, Croce CM. Chromosomal rearrangements and microRNAs: a new 
cancer link with clinical implications. J Clin Invest (2007) 117(8):2059–66. 
doi:10.1172/JCI32577 

http://www.frontiersin.org/Medicine/archive
http://www.frontiersin.org/Medicine
http://dx.doi.org/10.1093/jnci/djn261
http://dx.doi.org/10.1093/jnci/djn261
http://dx.doi.org/10.1002/hep.510270617
http://dx.doi.org/10.1056/NEJMoa0708857
http://dx.doi.org/10.1038/ng.2256
http://dx.doi.org/10.1002/hep.27732
http://dx.doi.org/10.1056/NEJMoa0804525
http://dx.doi.org/10.1016/j.jhep.2013.10.014
http://dx.doi.org/10.1016/j.jhep.2013.10.014
http://dx.doi.org/10.1038/nrd4140
http://dx.doi.org/10.1038/nrg2634
http://dx.doi.org/10.1053/j.seminoncol.2011.08.001
http://dx.doi.org/10.1053/j.seminoncol.2011.08.001
http://dx.doi.org/10.1002/hep.22326
http://dx.doi.org/10.2174/156800912803987904
http://dx.doi.org/10.1053/j.gastro.2007.05.022
http://dx.doi.org/10.3892/ijo.2013.1965
http://dx.doi.org/10.1158/1078-0432.CCR-09-0092
http://dx.doi.org/10.1158/1078-0432.CCR-09-0092
http://dx.doi.org/10.1158/1078-0432.CCR-09-1840
http://dx.doi.org/10.1002/hep.25747
http://dx.doi.org/10.1073/pnas.0907904107
http://dx.doi.org/10.1056/NEJMoa0901282
http://dx.doi.org/10.1002/hep.23380
http://dx.doi.org/10.1038/onc.2009.211
http://dx.doi.org/10.1038/sj.onc.1209283
http://dx.doi.org/10.1002/hep.26941
http://dx.doi.org/10.1002/hep.26422
http://dx.doi.org/10.1371/journal.pone.0106314
http://dx.doi.org/10.1016/j.biocel.2014.05.020
http://dx.doi.org/10.1016/j.jhep.2008.06.010
http://dx.doi.org/10.1016/j.bbrc.2010.10.130
http://dx.doi.org/10.1016/j.bbrc.2010.10.130
http://dx.doi.org/10.1038/onc.2013.150
http://dx.doi.org/10.1152/ajpgi.00338.2009
http://dx.doi.org/10.1158/0008-5472.CAN-14-2147
http://dx.doi.org/10.1002/hep.27177
http://dx.doi.org/10.1016/j.ejca.2014.07.008
http://dx.doi.org/10.1136/gutjnl-2013-306302
http://dx.doi.org/10.1136/gutjnl-2013-306302
http://dx.doi.org/10.1016/j.ccr.2011.01.001
http://dx.doi.org/10.1053/j.gastro.2011.02.009
http://dx.doi.org/10.1053/j.gastro.2011.02.009
http://dx.doi.org/10.1038/onc.2011.354
http://dx.doi.org/10.1038/onc.2011.354
http://dx.doi.org/10.1002/hep.26712
http://dx.doi.org/10.1172/JCI32577
www.frontiersin.org


May 2015 | Volume 2 | Article 369

Ghidini and Braconi Non-coding RNAs in HCC

Frontiers in Medicine | www.frontiersin.org

 40. Han H, Sun D, Li W, Shen H, Zhu Y, Li C, et al.  A c-Myc-MicroRNA functional 
feedback loop affects hepatocarcinogenesis. Hepatology (2013) 57(6):2378–89. 
doi:10.1002/hep.26302 

 41. Parpart S, Roessler S, Dong F, Rao V, Takai A, Ji J, et al.  Modulation of miR-
29 expression by alpha-fetoprotein is linked to the hepatocellular carcinoma 
epigenome. Hepatology (2014) 60(3):872–83. doi:10.1002/hep.27200 

 42. Kogure T, Lin WL, Yan IK, Braconi C, Patel T. Intercellular nanovesicle-mediated 
microRNA transfer: a mechanism of environmental modulation of hepatocellular 
cancer cell growth. Hepatology (2011) 54(4):1237–48. doi:10.1002/hep.24504 

 43. Patel T. Extracellular vesicle noncoding RNA: new players in the diagnosis 
and pathogenesis of cholangiocarcinoma. Hepatology (2014) 60(3):782–4. 
doi:10.1002/hep.27185 

 44. Wei JX, Lv LH, Wan YL, Cao Y, Li GL, Lin HM, et al.  Vps4A functions as a tumor 
suppressor by regulating the secretion and uptake of exosomal microRNAs 
in human hepatoma cells. Hepatology (2014) 61(4):1284–94. doi:10.1002/
hep.27660 

 45. Xu T, Zhu Y, Wei QK, Yuan Y, Zhou F, Ge YY, et al.  A functional polymorphism 
in the miR-146a gene is associated with the risk for hepatocellular carcinoma. 
Carcinogenesis (2008) 29(11):2126–31. doi:10.1093/carcin/bgn195 

 46. Xu Y, Liu L, Liu J, Zhang Y, Zhu J, Chen J, et al.  A potentially functional poly-
morphism in the promoter region of miR-34b/c is associated with an increased 
risk for primary hepatocellular carcinoma. Int J Cancer (2011) 128(2):412–7. 
doi:10.1002/ijc.25342 

 47. Qi P, Dou TH, Geng L, Zhou FG, Gu X, Wang H, et al.  Association of a 
variant in MIR 196A2 with susceptibility to hepatocellular carcinoma in male 
Chinese patients with chronic hepatitis B virus infection. Hum Immunol (2010) 
71(6):621–6. doi:10.1016/j.humimm.2010.02.017 

 48. Li XD, Li ZG, Song XX, Liu CF. A variant in microRNA-196a2 is associated with 
susceptibility to hepatocellular carcinoma in Chinese patients with cirrhosis. 
Pathology (2010) 42(7):669–73. doi:10.3109/00313025.2010.522175 

 49. Liu YM, Xia Y, Dai W, Han HY, Dong YX, Cai J, et al.  Cholesterol-conjugated 
let-7a mimics: antitumor efficacy on hepatocellular carcinoma in vitro and in a 
preclinical orthotopic xenograft model of systemic therapy. BMC Cancer (2014) 
14:889. doi:10.1186/1471-2407-14-889 

 50. Liang TJ, Liu HJ, Zhao XQ, Yu CH, Li CS. Lack of association of MiR-34b/c 
polymorphism (rs4938723) with hepatocellular carcinoma: a meta-analysis. 
PLoS One (2013) 8(7):e68588. doi:10.1371/journal.pone.0068588 

 51. Akkiz H, Bayram S, Bekar A, Akgollu E, Ulger Y. A functional polymorphism 
in pre-microRNA-196a-2 contributes to the susceptibility of hepatocellular 
carcinoma in a Turkish population: a case-control study. J Viral Hepat (2011) 
18(7):e399–407. doi:10.1111/j.1365-2893.2010.01414.x 

 52. Gramantieri L, Ferracin M, Fornari F, Veronese A, Sabbioni S, Liu CG, et al.  Cyclin 
G1 is a target of miR-122a, a microRNA frequently down-regulated in human 
hepatocellular carcinoma. Cancer Res (2007) 67(13):6092–9. doi:10.1158/0008-
5472.CAN-06-4607 

 53. Mitchell AP. A VAST staging area for regulatory proteins. Proc Natl Acad Sci U 
S A (2008) 105(20):7111–2. doi:10.1073/pnas.0803384105 

 54. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al.  
Argonaute2 complexes carry a population of circulating microRNAs independent 
of vesicles in human plasma. Proc Natl Acad Sci U S A (2011) 108(12):5003–8. 
doi:10.1073/pnas.1019055108 

 55. Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes 
as diagnostic biomarkers of ovarian cancer. Gynecol Oncol (2008) 110(1):13–21. 
doi:10.1016/j.ygyno.2008.04.033 

 56. Roderburg C, Luedde T. Circulating microRNAs as markers of liver inflammation, 
fibrosis and cancer. J Hepatol (2014) 61(6):1434–7. doi:10.1016/j.jhep.2014.07.017 

 57. Zhou J, Yu L, Gao X, Hu J, Wang J, Dai Z, et al.  Plasma microRNA panel to 
diagnose hepatitis B virus-related hepatocellular carcinoma. J Clin Oncol (2011) 
29(36):4781–8. doi:10.1200/JCO.2011.38.2697 

 58. Li LM, Hu ZB, Zhou ZX, Chen X, Liu FY, Zhang JF, et al.  Serum microRNA pro-
files serve as novel biomarkers for HBV infection and diagnosis of HBV-positive 
hepatocarcinoma. Cancer Res (2010) 70(23):9798–807. doi:10.1158/0008-5472.
CAN-10-1001 

 59. Ura S, Honda M, Yamashita T, Ueda T, Takatori H, Nishino R, et al.  Differential 
microRNA expression between hepatitis B and hepatitis C leading disease 
progression to hepatocellular carcinoma. Hepatology (2009) 49(4):1098–112. 
doi:10.1002/hep.22749 

 60. Randall G, Panis M, Cooper JD, Tellinghuisen TL, Sukhodolets KE, Pfeffer S, et 
al.  Cellular cofactors affecting hepatitis C virus infection and replication. Proc 
Natl Acad Sci U S A (2007) 104(31):12884–9. doi:10.1073/pnas.0704894104 

 61. Song K, Han C, Zhang J, Lu D, Dash S, Feitelson M, et al.  Epigenetic regulation 
of MicroRNA-122 by peroxisome proliferator activated receptor-gamma and 
hepatitis b virus X protein in hepatocellular carcinoma cells. Hepatology (2013) 
58(5):1681–92. doi:10.1002/hep.26514 

 62. Roderburg C, Benz F, Vargas Cardenas D, Koch A, Janssen J, Vucur M, et al.  
Elevated miR-122 serum levels are an independent marker of liver injury in 
inflammatory diseases. Liver Int (2014) 35(4):1172–84. doi:10.1111/liv.12627 

 63. Pritchard CC, Kroh E, Wood B, Arroyo JD, Dougherty KJ, Miyaji MM, et 
al.  Blood cell origin of circulating microRNAs: a cautionary note for cancer 
biomarker studies. Cancer Prev Res (2012) 5(3):492–7. doi:10.1158/1940-6207.
CAPR-11-0370 

 64. Schultz NA, Dehlendorff C, Jensen BV, Bjerregaard JK, Nielsen KR, Bojesen SE, 
et al.  MicroRNA biomarkers in whole blood for detection of pancreatic cancer. 
JAMA (2014) 311(4):392–404. doi:10.1001/jama.2013.284664 

 65. Yang P, Li QJ, Feng Y, Zhang Y, Markowitz GJ, Ning S, et al.  TGF-beta-miR-34a-
CCL22 signaling-induced Treg cell recruitment promotes venous metastases 
of HBV-positive hepatocellular carcinoma. Cancer Cell (2012) 22(3):291–303. 
doi:10.1016/j.ccr.2012.07.023 

 66. Budhu A, Jia HL, Forgues M, Liu CG, Goldstein D, Lam A, et al.  Identification 
of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology (2008) 
47(3):897–907. doi:10.1002/hep.22160 

 67. Jiang J, Gusev Y, Aderca I, Mettler TA, Nagorney DM, Brackett DJ, et al.  
Association of MicroRNA expression in hepatocellular carcinomas with hepatitis 
infection, cirrhosis, and patient survival. Clin Cancer Res (2008) 14(2):419–27. 
doi:10.1158/1078-0432.CCR-07-0523 

 68. Chang RM, Yang H, Fang F, Xu JF, Yang LY. MicroRNA-331-3p promotes 
proliferation and metastasis of hepatocellular carcinoma by targeting PH domain 
and leucine-rich repeat protein phosphatase. Hepatology (2014) 60(4):1251–63. 
doi:10.1002/hep.27221 

 69. Bae HJ, Noh JH, Kim JK, Eun JW, Jung KH, Kim MG, et al.  MicroRNA-29c 
functions as a tumor suppressor by direct targeting oncogenic SIRT1 in hepato-
cellular carcinoma. Oncogene (2014) 33(20):2557–67. doi:10.1038/onc.2013.216 

 70. Rong M, Chen G, Dang Y. Increased miR-221 expression in hepatocellular 
carcinoma tissues and its role in enhancing cell growth and inhibiting apoptosis 
in vitro. BMC Cancer (2013) 13:21. doi:10.1186/1471-2407-13-21 

 71. Li J, Wang Y, Yu W, Chen J, Luo J. Expression of serum miR-221 in human 
hepatocellular carcinoma and its prognostic significance. Biochem Biophys Res 
Commun (2011) 406(1):70–3. doi:10.1016/j.bbrc.2011.01.111 

 72. Sato F, Hatano E, Kitamura K, Myomoto A, Fujiwara T, Takizawa S, et al.  
MicroRNA profile predicts recurrence after resection in patients with hepa-
tocellular carcinoma within the Milan Criteria. PLoS One (2011) 6(1):e16435. 
doi:10.1371/journal.pone.0016435 

 73. Sugimachi K, Matsumura T, Hirata H, Uchi R, Ueda M, Ueo H, et al.  Identification 
of a bona fide microRNA biomarker in serum exosomes that predicts hepato-
cellular carcinoma recurrence after liver transplantation. Br J Cancer (2015) 
112(3):532–8. doi:10.1038/bjc.2014.621 

 74. Qi P, Cheng SQ, Wang H, Li N, Chen YF, Gao CF. Serum microRNAs as biomark-
ers for hepatocellular carcinoma in Chinese patients with chronic hepatitis B virus 
infection. PLoS One (2011) 6(12):e28486. doi:10.1371/journal.pone.0028486 

 75. Liu Y, Hei Y, Shu Q, Dong J, Gao Y, Fu H, et al.  VCP/p97, down-regulated by 
microRNA-129-5p, could regulate the progression of hepatocellular carcinoma. 
PLoS One (2012) 7(4):e35800. doi:10.1371/journal.pone.0035800 

 76. Liu M, Liu J, Wang L, Wu H, Zhou C, Zhu H, et al.  Association of serum 
microRNA expression in hepatocellular carcinomas treated with transarterial 
chemoembolization and patient survival. PLoS One (2014) 9(10):e109347. 
doi:10.1371/journal.pone.0109347 

 77. Liu S, Guo W, Shi J, Li N, Yu X, Xue J, et al.  MicroRNA-135a contributes to 
the development of portal vein tumor thrombus by promoting metastasis 
in hepatocellular carcinoma. J Hepatol (2012) 56(2):389–96. doi:10.1016/j.
jhep.2011.08.008 

 78. Luk JM, Burchard J, Zhang C, Liu AM, Wong KF, Shek FH, et al.  DLK1-DIO3 
genomic imprinted microRNA cluster at 14q32.2 defines a stemlike subtype 
of hepatocellular carcinoma associated with poor survival. J Biol Chem (2011) 
286(35):30706–13. doi:10.1074/jbc.M111.229831 

http://www.frontiersin.org/Medicine/archive
http://www.frontiersin.org/Medicine
http://dx.doi.org/10.1002/hep.26302
http://dx.doi.org/10.1002/hep.27200
http://dx.doi.org/10.1002/hep.24504
http://dx.doi.org/10.1002/hep.27185
http://dx.doi.org/10.1002/hep.27660
http://dx.doi.org/10.1002/hep.27660
http://dx.doi.org/10.1093/carcin/bgn195
http://dx.doi.org/10.1002/ijc.25342
http://dx.doi.org/10.1016/j.humimm.2010.02.017
http://dx.doi.org/10.3109/00313025.2010.522175
http://dx.doi.org/10.1186/1471-2407-14-889
http://dx.doi.org/10.1371/journal.pone.0068588
http://dx.doi.org/10.1111/j.1365-2893.2010.01414.x
http://dx.doi.org/10.1158/0008-5472.CAN-06-4607
http://dx.doi.org/10.1158/0008-5472.CAN-06-4607
http://dx.doi.org/10.1073/pnas.0803384105
http://dx.doi.org/10.1073/pnas.1019055108
http://dx.doi.org/10.1016/j.ygyno.2008.04.033
http://dx.doi.org/10.1016/j.jhep.2014.07.017
http://dx.doi.org/10.1200/JCO.2011.38.2697
http://dx.doi.org/10.1158/0008-5472.CAN-10-1001
http://dx.doi.org/10.1158/0008-5472.CAN-10-1001
http://dx.doi.org/10.1002/hep.22749
http://dx.doi.org/10.1073/pnas.0704894104
http://dx.doi.org/10.1002/hep.26514
http://dx.doi.org/10.1111/liv.12627
http://dx.doi.org/10.1158/1940-6207.CAPR-11-0370
http://dx.doi.org/10.1158/1940-6207.CAPR-11-0370
http://dx.doi.org/10.1001/jama.2013.284664
http://dx.doi.org/10.1016/j.ccr.2012.07.023
http://dx.doi.org/10.1002/hep.22160
http://dx.doi.org/10.1158/1078-0432.CCR-07-0523
http://dx.doi.org/10.1002/hep.27221
http://dx.doi.org/10.1038/onc.2013.216
http://dx.doi.org/10.1186/1471-2407-13-21
http://dx.doi.org/10.1016/j.bbrc.2011.01.111
http://dx.doi.org/10.1371/journal.pone.0016435
http://dx.doi.org/10.1038/bjc.2014.621
http://dx.doi.org/10.1371/journal.pone.0028486
http://dx.doi.org/10.1371/journal.pone.0035800
http://dx.doi.org/10.1371/journal.pone.0109347
http://dx.doi.org/10.1016/j.jhep.2011.08.008
http://dx.doi.org/10.1016/j.jhep.2011.08.008
http://dx.doi.org/10.1074/jbc.M111.229831
www.frontiersin.org


May 2015 | Volume 2 | Article 3610

Ghidini and Braconi Non-coding RNAs in HCC

Frontiers in Medicine | www.frontiersin.org

 79. Braconi C, Valeri N, Gasparini P, Huang N, Taccioli C, Nuovo G, et al.  Hepatitis 
C virus proteins modulate microRNA expression and chemosensitivity in malig-
nant hepatocytes. Clin Cancer Res (2010) 16(3):957–66. doi:10.1158/1078-0432.
CCR-09-2123 

 80. Mao K, Zhang J, He C, Xu K, Liu J, Sun J, et al.  Restoration of miR-193b sensitizes 
hepatitis B virus-associated hepatocellular carcinoma to sorafenib. Cancer Lett 
(2014) 352(2):245–52. doi:10.1016/j.canlet.2014.07.004 

 81. Bai S, Nasser MW, Wang B, Hsu SH, Datta J, Kutay H, et al.  MicroRNA-122 
inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes 
these cells to sorafenib. J Biol Chem (2009) 284(46):32015–27. doi:10.1074/jbc.
M109.016774 

 82. Vaira V, Roncalli M, Carnaghi C, Faversani A, Maggioni M, Augello C, et al.  
MicroRNA-425-3p predicts response to sorafenib therapy in patients with 
hepatocellular carcinoma. Liver Int (2014) 35(3):1077–86. doi:10.1111/liv.12636 

 83. Stephenson ML, Zamecnik PC. Inhibition of Rous sarcoma viral RNA trans-
lation by a specific oligodeoxyribonucleotide. Proc Natl Acad Sci U S A (1978) 
75(1):285–8. doi:10.1073/pnas.75.1.285 

 84. Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S, et al.  LNA-mediated 
microRNA silencing in non-human primates. Nature (2008) 452(7189):896–9. 
doi:10.1038/nature06783 

 85. Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of 
small RNAs in mammalian cells. Nat Methods (2007) 4(9):721–6. doi:10.1038/
nmeth1079 

 86. Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, et 
al.  Treatment of HCV infection by targeting microRNA. N Engl J Med (2013) 
368(18):1685–94. doi:10.1056/NEJMoa1209026 

 87. van der Ree MH, van der Meer AJ, de Bruijne J, Maan R, van Vliet A, Welzel 
TM, et al.  Long-term safety and efficacy of microRNA-targeted therapy in 
chronic hepatitis C patients. Antiviral Res (2014) 111:53–9. doi:10.1016/j.
antiviral.2014.08.015 

 88. Le Sage C, Nagel R, Egan DA, Schrier M, Mesman E, Mangiola A, et al.  Regulation 
of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell 
proliferation. EMBO J (2007) 26(15):3699–708. doi:10.1038/sj.emboj.7601790 

 89. Garofalo M, Di Leva G, Romano G, Nuovo G, Suh SS, Ngankeu A, et al.  miR-
221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN 
and TIMP3 downregulation. Cancer Cell (2009) 16(6):498–509. doi:10.1016/j.
ccr.2009.10.014 

 90. Park JK, Kogure T, Nuovo GJ, Jiang J, He L, Kim JH, et al.  miR-221 silencing 
blocks hepatocellular carcinoma and promotes survival. Cancer Res (2011) 
71(24):7608–16. doi:10.1158/0008-5472.CAN-11-1144 

 91. Moshiri F, Callegari E, D’Abundo L, Corra F, Lupini L, Sabbioni S, et al.  Inhibiting 
the oncogenic mir-221 by microRNA sponge: toward microRNA-based thera-
peutics for hepatocellular carcinoma. Gastroenterol Hepatol Bed Bench (2014) 
7(1):43–54. 

 92. Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang 
HW, et al.  Therapeutic microRNA delivery suppresses tumorigenesis in a murine 
liver cancer model. Cell (2009) 137(6):1005–17. doi:10.1016/j.cell.2009.04.021 

 93. Callegari E, Elamin BK, D’Abundo L, Falzoni S, Donvito G, Moshiri F, et al.  
Anti-tumor activity of a miR-199-dependent oncolytic adenovirus. PLoS One 
(2013) 8(9):e73964. doi:10.1371/journal.pone.0073964 

 94. Xie K, Liu J, Chen J, Dong J, Ma H, Liu Y, et al.  Methylation-associated silencing 
of microRNA-34b in hepatocellular carcinoma cancer. Gene (2014) 543(1):101–7. 
doi:10.1016/j.gene.2014.03.059 

 95. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, et al.  A microRNA com-
ponent of the p53 tumour suppressor network. Nature (2007) 447(7148):1130–4. 
doi:10.1038/nature05939 

 96. Xiao Z, Li CH, Chan SL, Xu F, Feng L, Wang Y, et al.  A small-molecule modulator 
of the tumor-suppressor miR34a inhibits the growth of hepatocellular carcinoma. 
Cancer Res (2014) 74(21):6236–47. doi:10.1158/0008-5472.CAN-14-0855 

 97. Clinicaltrials.gov . A Multicenter Phase I Study of MRX34, MicroRNA miR-RX34 
Liposomal Injection. Available from: https://clinicaltrials.gov/ct2/show/
NCT01829971?term=miR34&rank=1.

 98. Niazi F, Valadkhan S. Computational analysis of functional long noncoding 
RNAs reveals lack of peptide-coding capacity and parallels with 3’ UTRs. RNA 
(2012) 18(4):825–43. doi:10.1261/rna.029520.111 

 99. Clark MB, Johnston RL, Inostroza-Ponta M, Fox AH, Fortini E, Moscato P, et 
al.  Genome-wide analysis of long noncoding RNA stability. Genome Res (2012) 
22(5):885–98. doi:10.1101/gr.131037.111 

 100. He Y, Meng XM, Huang C, Wu BM, Zhang L, Lv XW, et al.  Long noncoding RNAs: 
Novel insights into hepatocelluar carcinoma. Cancer Lett (2014) 344(1):20–7. 
doi:10.1016/j.canlet.2013.10.021 

 101. Muscatelli F, Lena D, Mettei MG, Fontes M. A male with two contiguous 
inactivation centers on a single X chromosome: study of X inactivation 
and XIST expression. Hum Mol Genet (1992) 1(2):115–9. doi:10.1093/
hmg/1.2.115 

 102. Kogo R, Shimamura T, Mimori K, Kawahara K, Imoto S, Sudo T, et al.  Long 
noncoding RNA HOTAIR regulates polycomb-dependent chromatin modifi-
cation and is associated with poor prognosis in colorectal cancers. Cancer Res 
(2011) 71(20):6320–6. doi:10.1158/0008-5472.CAN-11-1021 

 103. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A cod-
ing-independent function of gene and pseudogene mRNAs regulates tumour 
biology. Nature (2010) 465(7301):1033–8. doi:10.1038/nature09144 

 104. Braconi C, Kogure T, Valeri N, Huang N, Nuovo G, Costinean S, et al.  
microRNA-29 can regulate expression of the long non-coding RNA gene 
MEG3 in hepatocellular cancer. Oncogene (2011) 30(47):4750–6. doi:10.1038/
onc.2011.193 

 105. Zhuo H, Tang J, Lin Z, Jiang R, Zhang X, Ji J, et al.  The aberrant expression of 
MEG3 regulated by UHRF1 predicts the prognosis of hepatocellular carcinoma. 
Mol Carcinog (2015). doi:10.1002/mc.22270 

 106. Anwar SL, Krech T, Hasemeier B, Schipper E, Schweitzer N, Vogel A, et al.  
Loss of imprinting and allelic switching at the DLK1-MEG3 locus in human 
hepatocellular carcinoma. PLoS One (2012) 7(11):e49462. doi:10.1371/journal.
pone.0049462 

 107. Lai MC, Yang Z, Zhou L, Zhu QQ, Xie HY, Zhang F, et al.  Long non-coding 
RNA MALAT-1 overexpression predicts tumor recurrence of hepatocellular car-
cinoma after liver transplantation. Med Oncol (2012) 29(3):1810–6. doi:10.1007/
s12032-011-0004-z 

 108. Lin R, Maeda S, Liu C, Karin M, Edgington TS. A large noncoding RNA is 
a marker for murine hepatocellular carcinomas and a spectrum of human 
carcinomas. Oncogene (2007) 26(6):851–8. doi:10.1038/sj.onc.1209846 

 109. Ishibashi M, Kogo R, Shibata K, Sawada G, Takahashi Y, Kurashige J, et al.  
Clinical significance of the expression of long non-coding RNA HOTAIR in 
primary hepatocellular carcinoma. Oncol Rep (2013) 29(3):946–50. doi:10.3892/
or.2012.2219 

 110. Yang Z, Zhou L, Wu LM, Lai MC, Xie HY, Zhang F, et al.  Overexpression of 
long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular 
carcinoma patients following liver transplantation. Ann Surg Oncol (2011) 
18(5):1243–50. doi:10.1245/s10434-011-1581-y 

 111. Quagliata L, Matter MS, Piscuoglio S, Arabi L, Ruiz C, Procino A, et al.  Long 
noncoding RNA HOTTIP/HOXA13 expression is associated with disease pro-
gression and predicts outcome in hepatocellular carcinoma patients. Hepatology 
(2014) 59(3):911–23. doi:10.1002/hep.26740 

 112. Panzitt K, Tschernatsch MM, Guelly C, Moustafa T, Stradner M, Strohmaier 
HM, et al.  Characterization of HULC, a novel gene with striking up-regulation 
in hepatocellular carcinoma, as noncoding RNA. Gastroenterology (2007) 
132(1):330–42. doi:10.1053/j.gastro.2006.08.026 

 113. Du Y, Kong G, You X, Zhang S, Zhang T, Gao Y, et al.  Elevation of highly 
up-regulated in liver cancer (HULC) by hepatitis B virus X protein promotes 
hepatoma cell proliferation via down-regulating p18. J Biol Chem (2012) 
287(31):26302–11. doi:10.1074/jbc.M112.342113 

 114. Cui M, Xiao Z, Wang Y, Zheng M, Song T, Cai X, et al.  Long noncoding RNA 
HULC modulates abnormal lipid metabolism in hepatoma cells through an 
miR-9-mediated RXRA signaling pathway. Cancer Res (2015) 75(5):846–57. 
doi:10.1158/0008-5472.CAN-14-1192 

 115. Liu Y, Pan S, Liu L, Zhai X, Liu J, Wen J, et al.  A genetic variant in long non-coding 
RNA HULC contributes to risk of HBV-related hepatocellular carcinoma in 
a Chinese population. PLoS One (2012) 7(4):e35145. doi:10.1371/journal.
pone.0035145 

 116. Yuan SX, Yang F, Yang Y, Tao QF, Zhang J, Huang G, et al.  Long noncoding RNA 
associated with microvascular invasion in hepatocellular carcinoma promotes 
angiogenesis and serves as a predictor for hepatocellular carcinoma patients’ poor 
recurrence-free survival after hepatectomy. Hepatology (2012) 56(6):2231–41. 
doi:10.1002/hep.25895 

 117. Zhu Z, Gao X, He Y, Zhao H, Yu Q, Jiang D, et al.  An insertion/deletion polymor-
phism within RERT-lncRNA modulates hepatocellular carcinoma risk. Cancer 
Res (2012) 72(23):6163–72. doi:10.1158/0008-5472.CAN-12-0010 

http://www.frontiersin.org/Medicine/archive
http://www.frontiersin.org/Medicine
http://dx.doi.org/10.1158/1078-0432.CCR-09-2123
http://dx.doi.org/10.1158/1078-0432.CCR-09-2123
http://dx.doi.org/10.1016/j.canlet.2014.07.004
http://dx.doi.org/10.1074/jbc.M109.016774
http://dx.doi.org/10.1074/jbc.M109.016774
http://dx.doi.org/10.1111/liv.12636
http://dx.doi.org/10.1073/pnas.75.1.285
http://dx.doi.org/10.1038/nature06783
http://dx.doi.org/10.1038/nmeth1079
http://dx.doi.org/10.1038/nmeth1079
http://dx.doi.org/10.1056/NEJMoa1209026
http://dx.doi.org/10.1016/j.antiviral.2014.08.015
http://dx.doi.org/10.1016/j.antiviral.2014.08.015
http://dx.doi.org/10.1038/sj.emboj.7601790
http://dx.doi.org/10.1016/j.ccr.2009.10.014
http://dx.doi.org/10.1016/j.ccr.2009.10.014
http://dx.doi.org/10.1158/0008-5472.CAN-11-1144
http://dx.doi.org/10.1016/j.cell.2009.04.021
http://dx.doi.org/10.1371/journal.pone.0073964
http://dx.doi.org/10.1016/j.gene.2014.03.059
http://dx.doi.org/10.1038/nature05939
http://dx.doi.org/10.1158/0008-5472.CAN-14-0855
https://clinicaltrials.gov/ct2/show/%2520NCT01829971%3Fterm%3DmiR34%26rank%3D1.
https://clinicaltrials.gov/ct2/show/%2520NCT01829971%3Fterm%3DmiR34%26rank%3D1.
http://dx.doi.org/10.1261/rna.029520.111
http://dx.doi.org/10.1101/gr.131037.111
http://dx.doi.org/10.1016/j.canlet.2013.10.021
http://dx.doi.org/10.1093/hmg/1.2.115
http://dx.doi.org/10.1093/hmg/1.2.115
http://dx.doi.org/10.1158/0008-5472.CAN-11-1021
http://dx.doi.org/10.1038/nature09144
http://dx.doi.org/10.1038/onc.2011.193
http://dx.doi.org/10.1038/onc.2011.193
http://dx.doi.org/10.1002/mc.22270
http://dx.doi.org/10.1371/journal.pone.0049462
http://dx.doi.org/10.1371/journal.pone.0049462
http://dx.doi.org/10.1007/s12032-011-0004-z
http://dx.doi.org/10.1007/s12032-011-0004-z
http://dx.doi.org/10.1038/sj.onc.1209846
http://dx.doi.org/10.3892/or.2012.2219
http://dx.doi.org/10.3892/or.2012.2219
http://dx.doi.org/10.1245/s10434-011-1581-y
http://dx.doi.org/10.1002/hep.26740
http://dx.doi.org/10.1053/j.gastro.2006.08.026
http://dx.doi.org/10.1074/jbc.M112.342113
http://dx.doi.org/10.1158/0008-5472.CAN-14-1192
http://dx.doi.org/10.1371/journal.pone.0035145
http://dx.doi.org/10.1371/journal.pone.0035145
http://dx.doi.org/10.1002/hep.25895
http://dx.doi.org/10.1158/0008-5472.CAN-12-0010
www.frontiersin.org


May 2015 | Volume 2 | Article 3611

Ghidini and Braconi Non-coding RNAs in HCC

Frontiers in Medicine | www.frontiersin.org

 118. Takahashi K, Yan IK, Haga H, Patel T. Modulation of hypoxia-signaling pathways 
by extracellular linc-RoR. J Cell Sci (2014) 127(Pt 7):1585–94. doi:10.1242/
jcs.141069 

 119. Yang F, Zhang L, Huo XS, Yuan JH, Xu D, Yuan SX, et al.  Long noncoding RNA 
high expression in hepatocellular carcinoma facilitates tumor growth through 
enhancer of zeste homolog 2 in humans. Hepatology (2011) 54(5):1679–89. 
doi:10.1002/hep.24563 

 120. Cao C, Sun J, Zhang D, Guo X, Xie L, Li X, et al.  The long intergenic noncoding 
RNA UFC1, a target of MicroRNA 34a, interacts with the mRNA stabilizing 
protein HuR to increase levels of beta-catenin in HCC cells. Gastroenterology 
(2015) 148(2):e–26. doi:10.1053/j.gastro.2014.10.012 

 121. Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, Mattick JS, et al.  
Ultraconserved elements in the human genome. Science (2004) 304(5675):1321–5. 
doi:10.1126/science.1098119 

 122. Wojcik SE, Rossi S, Shimizu M, Nicoloso MS, Cimmino A, Alder H, et al.  
Non-codingRNA sequence variations in human chronic lymphocytic leukemia 
and colorectal cancer. Carcinogenesis (2010) 31(2):208–15. doi:10.1093/carcin/
bgp209 

 123. Calin GA, Liu CG, Ferracin M, Hyslop T, Spizzo R, Sevignani C, et al.  
Ultraconserved regions encoding ncRNAs are altered in human leukemias and 
carcinomas. Cancer Cell (2007) 12(3):215–29. doi:10.1016/j.ccr.2007.07.027 

 124. Fassan M, Dall’Olmo L, Galasso M, Braconi C, Pizzi M, Realdon S, et al.  
Transcribed ultraconserved noncoding RNAs (T-UCR) are involved in Barrett’s 
esophagus carcinogenesis. Oncotarget (2014) 5(16):7162–71. 

 125. Braconi C, Valeri N, Kogure T, Gasparini P, Huang N, Nuovo GJ, et al.  Expression 
and functional role of a transcribed noncoding RNA with an ultraconserved ele-
ment in hepatocellular carcinoma. Proc Natl Acad Sci U S A (2011) 108(2):786–91. 
doi:10.1073/pnas.1011098108 

 126. Hudson RS, Yi M, Volfovsky N, Prueitt RL, Esposito D, Volinia S, et al.  
Transcription signatures encoded by ultraconserved genomic regions in human 
prostate cancer. Mol Cancer (2013) 12:13. doi:10.1186/1476-4598-12-13 

 127. Lujambio A, Portela A, Liz J, Melo SA, Rossi S, Spizzo R, et al.  CpG island 
hypermethylation-associated silencing of non-coding RNAs transcribed from 
ultraconserved regions in human cancer. Oncogene (2010) 29(48):6390–401. 
doi:10.1038/onc.2010.361 

 128. Liz J, Portela A, Soler M, Gomez A, Ling H, Michlewski G, et al.  Regulation of pri-
miRNA processing by a long noncoding RNA transcribed from an ultraconserved 
region. Mol Cell (2014) 55(1):138–47. doi:10.1016/j.molcel.2014.05.005 

 129. Kogure T, Yan IK, Lin WL, Patel T. Extracellular vesicle-mediated transfer 
of a novel long noncoding RNA TUC339: a mechanism of intercellular sig-
naling in human hepatocellular cancer. Genes Cancer (2013) 4(7–8):261–72. 
doi:10.1177/1947601913499020 

 130. Ferdin J, Nishida N, Wu X, Nicoloso MS, Shah MY, Devlin C, et al.  HINCUTs 
in cancer: hypoxia-induced noncoding ultraconserved transcripts. Cell Death 
Differ (2013) 20(12):1675–87. doi:10.1038/cdd.2013.119 

 131. Han Y, Liu Y, Zhang H, Wang T, Diao R, Jiang Z, et al.  Hsa-miR-125b sup-
presses bladder cancer development by down-regulating oncogene SIRT7 and 
oncogenic long noncoding RNA MALAT1. FEBS Lett (2013) 587(23):3875–82. 
doi:10.1016/j.febslet.2013.10.023 

 132. Jiang JX, Gao S, Pan YZ, Yu C, Sun CY. Overexpression of microRNA-125b sen-
sitizes human hepatocellular carcinoma cells to 5-fluorouracil through inhibition 
of glycolysis by targeting hexokinase II. Mol Med Rep (2014) 10(2):995–1002. 
doi:10.3892/mmr.2014.2271 

 133. Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and 
competition. Nature (2014) 505(7483):344–52. doi:10.1038/nature12986 

 134. Wang J, Liu X, Wu H, Ni P, Gu Z, Qiao Y, et al.  CREB up-regulates long 
non-coding RNA, HULC expression through interaction with microRNA-372 
in liver cancer. Nucleic Acids Res (2010) 38(16):5366–83. doi:10.1093/nar/gkq285 

 135. Li X, Nong Z, Ekstrom C, Larsson E, Nordlinder H, Hofmann WJ, et al.  Disrupted 
IGF2 promoter control by silencing of promoter P1 in human hepatocellular 
carcinoma. Cancer Res (1997) 57(10):2048–54. 

 136. Dey BK, Pfeifer K, Dutta A. The H19 long noncoding RNA gives rise to microR-
NAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and 
regeneration. Genes Dev (2014) 28(5):491–501. doi:10.1101/gad.234419.113 

 137. Ren S, Wang F, Shen J, Sun Y, Xu W, Lu J, et al.  Long non-coding RNA metastasis 
associated in lung adenocarcinoma transcript 1 derived miniRNA as a novel 
plasma-based biomarker for diagnosing prostate cancer. Eur J Cancer (2013) 
49(13):2949–59. doi:10.1016/j.ejca.2013.04.026 

 138. Wang B, Majumder S, Nuovo G, Kutay H, Volinia S, Patel T, et al.  Role of 
microRNA-155 at early stages of hepatocarcinogenesis induced by choline-de-
ficient and amino acid-defined diet in C57BL/6 mice. Hepatology (2009) 
50(4):1152–61. doi:10.1002/hep.23100 

 139. Yan XL, Jia YL, Chen L, Zeng Q, Zhou JN, Fu CJ, et al.  Hepatocellular 
carcinoma-associated mesenchymal stem cells promote hepatocarcinoma 
progression: role of the S100A4-miR155-SOCS1-MMP9 axis. Hepatology (2013) 
57(6):2274–86. doi:10.1002/hep.26257 

 140. Xie Q, Chen X, Lu F, Zhang T, Hao M, Wang Y, et al.  Aberrant expression of 
microRNA 155 may accelerate cell proliferation by targeting sex-determining 
region Y box 6 in hepatocellular carcinoma. Cancer (2012) 118(9):2431–42. 
doi:10.1002/cncr.26566 

 141. Han ZB, Chen HY, Fan JW, Wu JY, Tang HM, Peng ZH. Up-regulation of 
microRNA-155 promotes cancer cell invasion and predicts poor survival of 
hepatocellular carcinoma following liver transplantation. J Cancer Res Clin Oncol 
(2012) 138(1):153–61. doi:10.1007/s00432-011-1076-z 

 142. Zhang Y, Wei W, Cheng N, Wang K, Li B, Jiang X, et al.  Hepatitis C virus-induced 
up-regulation of microRNA-155 promotes hepatocarcinogenesis by activating 
Wnt signaling. Hepatology (2012) 56(5):1631–40. doi:10.1002/hep.25849 

 143. Fornari F, Gramantieri L, Ferracin M, Veronese A, Sabbioni S, Calin GA, et al.  
MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepa-
tocellular carcinoma. Oncogene (2008) 27(43):5651–61. doi:10.1038/onc.2008.178 

 144. Fornari F, Milazzo M, Galassi M, Callegari E, Veronese A, Miyaaki H, et al.  p53/
mdm2 feedback loop sustains miR-221 expression and dictates the response 
to anticancer treatments in hepatocellular carcinoma. Mol Cancer Res (2014) 
12(2):203–16. doi:10.1158/1541-7786.MCR-13-0312-T 

 145. Yuan Q, Loya K, Rani B, Mobus S, Balakrishnan A, Lamle J, et al.  MicroRNA-221 
overexpression accelerates hepatocyte proliferation during liver regeneration. 
Hepatology (2013) 57(1):299–310. doi:10.1002/hep.25984 

 146. Santhekadur PK, Das SK, Gredler R, Chen D, Srivastava J, Robertson C, et al.  
Multifunction protein staphylococcal nuclease domain containing 1 (SND1) 
promotes tumor angiogenesis in human hepatocellular carcinoma through novel 
pathway that involves nuclear factor kappaB and miR-221. J Biol Chem (2012) 
287(17):13952–8. doi:10.1074/jbc.M111.321646 

 147. Yang H, Cho ME, Li TW, Peng H, Ko KS, Mato JM, et al.  MicroRNAs regulate 
methionine adenosyltransferase 1A expression in hepatocellular carcinoma. J 
Clin Invest (2013) 123(1):285–98. doi:10.1172/JCI63861 

 148. Xu C, Liu S, Fu H, Li S, Tie Y, Zhu J, et al.  MicroRNA-193b regulates proliferation, 
migration and invasion in human hepatocellular carcinoma cells. Eur J Cancer 
(2010) 46(15):2828–36. doi:10.1016/j.ejca.2010.06.127 

 149. Yang X, Liang L, Zhang XF, Jia HL, Qin Y, Zhu XC, et al.  MicroRNA-26a 
suppresses tumor growth and metastasis of human hepatocellular carcinoma 
by targeting interleukin-6-Stat3 pathway. Hepatology (2013) 58(1):158–70. 
doi:10.1002/hep.26305 

 150. Zhao N, Wang R, Zhou L, Zhu Y, Gong J, Zhuang SM. MicroRNA-26b suppresses 
the NF-kappaB signaling and enhances the chemosensitivity of hepatocellular 
carcinoma cells by targeting TAK1 and TAB3. Mol Cancer (2014) 13:35. 
doi:10.1186/1476-4598-13-35 

 151. Zhu Y, Lu Y, Zhang Q, Liu JJ, Li TJ, Yang JR, et al.  MicroRNA-26a/b and their 
host genes cooperate to inhibit the G1/S transition by activating the pRb protein. 
Nucleic Acids Res (2012) 40(10):4615–25. doi:10.1093/nar/gkr1278 

 152. Li L, Liu Y, Guo Y, Liu B, Zhao Y, Li P, et al.  Regulatory MiR-148a-ACVR1/
BMP circuit defines a cancer stem cell-like aggressive subtype of hepatocellular 
carcinoma. Hepatology (2015) 61(2):574–84. doi:10.1002/hep.27543 

 153. Zhang JP, Zeng C, Xu L, Gong J, Fang JH, Zhuang SM. MicroRNA-148a suppresses 
the epithelial-mesenchymal transition and metastasis of hepatoma cells by 
targeting Met/Snail signaling. Oncogene (2014) 33(31):4069–76. doi:10.1038/
onc.2013.369 

 154. Xu X, Fan Z, Kang L, Han J, Jiang C, Zheng X, et al.  Hepatitis B virus X 
protein represses miRNA-148a to enhance tumorigenesis. J Clin Invest (2013) 
123(2):630–45. doi:10.1172/JCI64265 

 155. Koberle V, Kronenberger B, Pleli T, Trojan J, Imelmann E, Peveling-Oberhag J, et 
al.  Serum microRNA-1 and microRNA-122 are prognostic markers in patients 
with hepatocellular carcinoma. Eur J Cancer (2013) 49(16):3442–9. doi:10.1016/j.
ejca.2013.06.002 

 156. Tsai WC, Hsu SD, Hsu CS, Lai TC, Chen SJ, Shen R, et al.  MicroRNA-122 plays 
a critical role in liver homeostasis and hepatocarcinogenesis. J Clin Invest (2012) 
122(8):2884–97. doi:10.1172/JCI63455 

http://www.frontiersin.org/Medicine/archive
http://www.frontiersin.org/Medicine
http://dx.doi.org/10.1242/jcs.141069
http://dx.doi.org/10.1242/jcs.141069
http://dx.doi.org/10.1002/hep.24563
http://dx.doi.org/10.1053/j.gastro.2014.10.012
http://dx.doi.org/10.1126/science.1098119
http://dx.doi.org/10.1093/carcin/bgp209
http://dx.doi.org/10.1093/carcin/bgp209
http://dx.doi.org/10.1016/j.ccr.2007.07.027
http://dx.doi.org/10.1073/pnas.1011098108
http://dx.doi.org/10.1186/1476-4598-12-13
http://dx.doi.org/10.1038/onc.2010.361
http://dx.doi.org/10.1016/j.molcel.2014.05.005
http://dx.doi.org/10.1177/1947601913499020
http://dx.doi.org/10.1038/cdd.2013.119
http://dx.doi.org/10.1016/j.febslet.2013.10.023
http://dx.doi.org/10.3892/mmr.2014.2271
http://dx.doi.org/10.1038/nature12986
http://dx.doi.org/10.1093/nar/gkq285
http://dx.doi.org/10.1101/gad.234419.113
http://dx.doi.org/10.1016/j.ejca.2013.04.026
http://dx.doi.org/10.1002/hep.23100
http://dx.doi.org/10.1002/hep.26257
http://dx.doi.org/10.1002/cncr.26566
http://dx.doi.org/10.1007/s00432-011-1076-z
http://dx.doi.org/10.1002/hep.25849
http://dx.doi.org/10.1038/onc.2008.178
http://dx.doi.org/10.1158/1541-7786.MCR-13-0312-T
http://dx.doi.org/10.1002/hep.25984
http://dx.doi.org/10.1074/jbc.M111.321646
http://dx.doi.org/10.1172/JCI63861
http://dx.doi.org/10.1016/j.ejca.2010.06.127
http://dx.doi.org/10.1002/hep.26305
http://dx.doi.org/10.1186/1476-4598-13-35
http://dx.doi.org/10.1093/nar/gkr1278
http://dx.doi.org/10.1002/hep.27543
http://dx.doi.org/10.1038/onc.2013.369
http://dx.doi.org/10.1038/onc.2013.369
http://dx.doi.org/10.1172/JCI64265
http://dx.doi.org/10.1016/j.ejca.2013.06.002
http://dx.doi.org/10.1016/j.ejca.2013.06.002
http://dx.doi.org/10.1172/JCI63455
www.frontiersin.org


May 2015 | Volume 2 | Article 3612

Ghidini and Braconi Non-coding RNAs in HCC

Frontiers in Medicine | www.frontiersin.org

 157. Hsu SH, Wang B, Kota J, Yu J, Costinean S, Kutay H, et al.  Essential metabolic, 
anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin 
Invest (2012) 122(8):2871–83. doi:10.1172/JCI63539 

 158. Zeng C, Wang R, Li D, Lin XJ, Wei QK, Yuan Y, et al.  A novel GSK-3 beta-C/
EBP alpha-miR-122-insulin-like growth factor 1 receptor regulatory circuitry in 
human hepatocellular carcinoma. Hepatology (2010) 52(5):1702–12. doi:10.1002/
hep.23875 

 159. Xu H, He JH, Xiao ZD, Zhang QQ, Chen YQ, Zhou H, et al.  Liver-enriched 
transcription factors regulate microRNA-122 that targets CUTL1 during liver 
development. Hepatology (2010) 52(4):1431–42. doi:10.1002/hep.23818 

 160. Fornari F, Gramantieri L, Giovannini C, Veronese A, Ferracin M, Sabbioni S, et 
al.  MiR-122/cyclin G1 interaction modulates p53 activity and affects doxorubicin 
sensitivity of human hepatocarcinoma cells. Cancer Res (2009) 69(14):5761–7. 
doi:10.1158/0008-5472.CAN-08-4797 

 161. Lan FF, Wang H, Chen YC, Chan CY, Ng SS, Li K, et al.  Hsa-let-7g inhibits 
proliferation of hepatocellular carcinoma cells by downregulation of c-Myc and 

upregulation of p16(INK4A). Int J Cancer (2011) 128(2):319–31. doi:10.1002/
ijc.25336 

 162. Ji J, Zhao L, Budhu A, Forgues M, Jia HL, Qin LX, et al.  Let-7g targets collagen 
type I alpha2 and inhibits cell migration in hepatocellular carcinoma. J Hepatol 
(2010) 52(5):690–7. doi:10.1016/j.jhep.2009.12.025 

Conflict of Interest Statement: The authors declare that the research was conducted 
in the absence of any commercial or financial relationships that could be construed 
as a potential conflict of interest.

Copyright © 2015 Ghidini and Braconi. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License (CC BY). The use, distribution 
or reproduction in other forums is permitted, provided the original author(s) or licensor 
are credited and that the original publication in this journal is cited, in accordance with 
accepted academic practice. No use, distribution or reproduction is permitted which does 
not comply with these terms.

http://www.frontiersin.org/Medicine/archive
http://www.frontiersin.org/Medicine
http://dx.doi.org/10.1172/JCI63539
http://dx.doi.org/10.1002/hep.23875
http://dx.doi.org/10.1002/hep.23875
http://dx.doi.org/10.1002/hep.23818
http://dx.doi.org/10.1158/0008-5472.CAN-08-4797
http://dx.doi.org/10.1002/ijc.25336
http://dx.doi.org/10.1002/ijc.25336
http://dx.doi.org/10.1016/j.jhep.2009.12.025
http://creativecommons.org/licenses/by/4.0/
www.frontiersin.org

	Non-coding RNAs in primary liver cancer
	Hepatocellular Carcinoma
	Non-Coding RNAs in HCC
	microRNAs
	Clinical Implications of miRNAs in HCC
	Diagnostic role
	Prognostic role
	Predictive role
	Therapeutic role


	Long Non-Coding RNAs
	Long Non-Coding RNAs in HCC
	Transcribed Ultra-Conserved Regions

	Interactions Between lncRNAs and miRNAs

	Conclusion
	Acknowledgments
	References


