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The pathophysiology of gastrointestinal motility disorders is controversial and largely
unresolved. This provokes empiric approaches to patient management of these so-called
functional gastrointestinal disorders. Preliminary evidence demonstrates that defects
in neuronal nitric oxide synthase (nNOS) expression and function, the enzyme that
synthesizes nitric oxide (NO), the key inhibitory neurotransmitter mediating mechano-
electrical smoothmuscle relaxation, is themajor pathophysiological basis for sluggishness
of oro-aboral transit of luminal contents. This opinion is an ansatz of the potential of
skeletal muscle biopsy and examining sarcolemmal nNOSµ to provide complementary
insights regarding nNOSα expression, localization, and function within enteric nerve
terminals, the site of stimulated de novo NO synthesis. The main basis of this thesis is
twofold: (a) the molecular similarity of the structures of nNOS α and µ, similar mechanisms
of localizations to “active zones” of nitrergic synthesis, and same mechanisms of electron
transfers during NO synthesis and (b) pragmatic difficulty to routinely obtain full-thickness
biopsies of gastrointestinal tract, even in patients presenting with the most recalcitrant
manifestations of stasis and delayed transit of luminal contents. This opinion attempts
to provoke dialog whether this approach is feasible as a surrogate to predict catalytic
potential of nNOSα and defects in nitrergic neurotransmission. This discussion makes
an assumption that similar molecular mechanisms of nNOS defects shall be operant in
both the enteric nerve terminals and the skeletal muscles. These overlaps of skeletal and
gastrointestinal dysfunction are largely unknown, thus meriting that the thesis be validated
in future by proof-of-principle experiments.
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Skeletal Muscle Biopsy May Provide Insight into nNOS Contents
of Enteric Nerve Terminals

Recent evidence of a novel C-terminal tail region mutation involving neuronal nitric oxide synthase
(nNOS) as causative for global gastrointestinal achalasia has been reported in two probands of
an Arab family (1). This study has highlighted the intrinsic shortcoming of detection of nNOS
molecular pathologies (2), as the peripheral cultured fibroblasts from the patients (siblings) did
not yield significant nNOS transcripts (1). The central pathophysiology of most gastrointestinal
motility disorders remains unresolved, resulting in labeling of the conditions as “functional” or
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“idiopathic” (2–5). This remains at the root of current empiric
approaches to the management of these conditions. Studies have
corroborated the evidence that defects in nNOS expression and
function, the enzyme that synthesizes nitric oxide (NO), the
key inhibitory neurotransmitter manifesting mechano-electrical
smooth muscle relaxation, underlies sluggishness of oro-aboral
transit of luminal contents (1, 6–12). This opinion presents an
argument of the potential of skeletal muscle biopsy and examining
sarcolemmal nNOSµ to provide complementary insights regard-
ing nNOSα expression, localization, and function within enteric
nerve terminals, the site of stimulated de novo NO synthesis.
The main basis of this argument is twofold: (a) the molecular
similarity of the structures of nNOS α and µ, similar mechanisms
of localizations to “active zones” of nitrergic synthesis, and same
mechanisms of electron transfers during NO synthesis and (b)
pragmatic difficulty to routinely obtain full-thickness biopsies of
gastrointestinal tract, even in patients presenting with the most
recalcitrant manifestations of stasis and delayed transit of luminal
contents.

nNOS Requires Existence as a Dimer for
Enzymatic Synthesis

Nitric oxide synthesis involves oxidoreduction of the nitrogen
atom of guanidino group (13) (Figure 1Ai). The electron transfer
between the reductase to the oxidase domain of nNOS obviates
that twomolecules of nNOSneed to be in closemolecular proxim-
ity, as the electron transfer is intermolecular (2, 14). Thus, nNOS
should exist as a dimer (6, 15–18) to be functionally active in nerve
terminals (15, 16), neuronal soma (19), and other subcellular
compartments that contain nNOS and enzymatically produceNO.

“Active Zones” of Nitrergic
Neurotransmission: Membrane
Localization of nNOS

From a theoretical perspective, it may seem likely that dimeric
nNOS can catalyze NO synthesis anywhere within the cell.
Increasingly, however, signaling domains of nNOS is being rec-
ognized. Namely, NO is not synthesized stochastically anywhere
within the cell, but rather occurs at discrete locations within
the cell cortex underlying the membrane. There exists no direct
evidence of detection of nitric oxide synthesis at the membrane.
This is mainly because the synthesized nitric oxide, due to its
very high diffusion coefficient, instantly saturates the reporter
[like diaminofluorescein (DAF); DAF detects N2O3, the oxidized
product of NO] (22). The rate kinetics of DAF·N2O3 formation
is much faster than image acquisition frame rate by conventional
microscopy like CLSM. DAF·N2O3 stains the entire membrane-
delimited location and preclude detection of the precise site of
synthesis. However, there are indirect evidences, which are strong
evidentiary for the cell membrane as the site of nNOS enzymatic
activity.

The main body of evidence comes from the intracellular
localization site of nNOS. Light and electron micrographs of
enteric and other nerve terminals have shown nNOS diffusely

distributed in the cytoplasm as well as near the cell mem-
brane (9, 23–26). In isolated enteric nerve terminals, nNOSα
dimers have been demonstrated both within the cytosol and
membrane-associated (16). However, preliminary evidence has
shown that cytosolic nNOS dimers remain phosphorylated and
enzymatically inactive (16). It has also been reported that specific
motor proteins exist, like for example, myosin Va, which has
the necessary molecular specificity for transposition of nNOS
from the cytosol to the membrane (9, 27, 28). Much like
the vesicular neurotransmitters, “active zones” exist for nNOS-
mediated nitrergic synthesis at the membranes, though special-
izations like excitatory synapses are not seen (6, 16, 29). Cold
SDS PAGE have revealed 320 kDa nNOS dimers that are both
phosphorylated at serine847 and unphosphorylated forms, rais-
ing the possibility of a toggle between active and inactive iso-
forms that may initiate and terminate nitrergic neurotransmission
(6, 15, 16).

Myosin Va Motor for nNOS Cortical
Streaming

Myosin Va facilitates transfer of melanosomes (30). Deficiency
of myosin Va results in dilution of coat color (27, 31). Using
an inbred mouse model of hypomorphic myosin Va mutant, the
DBA/2Jmice, it was shown that there is a reduction ofmembrane-
bound nNOS within the enteric synaptosomes (27). Furthermore,
KCl stimulation of plated DBA/2J varicosities failed to generate
fluorescence product (27). These evidences suggested the exis-
tence and necessity for membrane localization for optimal nNOS
activity in enteric nerve terminals.

Why Does nNOS Need to be at the
Membrane for Enzymatic Activation?

The most likely reason seems to result from cooperative allostery
that is needed for precision of regulation of nNOS catalysis (6).
Because nNOS is a constitutive enzyme that is activated by calcium
influx, it seems likely that molecular proximity of nNOS to N-
type calcium channels within the enteric varicosity may ergonom-
ically support nitrergic neurotransmission (6). In fact, membrane-
restricted nNOS has been demonstrated in other non-neuronal
and neuronal cells including cardiomyocytes and central nervous
system neurons (32–35). There may be the need for integrating
different signal transduction pathways and this is best optimized
by its membrane location.

nNOSµµµ is Distinctly Visualized at the
Sarcolemma

Neuronal nitric oxide synthase-α has a close splice variant,
nNOSµ, which has been reported to be present in skeletal mus-
cles and cavernosal nitrergic nerve terminals (14, 28, 36–40)
(Figure 1Aii). nNOS α and µ isoforms are molecularly sim-
ilar, with the µ isoform carrying an extra 34 amino-acid µ-
exon insert (14, 36, 41–44). Importantly, the skeletal muscle
is the only tissue where nNOS membrane localization is dis-
tinctly visualized and exhibits a striking appearance (20, 42, 45)
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FIGURE 1 | (A) (i) Key steps in nitric oxide synthesis by L-arginine
oxidoreduction by electron flow between dimeric nNOS; (ii) cartoon depicting
molecular architecture of the splice variants nNOSα and µ. nNOSα and µ are
molecularly similar, with nNOSµ having an additional 34 amino-acid inserts
between the calmodulin (CaM) and FMN domains. Note that nNOSµ has a PDZ
domain-lacking isoform, similar to nNOSβ. (B) Striking peripheral distribution
pattern of nNOSµ splice variants in skeletal muscle section. Note that, in
contrast to the diffuse distribution of nNOSα in enteric nerve terminals and
nNOSµ in cavernosal nerve terminals {depicted elsewhere, see (9, 28)}, nNOSµ
in skeletal muscle shows a striking peripheral location lacing the boundary of the
sarcolemma. Increasing evidence points toward membrane as the site of active
nitrergic biosynthesis. Skeletal muscle biopsies may provide an excellent model
for obtaining instant snapshot of membrane-localized nNOS splice forms. Note
the membrane mislocalization of nNOS in some representative skeletal muscle
diseases in the lower panels. Whether enteric nitrergic neurotransmission has
affected these diseases has not been thoroughly examined, though dysphagia

has been reported in association with LGMD. DMD, Duchenne muscular
dystrophy; BMD, Becker muscular dystrophy; LGMD, limb-girdle muscular
dystrophy [reproduced with permission from Ref. (20)]. (C) Reduction of
membrane-bound nNOSµ in skeletal muscle and PIN (LC8) in an animal model
of diabesity (Zucker fa/fa rat). Note that syntrophin expression remained
unchanged in Zucker fa/fa rats, hinting that either genomic expression of nNOSµ
or its intracellular transport by PIN/myosin Va or both may have contributed to
the diminished membrane location of nNOSµ in diabesity. Myosin Va binding to
nNOS has conserved mechanisms across tissues, utilizing PIN or LC8, the light
chain of dynein and myosin Va. The transcription factors regulating myosin Va
and nNOS genomic expression may be affected in diabetes. This may potentially
effect nNOS distribution and localization in critical active zones within nerve
terminals and impair enteric musculomotor neurotransmission. Skeletal muscle
expression of nNOS, PIN, and potentially myosin Va may provide surrogate
impression of changes of similar proteins in myenteric nerve terminals [images
pseudocolored with ImageJ; reproduced with permission from Ref. (21)].

(Figure 1B). Unlike all other cells in which nNOS appears
diffusely, nNOS is located discretely under the submembra-
nous zone, bordering the polygonal outline of skeletal mus-
cle cross-sections, with scant staining in the cytosol. Dot blot
assays and other studies confirmed these observations (36, 46).
The functions of nNOS in skeletal muscles are diverse, includ-
ing facilitation of arteriolar relaxation during skeletal mus-
cle activity, muscular anaplerosis, and mitochondrial biogenesis
(42, 43, 47).

Mislocalization of Membrane-Bound
nNOSµµµ

Peripheral mislocalization of nNOS has been demonstrated in
paraphysiologic conditions like hibernation and numerous pri-
mary and acquired skeletal muscle diseases, including age-related
sarcopenia, ALS, chronic ventilation, long-term immobilization
due to orthopedic cast, zero-gravity flight, Duchenne muscu-
lar dystrophy, Becker dystrophy, and myasthenia gravis (20, 45,
48–58) (Figure 1B). The function of membrane localization of
nNOSµ is not entirely well defined (47), though restoration of

membrane-bound nNOSµ has been used as an endpoint for
the recovery of Duchenne muscular dystrophy after molecular
therapy (59).

Examining Sarcolemmal nNOSµµµ May
Provide Insights into Enteric nNOSααα
Location and Function

While this peripheral array of nNOSµ occurs in skeletal muscle
due to dystrophin and syntrophin (60–63), almost nothing is
known about nNOSµ transport in skeletal muscles. It may likely
result from a discrete transcellular transport system and trapping
of nNOS in the periphery. This unique cellular biology of nNOS
costamere in the skeletal muscle makes it a unique model organ
to test membrane distribution of nNOS (20, 21, 42, 45, 64). Thus,
it may be posited that skeletal muscle punch biopsies may provide
an optimal model to examine membrane-bound nNOS. Cryosec-
tions may be stained in the pathology gross laboratory settings
to obtain instant visual snapshot of membrane distribution of
nNOS. This may provide useful correlative evidence in refrac-
tory disorders of gastrointestinal motility. NADPH diaphorase
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examination of skeletal muscle biopsies of the affected probands
in the recently described case report of achalasia (1) resulting from
nNOSdel1203–1434 mutation shall tentatively yield negative staining,
as well as impairment of nNOSµ enzymatic activity. Interestingly,
this nNOSdel1203–1434 deletion mutant has an intact PDZ domain
(1). Thus, membrane localization of nNOSµ would not be affected
despite lack ofNObiosynthesis by thismembrane-localized nNOS
(1, 2). The case report did not describe whether the affected chil-
dren had any complaints of muscle fatigue, muscular ischemia, or
metabolic problems like glucose intolerance (1). Examination of
skeletalmuscle nNOSwould be one of the first steps toward identi-
fying peripheral biomarker for gastrointestinal motility disorders
resulting from defects in nitrergic neurotransmission.

Sarcomeric nNOSµµµ Transport has not been
Extensively Studied

The molecular transporters of nNOS within skeletal muscles have
not been examined in depth. Preliminary evidence suggests that
nNOSµ may be transported by myosin Va. Nitrergic relaxations
are impaired in cavernosal tissues of DBA/2J mice (28). In caver-
nosal nerve fibers, nNOSµ and myosin Va localize (28). Thus, it is
likely that nNOSµ in skeletal muscles may also be transported by
myosin Va. Membrane clustering of nNOSµ and LC8 is dimin-
ished in gastrocnemius biopsies obtained from a rat model of
diabesity (65) (Figure 1C). Recent observations of genomic sup-
pression ofmyosinVa have been shown in streptozotocin-induced
diabetes (9). It is possible that transcriptional inhibition ofmyosin
Va is a fundamental early-stage molecular pathophysiology oper-
ant in all tissues in diabetes (9, 66), which likely contributes to the
observed misalignment of membrane nNOS in skeletal muscles
in the diabesity model. Myosin Va facilitates GLUT4-mediated
uptake of glucose (67). Insulin-stimulated NO production stim-
ulates glucose uptake in diverse tissues including skeletal muscles
(68–70). The overall sluggishness of directed cytosolic movement
of glucose transporters in skeletal muscle possibly contributes
to insulin resistance, contributing to chronic pathophysiology of
non-insulin-dependent diabetes mellitus (NIDDM). Diminished
insulin sensitivity has been associated with reducedNOS function
and impaired glucose uptake in T2DM skeletal muscle. It has
been shown that nNOS undergoes phosphorylation in skeletal
muscle in response to insulin and is associated with increased
NO production (71). Myosin Va has been reported to cluster
nicotinic acetylcholine receptors in skeletal muscle neuromus-
cular junctions, along with other clustering proteins like dys-
trophins (the classic NMJ, which is a fast synapse in contrast
to the slow junction of enteric nerve terminal-smooth muscle
junction) (72, 73). Whether subtle changes in nAChR due to
myosin Va genotoxicity are contributory to fatigue in diabetes
is a tempting hypothesis. It may be appreciated here that this
opinionmakes an assumption that similar molecular mechanisms
of nNOS defects shall be operant in both the enteric nerve ter-
minals and the skeletal muscles. These overlaps of skeletal and
gastrointestinal dysfunction are virtually not known, thus mer-
iting that the thesis be validated in future by proof-of-principle
experiments. For example, recent pilot evidence has been pro-
vided that type I fibers of myalgic muscle is associated with

mislocalization of membrane-bound nNOSµ (74). Whether there
is an increased predisposition to gastrointestinal dysmotility in
cohorts of subjects with restless legs syndrome is an avenue of
significant translational investigation.

Significance and Implications of nNOS
Differential Splicing

Though the promoter and exons of nNOS have been examined
in detail (41, 75, 76), virtually nothing is known regarding the
underlying basis of the differential splicing (6, 15, 16, 77). nNOSα
is present in neuronal cells, including myenteric neurons (6, 15,
16, 27, 77), though it is present in non-neuronal but excitable cells
like the cardiomyocyte (34, 35). Similarly, it is also not known
why nNOSµ is seen in cavernosal nerve fibers (28), as well as
extensive distribution throughout the skeletal muscles (42). Some
recent results show the differential calmodulin affinity of these
two isoforms, with nNOSµ relying less on calmodulin for electron
transfer, as well as with lower rates of electron flow in the reductase
domain (though similar potentials of NO synthesis). How these
differences relate to the tissue distribution and tissue-specific
function is not known at present. The jury is still out regarding
the precise need for membrane-localization of nNOS in skeletal
muscles (47). However, this opinion has possibly convincingly
argued that introduction of skeletal muscle biopsy for nNOS
examination is potentially an important step in the neurogas-
troenterology clinic. Subtle differences do exist between nNOS α
and µ. Apart from the extra amino-acid inserts, crude-solubilized
muscle extracts have shown that nNOSµPDZ− is present in the
pellet fraction, though further studies are needed to distinguish
the distribution in the sarcolemma per se from the associated
subcellular cytoskeleton (36). The role of nNOSµPDZ− has been
examined in a few other studies (46). It is possible that because
of submembranous location of nuclei in skeletal muscles, this
isoform is detected near the membranes but may translocate to
the cytosol post-synthesis. This hypothesis remains to be tested. It
is not knownwhether the nNOSµPDZ+–nNOSµPDZ− heterodimer
exists in skeletal muscles, though theoretically such a heterodimer
has the potential to synthesize NO, as the oxidase domain exists
beyondAA409, well beyond theN-terminal PDZ domain. nNOSβ,
the isoform similar to nNOSµPDZ− is present in cytosolic fraction
of enteric nerve terminals and remains serine847-phosphorylated,
but absent in purified membrane fractions (15, 16, 77). Whether
nNOSα/β heterodimers are formed in enteric nerve terminals have
not been examined.

Conclusion

Though the stoichiometry of gene expression and protein trans-
lation of myenteric nNOSα and skeletal muscle nNOSµ may
not match, examination of skeletal muscle nNOSµ from biopsy
samples has the potential to provide three important information:
(a) microscopic visualization shall provide the location site of
nNOS, including at the membrane, the active site of nitrergic
neurotransmission; (b) nNOS may be extracted and purified for
in vivo mutational analyses; (c) differential transcriptional and
post-transcriptional regulations of myosin Va and nNOS, both
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in terms of the specific factors involved and the temporal rela-
tionships. Given the pragmatic problem of obtaining regional and
full-thickness biopsies of the gut, examination of skeletal muscle
biopsies might provide extremely useful information relating to

pathophysiology of enteric nitrergic neurotransmission. Despite
the invasive nature of the proposed biopsies, endeavor may be
directed to obtain primary clinical evidence to obtain precision
in the management of gastrointestinal motility disorders.
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